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Abstract. In this paper higher order time integration schemes are ap-
plied to fluid-structure interaction (FSI) simulations. For a given accu-
racy, we investigate the efficiency of higher order time integration sche-
mes compared to lower order methods. In the partitioned FSI simulations
on a one-dimensional piston problem, a mixed implicit/explicit (IMEX)
time integration scheme is employed: the implicit scheme is used to inte-
grate the fluid and structural dynamics, whereas an explicit Runge-Kutta
scheme integrates the coupling terms. The resulting IMEX scheme re-
tains the order of the implicit and explicit schemes. In the IMEX scheme
considered, the implicit scheme consists of an explicit first stage, singly
diagonally implicit Runge-Kutta (ESDIRK) scheme, which is a multi-
stage, L-stable scheme.

1 Introduction

For many engineering applications, fluid-structure interaction (FSI) phenomena
are important for an efficient and safe design. Increased computational power has
enabled the simulation of FSI, through coupling of existing flow and structure
solvers. However, the simulation of long term dynamic behavior is still very time
consuming. Therefore efficiency of the FSI solver is of the utmost importance.
It has already been demonstrated that for flow applications, higher order time
integration schemes are computationally more efficient than popular lower order
schemes, even for engineering levels of accuracy [2]. This drives the idea to use
higher order time integration schemes for fluid-structure interaction simulations
as well. So far we only found examples of fluid-structure interaction computa-
tions based on at most second order implicit time integration methods [BEITT].
For the coupled fluid-structure simulations we envisage a partitioned scheme,
meaning that an existing flow and structure solver can be used, each solving
efficiently their own equations on a separate domain and coupling is obtained
through boundary conditions. A partitioned strategy enables the re-use of all the
effort put into the development and optimization of such codes, especially the
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iterative solvers. In the partitioned scheme, the coupling terms between fluid and
structure are not solved in a fully coupled system, but are given as a boundary
condition. In order to obtain a stronger coupling, a predictor-corrector scheme is
sometimes suggested, but we only found applications with first or second order
time integration schemes. Also the use of sub-iterations at every time step is
sometimes proposed, which comes, however, at an increased computational cost.
An other possibility is to integrate one system with an explicit scheme, which
can only be done efficiently in the absence of stiffness for that system.

In this paper we consider a mixed implicit/explicit (IMEX) time integra-
tion scheme based on higher order implicit and explicit Runge-Kutta methods.
The separate fluid and structural dynamics are integrated by an unconditionally
stable, implicit scheme and only the coupling component is integrated by the
explicit scheme. The IMEX scheme is applied to a linear and a nonlinear, one-
dimensional piston, which resembles a simple fluid-structure interaction problem.
The order and accuracy of the resulting scheme are investigated and efficiency
is compared to lower order methods.

2 Fluid-Structure Interaction Model Problem

The test case considered is the one-dimensional piston problem (Fig. []), which
is often used as an initial test case for fluid-structure interaction simulations

0.

fluid

X, q

Fig. 1. The one-dimensional piston problem

The flow is modelled as a one-dimensional, isentropic, inviscid flow. Usually,
the governing equation for the flow are written in the arbitrary Lagrangian-
Eulerian (ALE) to cope with the moving and deforming mesh [4J6]. In this
paper, however, we only consider the fluid on a non-moving mesh. The governing
equation for the fluid yields

d

— [ widz + / F(we) - nds =0, (1)
dt J oK

wherein wy = (p’;) the fluid state vector, OK is the boundary of K, F(wf) =
(pup;;p) is the flux vector and n is the unit normal vector perpendicular to
OK pointing outward. Coupling is achieved through an inflow/outflow boundary
condition at the interface u(z =0) =0, u(z = L) = g.
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The structure is modelled as a simple harmonic oscillator with spring stiffness
k, mass m and without any physical damping under an external pressure force
due to a difference between the ambient pressure and the pressure in the flow at
the interface, yielding

mg + kq = p(x = L) — po, (2)

wherein ¢ denotes the structural acceleration %q, p(x = L) is the pressure in
the flow at the interface and pg is the ambient pressure.

The flow is discretized using a cell-centered Finite Volume (FV) method
on a uniform mesh of N cells. A standard second order central scheme and a
first order upwind scheme [§] are used. In the fluid domain two ghost cells K
and K, 41 are introduced to cope with the boundary conditions. The structural
dynamics are written as a system of two ordinary differential equations for which
the state vector is denoted by wg. The coupled, nonlinear system is written in
semi-discrete form

wf:Ff(wf;ws)7 ws:Fs(w57wf)7 (3)

wherein F; the flux for the fluid under boundary condition wgs and Fy the flux
for the structure under boundary condition ws. The system, linearized around
an equilibrium state, yields

é - A U) +Asfwfa (4)
é Afsws + Afwf, (5)

wherein w/ and w; denote the perturbation in the structure and fluid states
respectively and Af = gi : A = gwf, Ay = gi . and Ay = gF = all evaluated at
the equilibrium. The matrix Af is a 2N x 2N band-matrix which contains the
discretization of the fluid domain and Ag is a 2 x 2 matrix. The coupling matrices
Ags (2N x2) and Ay (2 x 2N) will generally only have a relatively small amount
of non-zero entries, since the coupling only takes place at the boundary of the

domain.

