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Abstract. Using Monte Carlo methods, we simulated the effects of bias
in generation and elimination of paralogs on the size distribution of par-
alog groups. It was found that the function describing the decay of the
number of paralog groups with their size depends on the ratio between
the probability of duplications of genes and their deletions, which cor-
responds to different selection pressures on the genome size. Slightly
different slopes of curves describing the decay of the number of paralog
groups with their size were also observed when the threshold of homology
between paralogous sequences was changed.

1 Introduction

It is widely accepted that evolution is driven by two random processes - muta-
tions and recombinations and a directional process - selection. Recombination
not only re-shuffles genes inside genomes or between genomes but it is also re-
sponsible for amplification or elimination of sequences. Duplication of complete
coding sequences produces additional copies of genes called paralogs. Thus, par-
alogous genes are homologous sequences arisen through gene duplication and
parallel evolution in one genome. Paralogs can also appear by duplication of
large fragments of chromosomes or even by fusion of different genomes (allopo-
lyploidization). Before the fusion, corresponding sequences in the two genomes
which had a common ancestor in the past are called orthologs [1]. Since it would
be very difficult to reproduce their real history, when they appear in the genome
of one organism they are recognized as paralogs. Paralogs are a source of sim-
ple redundancy of information, making the genome more stable and resistant to
mutational effect by complementing the function of one copy when the other is
damaged by mutation [2] or by reinforcing the function of the amplified gene.
Most importantly, gene duplication generates a sequence with a defined func-
tion but released from the selection pressure. Redefinition of the duplicated gene
function may ameliorate the biological potential of the individual. Taking under
consideration all the profits brought by paralogs one can ask why the number
of paralogs seems to be limited. First of all, a higher number of gene copies,
frequently causing a higher level of products does not mean a more concerted
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expression of the gene function. The best example - the Down syndrome - is
caused by redundant information. Second, limitation comes also from the cost
of replication and translation of information, which leads to selection pressure
on the genome size. The genome size is the result of compromise between the
trends for accumulating information and keeping the costs of replication in the
reasonable limit. Nevertheless, the level of redundancy in genetic information
is high, for example in a uni-cellular eukaryote organism - Saccharomyces ce-
revisiae (baker’s yeast) - probably no more than 20 % of genes fulfill essential
functions and stay in unique copies. The function of the rest of genes can be
complemented, probably mostly by paralogous sequences [3], [4].

According to the definition, all the genes in the genome which have a common
ancestor belong to one paralog family or group. However, the genome analysis
does not give us direct information about the descent of sequences from the
common ancestor because we can only conclude about the common progenitor
on the basis of homology between compared currently ”living” sequences. The
level of homology could additionally indicate the time when the two sequences
have diverged. Approximately, the number of mutations which have occurred in
the diverging sequences grows with time linearly, though it may depend on the
topological character of the duplication itself (i.e. duplication with or without
inversion)[7]. Furthermore, the fraction of positions in which the two sequen-
ces differ does not grow linearly because of multiple substitutions (substitutions
which have occurred in the same position several times) and reversions whose
probability grows in time. Thus, the level of homology is not an exact measure
of divergence time (branching time). At large time distances the homology bet-
ween two paralogs could be too low to recognise properly whether the observed
homology is accidental or the compared sequences actually descend from one
progenitor sequence. That is why a threshold of homology is assumed - if the
homology level is below the threshold, the compared sequences are considered as
independently evolved. Since the threshold is arbitrary, and differs in different
analyses, it is important to find whether the size distribution of paralog families
depends on the cutoff level of homology.

In all analyzed genomes the distribution of paralog families follows a spe-
cific rule. Some authors claim an exponential function [5], others a power law
ruling the frequency of the occurrence of the folds or protein families [6], [8], [9].
The latter authors assumed a limited number of the initial sequences evolving
into the full genome of the contemporary organism. In our simulations we have
assumed that the evolution of the contemporary genomes has started with all
the genes indispensable for survival of the individuals and these initial genes
were independent progenitors of all paralog families. The organisation of these
genes in higher hierarchy (families or folds) was neglected. We have analysed
how the size distribution of paralog families depends on the selection pressure,
on genome size and on the arbitrarily accepted threshold of homology deciding
about the grouping of the sequences into paralog families. The selection pressure
is an objective force influencing the genome evolution while the paralog identi-
fication errors are connected with our ignorance, rather. In our simulations we
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used two different ways for measuring the distance between paralogs: the first
one was somewhat absolute because it measured the real time of duplication and
the second one corresponded to the homology analysis - the Hamming distance
between two sequences (bit-strings) was measured.

