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Abstract. The present paper presents a methodology for modelling the
behavior of continua under multi-field influence, along with the archi-
tecture of its computational implementation. It is being applied for the
special case of modelling multi-field ionic conductive material systems.
Its computational implementation addresses generation and solution of
both the constitutive and the field evolution equations. An application
of this methodology for the case of electric multi-hygrothermoelasticity
generates a model for materials participating in artificial muscle appli-
cations. The corresponding system of nonlinear governing partial diffe-
rential equations describing the state evolution of large deflection plates
made from such materials is derived as an example. Finally, initial nu-
merical solution examples of these electro-hygro-thermally generalized
Von-Karman equations are presented.

1 Introduction

The present paper reports on the developmental startup of a computational and
algorithmic infrastructure that attempts not to ignore any coupled field and/or
transport effects nor it makes any geometric simplifications while it captures the
behavioral modelling of associated continuum systems.

The computational implementation and application examples on ionic artifi-
cial muscle materials are part of a validation effort at the sub-component level of
a more general data-driven environment for multiphysics applications (DDEMA)
that has been preliminarily described elsewhere [TI12/3].

Recent progress on processing and development of various multi-field activa-
ted materials such as electro-active polymers (EAP) and ionic polymer con-
ductive composites (IPCC) for artificial muscle applications has underlined the
general need for a rigorous, complete and preferably automated modelling of
their behavior from a continuum coupled multi-field perspective.

There are various generalized approaches for deriving multi-field theories [4]
Bl67] in the 4D space-time domain. Furthermore, mass transport considerati-
ons were combined with continuum theories based on continuous thermodyna-
mics [R)9]. In the continuum mechanics context, the governing partial differential
equations (PDEs) can be produced when all constitutive equations have been
eliminated through term rewriting of the conservation laws.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 621 2004.
© Springer-Verlag Berlin Heidelberg 2004



622 J. Michopoulos

Arguably, the goal of developing a general methodology to utilize computa-
tional technologies for automating the process of generating and utilizing multi-
field theories for demanding applications, has not been reached. The plethora of
analytic approaches as well as the pluralism, the quick evolution, and the hete-
rogeneity of the available software and hardware infrastructure was a significant
set of reasons that is contributing to this failure.

The novelty of this paper is that it attempts to address these difficulties by
presenting both an analytical activity workflow along with an architecture of a
computational infrastructure to derive and solve the equational system repre-
senting the behavior of multi-field ionic systems.

The paper presents the abstract algorithmic context of the general modelling
process in Section 2, from the perspective of continuous multi-field constitutive
theories (CFTs). Section 3 presents the general activity workflow of this process
along with a computational architecture of a computational infrastructure that
implements this workflow. Application of this methodology produced the gene-
ralized Von-Karman partial differential equations (PDEs) presented in Section
4 along with a solution example. Conclusions provide the closure of the paper.

2 Multi-field Model Derivation

Every deformable continuum under multi-field generalized loading including re-
active substance and charge diffusion can be considered as a system that can
be described in space and time by the evolution of its state variables. Some of
these variables can be thought of as dependent or output parameters and some
as independent or input parameters. A systemic abstraction of such a medium
is presented in Fig. (1a) and its corresponding continuum one in Fig. (1b). The
systemic abstraction differentiates between the bulk material state behavior and
the structural state behavior, while the continuum mechanics traditional ap-
proach never makes this differentiation. Constitutive behavior refers to the bulk
material state behavior (in the sense of the representative volume element beha-
vior), while systemic behavior is the composition of both the bulk material state
behavior with the structural material state behavior.