3 Time Integration by Mixed Implicit/Explicit Schemes

We consider any system of the form
W = F(w,t), (6)

which can be any (semi-discrete) system describing e.g. structural and/or fluid
dynamics. Since future applications involve engineering problems a large range of
eigenvalues will be introduced due to a wide range of scales in the flow (for exam-
ple in boundary layers [9]), giving rise to the stiffness of the system. Stiffness can
cause the time step to be limited by stability rather than accuracy considerati-
ons. Hence, we only consider L-stable, implicit time integration methods, which
can cope with stiffness in a robust fashion and dissipate the high frequency mo-
des. Some well-known unconditionally stable implicit methods include the first



Implicit and Explicit Higher Order Time Integration Schemes 607

and second order multi-step Backward Differentiation Formula (BDF) schemes
[7] and the trapezoidal rule method. The third and higher order multi-step BDF
methods, however, are only L(«)-stable, making them impractical in engineering
codes. Additionally the multi step methods are not self-starting. Less known and
also less applied in engineering codes are implicit Runge-Kutta (IRK) methods
[7]. The IRK methods can be designed with arbitrary high order and L-stability.

When a problem with easily separable stiff and nonstiff components is con-
sidered, a combination of implicit and explicit Runge-Kutta methods can be
used. The implicit method is used to integrate the stiff component in a stable
fashion and the nonstiff component of the system is integrated using the explicit
scheme. These combined implicit/explicit (IMEX) schemes are already used for
convection-diffusion-reaction problems in [9].

The IMEX schemes we consider in this paper consist of an explicit Runge-
Kutta (ERK) and a stiffly-accurate explicit, singly diagonally implicit Runge-
Kutta (ESDIRK) scheme, for which the solution at t"! can be made of arbitrary
high order by cancellation of the lower order errors. The ESDIRK scheme is an
L-stable, implicit scheme with an explicit first stage, which allows the implicit
stages to be second order accurate. For every stage k we solve

k
ot = Ay aFO, k=1, ™

i=1

wherein F() = F(w®) is the flux at stage i. After computing s stages, the
solution at the next time level is found by

w = w" + ALY b FO. (8)
i=1

In this paper we consider third to fifth order IMEX methods. At least 37
different combinations have been found in the literature, but we only use the
ones reported in [9], which are optimized for the Navier-Stokes equations. The
third, fourth and fifth order schemes consist of a 4, 6 and 8-stage algorithm
respectively. In order to distinguish between the implicit scheme and explicit
schemes, we denote ag; for the implicit and ag; for the explicit schemes. Both
schemes use the same b; coefficients to obtain the higher order solution. An s-
stage ESDIRK scheme needs to solve s — 1 implicit systems within one time step
compared to only one for the multi-step methods. So the question is whether
the higher computational cost of the ESDIRK methods is compensated by their
higher order accuracy.

4 Partitioning Algorithm

When the discretized fluid and structural equations are written as in (@), the
monolithic or fully coupled solution is obtained by direct integration of (@) with
any time integration scheme. For this academic problem, the monolithic solution
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is still manageable, but for real-world applications a partitioned approach is more
favorable. In the proposed partitioning algorithm, both the fluid and structure
are integrated by the ESDIRK scheme. At every stage a Gauss-Seidel type of
partitioning is applied. When the linear systems (@) and (@) are considered, the
structure is advanced to stage k by

k—1
(I—akkAtAS)wS( =wy —|—Atz:a;ﬂF(Z +AtZakJFb(fj), (9)
i=1 j=1

showing that the coupling from fluid to structure is integrated by the ERK
scheme. The coupling fluxes are treated in a consistent, explicit way in order
to retain the higher order of the scheme. Due to the combined implicit/explicit
nature of the scheme, we refer to it as IMEX. The same scheme is obtained when

we define a flux predictor for Fs(fk) as

k—1 aQ a
kz kz (i)
FY = . (10)

i=1

Next the fluid is integrated to stage k by
(I — app AtA)w'™ = wp + At Z i (F< D4 Ff(s)) +ag At )

wherein the coupling flux Ff(sk) is already known from (@). After solving all s
stages of the integration scheme, the state at the next time level is obtained

S
Wit =l + Aty b (FO 4+ Y (12)
=1
wftt = wp + Ay b (FO 4 FD), (13)
i=1

which completes one partitioned integration.