2 Experimental Distributions

Analysis of the first completely sequenced genome demonstrated that distribu-
tions of sizes for paralog families indicate a high level of gene duplication [10].
Initial comparison, of bacterial, archeal and eukaryotic genomes has shown that
the number of sequences in protein families vs. corresponding family sizes dis-
plays power law distributions [8,11].

In contrast, Slonimski et al. [5] in an one page note, reported that for protein
families of N = 2 to 5 — 6 members, the clusters of N 4+ 1 contain half the
number of proteins observed in clusters of N, independently of the microbial
genome size. Their methodology [12], [13] used Smith-Waterman scores SW >
22, the Z-significance values, and connective-clusters in which a given sequence
had similarity of Z,q,e > 8 with one or more other sequences. The analysis have

been performed on yeast and 4 microbial genomes.

Yanai et al. [9] have compared paralog distributions for 20 genomes, using
BLAST and E-significance values ranging from E = 107!0 to as large as
E = 1073. They report linear fits on log-log scale for all genomes, with somewhat
noisy behaviour for larger families. Qian et al. [14] have linked the power law dis-
tribution of gene families in genomes, with the distribution of structural motifs
and protein folds, all three displaying identical slope on log-log plots. Their ana-
lyses involved again 20 microbial genomes, and also inter-genome comparisons
within analogous functional and structural families.

Unger et al. [15] compared orthologous gene distributions in three large cu-
rated databases: COG, ProtoMap, and Predom (28031, 81286 and 278584 se-
quences respectively), and also performed partial analysis of a human genome.
They again observed a power law behaviour relating the number of sequences
in structural and functional families F'(N) of a given size N, by F(N) oc N=°,
where b - the slope of linear fits on log-log plots. Additionally they have linked
the slopes for small families, and those for large families by bs0 = 1 + 1/bsg0,
where b5 and bsgg stand for the 50 smallest, and the 500 largest families, after
ranking them by size.

Nimwegen [16] has observed power laws, comparing the number of genes in
functional categories vs. total number of genes in a genome, with exponents
varying both between bacterial, archeal and eukaryotic genomes, and especially
between functional categories: from 0.13 for the protein synthesis in bacteria, to
as high as 3.36 for the defense response in eukaryotes.
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Fig. 1. Part a: Slopes of the log-log fittings as a function of the Z, cut-off values. Bor-
relia burgdorferi - pentagrams (850 genes); Haemophilus influenzae - crosses (1712 ge-
nes); Metanococcus jannaschii - squares (1721 genes), Sulfolobus solfataricus - triangles
(2939 genes), Arabidopsis thaliana - circles (26462 genes).  Part b: Dependence of the
power law exponents on genome size for three Mycoplasma bacteria: M.genitalium (486
genes) - squares, M.pneumoniae (687 genes) - triangles, and M.pulmonis (778 genes) -
circles

3 Current Work

The Zyaiue [12, 13] data of all intragenomic pairwise alignments for 61 complete
genomes [18] have been used. In no case an exponential decay for a distribution of
paralogous family sizes was found, independently of the cut-off threshold of the
Z paiue Used as a similarity measure. As the Z, 47, depends much on the length of
compared sequences [12, 13], here we use an amended similarity measure between
sequences A and B, Z, = Zyaiue(A, B)/ max|[Zyaiue(A), Zyaiue (B)]. For identical
sequences Z, = 1, and it tends to zero with increasing dissimilarity.