The bulk behavior of such a system is usually described as a set of relational
restrictions F among the state variables selected by the modeler as the ones
pertinent to the situation at hand, given by

F(q,€,p) =0, (1)
where p, gand q represent the input state variables, the internal state variables
and the output state variables respectively. For those cases that these relations
can be solved with respect to the output variables they are called constitutive
relations of the form

§=C(Ep) . (2)
Functionals C in equation (2) represent an a-priori definable multi-functional
mapping of the form RI™(®) x Rdim©) <y Rdim(@ Ty most path-history in-
dependent state spaces these functionals can be recovered by differentiation of
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Fig. 1. Systemic (a) and continuum-based (b) descriptions of multi-field systems

an also a-priori definable potential function =(€,p), with respect of the input
(independent) state variables. This potential function has to be constructed as a
function of the input and the internal state variables and should it be necessary
any time derivatives of them. This can be expressed by,

(j = Vp E(gaﬁ,ﬁ,t" ) é,t") (3)

This formalism imposes a conjugation between input and output state variables
in a way that allows us to form ” cause-effect” pairs {g;, p; } that have the property
that their product has unit dimensionality of energy density per unit of volume
or mass. Various researchers have suggested various choices for the potential
function required for the constitutive relations. The most practicable and well
known among them are those of internal energy, enthalpy, Helmholtz free energy
and Gibbs free energy.

In the context of continuous multiphysics, system behavior in terms of state
evolution in most continuum systems, is expressed in terms of solutions of partial
differential equations (PDEs) that enforce special topological form on the fields
described by the spatial and time distributions of the state variables and further
restrict the potential values these variables can take, i.e.

R, (V"G G oms.) = 0 (4)

The traditional sources of such equations are the so-called ”conservation” or
”balance” laws of physics. These are the thermomechanical laws of conservation
of mass, momentum, moment of momentum, energy, entropy flaw and the elec-
trodynamic laws of conservation of electric displacement (Gauss-Faraday law),
magnetic flux, electric charge, rotation of electric intensity (Faraday’s law), ma-
gnetic intensity (Ampere’s law). These are the axioms of continuous physics
(ACP) that are not (formally) provable (in their most general form) but rather
they are beliefs that we a priori accept to be true. Unfortunately they are not
always enough for completely determining the state variable field evolution. For
this reason the constitutive functionals are used to provide algebraic closure.
Introducing the constitutive equations @) or @) into @) and eliminating the
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independent variables or more generally half of the conjugate variables, yields a
complete set of PDEs that constitute the so-called field equations of the system.
They are of the form,

pi(ﬁ7ﬁat’” ) ) =0 (5)

The ACP have been historically expressed in either their global (integral),

([ 0o = [ rieyoas [ stoyor (6)

or the local (differential) form of a generalized divergence theorem [11] transfor-
med via the Gauss-Ostrogratsky theorem,

¢+ V- (v9) = V-7{¢} +9{¢}, (7)

where ¢ is the field in a volume V', 7{¢} is the influx of ¢ through the surface
0V, and g{¢}is the amount of ¢ produced in the body (source term). Further
simplifications on the form of the ACP can be obtained by applying some or all of
the additional axiomatic and meta-axiomatic restrictions that are traditionally
called the axioms of constitutive theory [1].

3 Computational Workflow and Infrastructure

The general process of simulating the behavior of continuum system usually
involves the solution of the PDEs describing its space and time evolution via
application of discrimination method over the domain of their applicability and
the subsequent solution of a set of ordinary differential and eventually algebraic
equations. However, as our ability to produce new material systems has outpaced
our ability to model them, the need for automating the process of deriving
these PDEs as well as the prerequisite sub-models and technologies has become
apparent. In attempting to address this need we have developed a conceptual
model of the workflow involved for developing a system of governing multi-field
coupled PDEs. Figure 2 shows the activities and their interconnection along with
the computational context they are embedded.

The essential features of this diagram capture the outline of the methodology
described in the previous section. A crucial aim of the present effort is to extend
the symbolic computing context as much to the left as possible and seamlessly
integrate all contexts with each-other.

The current state of evolution of a continuously evolving computational in-
frastructure that implements the workflow of Fig. 2 is shown schematically in
Fig. 3.

Lack of space does not allow detailed description of all modules and relation
involved. However, the reader can easily follow the logic involved and recognize
the programming languages involved. It is essential to underscore that J/Link is
the Mathematica [10] to Java and Java to Mathematica application programming
interface. MathTensor [I1] and Theorema [12] are packages developed to run
under Mathematica, addressing the tensor manipulation and theorem proving
needs of deriving the constitutive and field equations of the model at hand.