For the nonlinear system (B]), the separation of flux contributions to be used
with the implicit and explicit schemes needs extra attention. In order to obtain
separated flux contributions, a linearization of the flux is made around ¢,

oF, OF,
Fr(w™, w®) = F(wf, w?) + Aw (k)a Z+A <k>awf+h.o.t.. (14)

We define the flux at stage k as
M = F® 4 ar®, (15)

wherein

OF,
Ff(k) :Ff(wgk),wg) and AFf(Sk) ~ Awh) L

Ws w,

(16)
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The contribution Ff(k) can be considered the flux in the flow under a constant

boundary condition wf and AFf(Sk) can be considered the change in flux at the
interface caused by a change in structural state within the time step. The in-
tegration of the nonlinear system follows the IMEX partitioning algorithm as
described in Eqs. (AHI3), with Fy = F;, Fyy = AFy and similarly F, = F, and
= Ast'

5 Results and Discussion

The piston problem, for which an exact solution exists in the linear case, has only
one single structural node with a mass m = 2 and a spring stiffness k = 1.429.
With these settings the fluid has a strong influence on the structural motion
without dominating the structural dynamics. In all computations 64 finite vo-
lume cells (FVC) are used to discretize the flow. For the linear simulations the
standard central scheme without artificial dissipation is used. However for the
nonlinear simulations stabilization is necessary and a first order upwind scheme
is employed. The coupled simulations are performed with the IMEX scheme,
using third to fifth order ESDIRK schemes for the implicit time integration and
third to fifth order ERK schemes for the integration of the coupling terms. In the
linear computations a Gaussian elimination is used to solve the implicit systems.
In the nonlinear simulations, a Picard iteration is used for the monolithic BDF2
scheme and a Newton iteration is used in the flow solver. Since the iterative
solvers have different efficiencies, it is not justified to determine the work by the
total amount of CPU time. Therefore the work is defined as the number implicit
stages that need to be solved during the simulation.

The linear system has a coupled radial frequency of w, = 1.01 and a coupled
period of P = 6.19. The computational efficiency of the higher order partitioned
IMEX schemes is investigated by comparing them to the monolithic (or fully
coupled) solution with the second order BDF time integration scheme. This
way the efficiency of BDF2 is not diminished by partitioning. The energy error
versus work is presented in Fig. [ Since every time integration scheme has a
fixed number of implicit stages to solve within one time step, we can obtain the
order of the schemes by measuring the slope of the curves in the asymptotic
range, as displayed in Fig. [d. The IMEX schemes show design order in the
asymptotic range. In addition, the efficiencies of fourth and fifth order IMEX are
much higher than monolithic BDF2. The partitioned third order IMEX performs
equally with respect to monolithic BDF2. The effect of the consistent explicit
coupling flux treatment can be seen by comparing the result for fifth order IMEX
to the partitioned ESDIRKS5 scheme, which uses the fluid state at the previous
time level as a predictor for the implicit flux calculations. The scheme with the
predictor does not show design order and needs about 2.5 times as much work
to obtain the same accuracy as third order IMEX.

For the nonlinear problem an exact solution is not obtained. A “temporally
exact solution” is obtained with the fifth order IMEX scheme and At = 1/1024.
At t = 0 the flow is at rest and the piston has an initial displacement ¢y = 0.5.
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Linear piston problem: 64 FVC, k=1.429, m=2, t=5P
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Fig. 2. Energy efficiency of IMEX schemes compared to monolithic BDF2 and parti-
tioned ESDIRKS5 without consistent predictor

The piston is released and the simulation is run until ¢ = 7 which is a little over
one period (P =~ 6.34). At t = 7 the Ly-norm of the error in the fluid density field
is determined. For the structure the error for the displacement and velocity are
computed. Simulations are performed with time steps ranging from At =1 to
At = 1/512. In Fig.[Bl the Lo-norm of the error in the fluid density field is shown
versus work for the third to fifth order IMEX schemes and the monolithic BDF
scheme. From the results the order of the scheme are obtained by calculating

Non-linear piston problem: 64 FVC, k=1.429, m=2, t=7
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Fig. 3. Fluid density field efficiency for the third to fifth order IMEX schemes compared
to monolithic BDF2

the slope of the graphs in the asymptotic range. In the asymptotic range the
IMEX scheme have design order. For the larger time steps (At = 1,1/2), the



Implicit and Explicit Higher Order Time Integration Schemes 611

order of the scheme is diminished, but the accuracy is still far better than the
second order monolithic scheme with the same time step. When the error level
is considered between -2 and -4, we find that the monolithic BDF2 scheme needs
~1.3-2.5 times as much work compared to the fourth and fifth order IMEX
schemes. For higher accuracy requirements, the efficiency of the higher order
schemes increases.

6 Conclusions and Future Work

For the partitioned simulation of fluid-structure interaction third to fifth order
IMEX schemes are used. Applied to a linear and nonlinear piston problem, the
IMEX schemes are more efficient than the monolithic BDF2 scheme.

Up to this point only a simple one-dimensional problem has been considered.
Future research focusses on the application of the IMEX scheme to more realistic,
multidimensional problems.
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