Figure 1a presents the slopes of the log-log fittings as a function of the Z, cut-
off values between 0.01 and 0.6 used, for several genomes. For Z, < 0.04 — 0.05,
for all genomes there are only one or two huge super-clusters, and small fractions
of singletons and doublets (sometimes also triplets). Clearly such a small cut-off
is too low to distinguish anything of interest. For high values of Z,, but obviously
depending much on the genome size, most sequences are similar only to themsel-
ves, and there are mostly singletons, with few still remaining doublets/triplets.
At the less stringent similarity cut-off there are regions of gradual change, inter-
spersed by sharp changes in behaviour - corresponding obviously to the splitting
events, when clusters are broken, and a possible relationship between homology
and function within family/cluster is disrupted. Somewhere in between these
two extremes there is a small region of usefulness, when the slope of the log-log
fits seems to depend more or less linearly on the cut-off Z, value. Tentatively it
might be attributed to a Z, range of 0.04 - 0.1, as for most genomes analysed,
we can see a relative plateau of the log-log slope changes with increasing Z,,.
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Fig. 2. Comparison of the log-log plots for Haemophilus influenzae between the data
from Brenner et al. [10] - circles; the current work: Z, = 0.04 - stars, Z, = 0.5 -
squares, and Z, = 0.06 - triangles; and when using [12],[13] Zyaiue > 8 - pentagrams.
The steeper solid line, for fitting all but the last point of Brenner’s data, has the slope
—2, the more shallow one the slope of —1.5 uses all points. All three methods are based
on the use of significance for the Smith-Waterman local alignments.

Moreover, as can be seen in Fig. 1a, any comparisons between genomes must
depend to a high degree on the cut-off value of the similarity measure actually
used. For example, the data of Brenner et al. [10] for Haemophilus in fluenzae
would suggest the slope of the log-log plot equal —1.50, which would imply, if
compared to the Fig. 1a, the Z, in between of 0.02 and 0.04, clearly in a twilight
zone before the supposedly useful region of linear dependence of the slope on Z,,.
However, the last point (Fig. 2, circles) changes the slope of the fit significantly,
the slope after its exclusion equals —1.98. The corresponding analysis using 7,
reveals (Fig. 2, stars Z, = 0.04, squares Z, = 0.05, triangles Z, = 0.06) that
best agreement between ref. 10 and the current work is at Z, = 0.05, and that in
both cases power law approximation underestimates big-sized families (rightmost
points, Fig. 2), especially at higher Z,. Finally, the results of cut-off Z,4,e = 8,
used by Slonimski et al. [5], [12] (Fig. 2, pentagrams), again agree with both
Brenner’s and current results.

The often emphassized dependence of the fitted log-log slopes on the genome
size can be observed only as a general trend, with many exceptions. Metanococ-
cus janaschii and Haemophilus influenzae are of almost identical size of about
1700 sequences, but their behaviour is strikingly different, with H. influenzae
displaying the quickest change of slopes with increasing Z, of all genomes ana-
lysed. Also, H. influenzae large clusters are breaking down to singletons much
faster (e.g. the rightmost crosses of Haemophilus in Fig. 2, correspond to the bi-
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partite composition of vast majority of singletons, and a very small remainder of
what was before one or two big families). Sulfolobus solfataricus - at approxima-
tely one tenth the genome size of Arabidopsis thaliana - shows the most shallow
dependence of slopes on Z, of all genomes under study, comparable to that of
Arabidopsis. Even for the smallest genomes (Fig. 1b) of Mycoplasma genitalium
(486 genes), Mycoplasma pneumoniae (687 genes), and Mycoplasma pulmonis
(778 genes), Fig. 1b (squares, triangles, and circles respectively), which because
of their taxonomical proximity can be compared directly relatively easy, the size
dependence of the power law exponent is rather perturbed.

All families (line), and mutated paralogs (symbols) for bias 0.1 (upper data) and 0.2 (lower data), t=200
1e+09 T T T T T

1e+08

1e+07 |

1e+06

100000 F

number

10000

1000 ¢

100

10 F

1

50

good paralogs

Fig. 3. Line shows the number n, of families with k paralogs each, independent of
the bit-string status. The symbols give, for x = 0,1,2,4,,,, from bottom to top, the
normalized number of paralog pairs within such families of size k. ppm.t = 0.01, b= 0.1
(upper data) and 0.2 (lower data).

4 Simulations

The results of earlier modeling efforts can be found in Refs. 2,9,11,14-17,19. In
our simulations we return to the problem emphasized in the Introduction, the
number of paralogs for one given function or gene. Thus, in contrast to what
was described in preceding sections, we assume to know for every part of the
genome its function. In a simulation that is easy, since we can follow the whole
evolution since the beginning; for real genomes, such knowledge in general still
lies in the future. Our model is a simplification of our earlier one [2], which was
shown [19] to give reasonable ageing results.