Computational Modelling of Multi-field Ionic Continuum Systems 625

Formulate

Conservation
Laws %

Define Systemic
Behavior State —}\ Establish Eﬂ Derive

Description Constitutive Governing
Specifications r Relations Equations
Introduce
Formulation
Axioms Define
Particular
Problem (BVP)
Head & Paper Computing Symbolic Computing ” Numerical Computing

Fig. 2. Workflow diagram of activities and their interconnectivity along with their
computational embedding for the process of developing multi-field models of continua
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4 Multi-component Hygro-Thermo-Electro-Elastic Plates

Tonic material and structural systems that can be used as artificial muscles are
falling within the category of multi-field systems. Limited electromechanical mo-
delling of such systems has been already attempted for simple membrane and
one dimensional systems and never considered the global continuous multi-field
perspective of more than two simultaneously acting fields.

Application of the general process as described in the previous sections for
the case of homogeneous mechanically isotropic system generated a set of nine



626 J. Michopoulos

field governing coupled PDEs and associated constitutive relations that have
been originally derived elsewhere [I3[I4] manually.

Introduction of Lagrange strains to account for large deformations along
with insignificant ionic currents and chemical reactivity for multi-component
diffusion, electric potential, temperature and mechanical deformation generalized
loading yields the following set of modified Von-Karman nonlinear PDEs [T6l/17]:

h
VQVQ’LU + (1 + Z/) ZVQXk = —(g + F722w711 — 2F712w712 + F,11w722), (8)
k

T N'h
VIVPF+ EY VXY = Bl(w12)? — wi1w ), (9)
k
1—-v 25 s 2 vk
°F (V ij — 81(9])F 1] + VX" =0. (10)

Here w, F, X* are the deflection, the Airy stress function and the additional
generalized field state variables and d;;,v, E, h, N, q are Kronecker’s delta, Pois-
son’s ratio, the modulus of elasticity, the plate thickness, the flexural rigidity
and the distributed load respectively.

Equation (I0) provides the closure of the system of equations (§) and ()
governs the balance of the generalized additional scalar fields X* [13l14](and
appears in its expected divergent theorem form).

Since there is no known closed form solution of the generalized Von-Karman
equations an approximate solution based on Finite Element Analysis (FEA) can
be utilized. The general purpose code flexPDE [15]was used for this task.

Although we solved various cases of boundary conditions due to the space
limitations here, we will only present the case of a simply supported plate along
all the edges with no lateral mechanical load. The value of X* = Temp at the
boundary varies sinusoidally in time.

Figure 4 shows the distribution of deflection over the entire domain for in-
crement 36 (4a) near the beginning of the cycle, and increment 121 (4b) on the
end of the complete cycle. Clearly these two distributions verify the reversible
actions of the applied field since the plate evolves from an all-negative to an
all-positive deflection field.

Much is already known about how deflection and Airy function relate to
each other from the traditional large deflection Von-Karman plate analysis [16]
[[7]. All other fields and fluxes can be trivially computed by exploitation of the
constitutive and flux definition relations given elsewhere [I3J14] and are not
provided here due to lack of space. The intension of this section is not to detail
the derivation and solution methodologies for the corresponding PDEs but rather
to provide evidence that is possible.

5 Conclusions

In this effort, we have described an abstract framework for multi-field modelling
of material systems with emphasis to ionic materials used for artificial muscle
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Fig. 4. Two instances of the deflection solution of a non-linear generalized Von-Karman
system of PDEs governing a rectangular plate made from an ionic material

applications. Furthermore an abstract workflow of activities has been created to
employ this framework. The current status of a computational infrastructure that
attempts to instantiate this workflow is also briefly described. Application of this
methodology and workflow has been utilized for deriving the generalized Von-
Karman equations for multi-field activation of large deflection plates. Finally an
example of numerically solving the derived system is presented.

The approach followed still leaves open the issue of determination of the
required constants participating in this formulation. Subsequent work in addition
to evolving the computational infrastructure, will focus on this task.
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