The simulations start with NV bit-strings of length L each, which are zero
everywhere. Then at each iteration each bit-string with mutation probability
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Av. branching time, 64000 x 10000 ancestors, pmut=.01 (symbols) and .5 (line); b=.1(+,line) and .2(x)
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Fig.4. Average branching time, defined as the number of iterations since the last
creation of the paralog, versus Hamming distance, from 64,000 samples of 10,000 an-
cestors each, with 200 iterations. The fluctuations in this time are about as large as
the average. Plus signs: pmwt = 0.01, b = 0.1; x crosses: pmur = 0.01, b = 0.2; line:
Pmut = 0.5, b =10.1.

Pmut Selects randomly one of its bits and flips it. Before that, also at every
time step, for each family (offspring of one ancestor) either the last bit-string is
deleted (with probability 1/2+b) or a randomly selected bit-string is duplicated
(with probability 1/2 — b) and then becomes the last; the positive bias b keeps
the number k of copies (“paralogs”) for each of the N original bit-strings limited.
Also, the number k is not allowed to become negative. Thus at any time we have
for each of the N ancestors a family consisting of the first bit-string and possibly
k — 1 additional copies or paralogs, amounting to k bit-strings in total for one
ancestor (=gene = function).

The Hamming distance (= number of bits different in a bit-by-bit comparison
of two bit-strings) was calculated for each paralog with all other bit-strings in
the same family at the same time, giving (k — 1)k/2 Hamming distances.

The simulations mostly used L = 64, N = 10000, b = 0.1, pput = 0.01
for ¢ = 200 iterations and averaged over 64000 samples. Simulations for L =
8, 16, 32 barely differed in the results when a comparison was possible. The
average number k of paralogs was nearly 3, i.e. we had nearly two additional
bit-strings (plus the first one) for each ancestor. Semilogarithmic plots, Fig. 3,
of the number of paralog pairs for one ancestor with Hamming distance not
exceeding x different bits typically gave straight lines with slopes only slightly
depending on z. x was taken as 0,1,2,4,8,16,32, and 64. For large x the curves
nearly overlap. For clarity we divided for our figure the number of pairs by the
normalizing factor [k(k — 1)/2] and thus for L = 64 get the total number of
families.



716 S. Cebrat, J.P. Radomski, and D. Stauffer

The overall distributions ny, lines in Fig. 3, decay exponentially, proportional
to [(0.5 — b)/(0.5 + b)]*¥ = 1/1.5% in the stationary state achieved after dozens
of iterations for ny, even when the Hamming distances still grow. This formula
follows from a detailed balance condition that as many families move on average
from size k to size k+1 as move in the opposite direction from size k+1 to size k.
Thus the fraction of families with only a single bit-string is 1—(0.5—5b)/(0.5+b) =
4b/(1 4 2b) in this geometric series.

We define the creation of a new paralog as a branching event and store this
time. At the end of the simulation we determine for each pair within each family
the last event they branched away from each other; the time between this last
event and the last iteration of the simulation is the branching time. Within each
family the branching times fluctuate strongly but their average value for one
given Hamming distance increases roughly linearly with that Hamming distance,
until for large Hamming distances the statistics becomes poor, Fig. 4. For longer
times (500 and 1000 iterations) the linearity improves.

The above model follows ref.2 except that no selection of the fittest and
similar complications are included now. Each of the ancestors is interpreted as
one function (or gene) in the whole organism. The bit-string for this ancestor then
records important mutations at different places within this gene. The paralogs
formed in the simulation from this ancestor all refer to this one function. The first
bit-string undergoes mutations just as its paralogs and has the same properties
except that it can never be removed. It makes no sense to compare bit-strings for
different functions; 00101001 means something entirely different for the function
“brain” than for the function “hair”. The L bits of each bit-string correspond
to 2% possible alleles for one function, not to L base pairs.

The N initial ancestors can also be interpreted as N different samples simu-
lated for the same function; more generally, they could be M different genomes
simulated for a genome of N/M functions.

5 Summary

We presented here two different sets of plots: In the experimental section we
found power-law decay for the number of paralogs found by looking through
the whole genome. In the simulation section we found exponential decays for
the number of paralogs belonging to one known function. The latter exponential
decay agrees nicely with simple arguments based on detailed balance; the slopes
in these semilogarithmic plots (Fig.3) are determined by our bias in favour of
removal instead of addition of a paralog, and the slopes barely depend on the
cut-off parameter x for the Hamming distance. This agreement of theory with
simulation also makes clear that our results would be quite different if the bias
would not be the same for all functions.
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