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Abstract. Many classes of functional RNA molecules are characterized
by highly conserved secondary structures but little detectable sequence
similarity. Reliable multiple alignments can therefore be constructed only
when the shared structural features are taken into account. Sankoff’s
algorithm can be used to construct such structure-based alignments of
RNA sequences in polynomial time. Here we extend the approach to a
probabilistic one by explicitly computing the partition function of all
pairwise aligned sequences with a common set of base pairs. Stochastic
backtracking can then be used to compute e.g. the probability that a
prescribed sequence-structure pattern is conserved between two RNA
sequences. The reliability of the alignment itself can be assessed in terms
of the probabilities of each possible match.

1 Introduction

Sankoff’s algorithm [1] simultaneously predicts a consensus structure for two
(or, in its general version, more) RNA secondary structures and at the same
time constructs their alignment. It is quite expensive in both CPU and memory
requirements, O(N6) and O(N4), respectively. A further complication is that
it requires the implementation of the full loop-based RNA energy model [2].
Currently available software packages such as foldalign [3] and dynalign [4]
therefore implement only restricted versions. A complementary approach is ta-
ken in the pmmatch program [5]. Instead of attempting to solve the alignment
and the structure prediction problem simultaneously, pmmatch utilizes the base
pairing probability matrices predicted by means of McCaskill’s algorithm [6]
(implemented in the RNAfold program of Vienna RNA Package [7,8]). The pro-
blem then becomes the alignment of the base pairing probability matrices. This
appears to be an even harder threading problem, which in general is known to
be NP-complete [9]. In the RNA case, the threading problem remains tractable
as long as we score the alignment based on the notion of a common secondary
structure. In fact, it reduces to a variant of the Sankoff algorithm in which the
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energy model for structure prediction part is reduced to base weights on the base
pairs.

Suppose we are given two sequences A and B (of length n = |A| and m = |B|)
together with their pair probability matrices PA and PB , resp. A natural way of
determining the similarities of PA and PB is to search for the secondary structure
of maximal “weight” that PA and PB have in common. Let Si,j;k,l be the score of
the best matching of the subsequences A[i..j] and B[k..l]. Furthermore, let SM

i,j;k,l

be the best match subject to the constraint that (i, j) and (k, l) are matched
base pairs. With this definition one obtains dynamic programming recursions

Si,j;k,l = max






Si+1,j;k,l + γ,
Si,j;k+1,l + γ,

Si+1,j,k+1,l + α(Ai, Bk),
maxh≤j,q≤l

(
SM

i,h;k,q + Sh+1,j;q+1,l

)

SM
i,j;k,l = Si+1,j+1,k+1,l+1 + τ(PA

ij , Ai, Aj ; PB
kl , Bk, Bl)

(1)

with the initialization Si,j;k,l = |(j − i) − (l − k)|γ for j − i ≤ M + 1 or
l − k ≤ M + 1, where M is the minimum size of a hairpin loop, usually
M = 3. The constant γ < 0 is a gap penalty. The scores αik = α(Ai, Bk) and
τij,kl = τ(PA

ij , Ai, Aj ; PB
ij , Bk, Bl) describe the substitution of unpaired bases

and base pairs, respectively. The latter term may depend on both the struc-
tures and the underlying sequences. Backtracking can be used to retrieve both
the common secondary structure and the associated sequence alignment [5]. For
both RNA folding and sequence alignment it is possible to compute partiti-
ons functions instead of optimal scores with essentially the same resources. In
a second step probabilistic versions of the optimal structure of alignment can
be constructed; see [6] for RNA folding and [10,11,12,13,14]. In this contribu-
tion we describe a “partition function version” of the Sankoff algorithm that
computes the probabilities of matches in the structure-based alignments of two
RNA molecules, thereby providing an intrinsic measure of the local quality of the
structure-based alignments. In the thermodynamic interpretation of the simulta-
neous folding and alignment problem a state θ is a pair θ = (S,A) of secondary
structure S consisting of all matched base pairs (ij; kl), where (Ai, Aj) is a base
pair in structure A and (Bk, Bl) is a base pair in structure B, and an alignment
A of the underlying sequences A and B such that AiBk and AjBl are matches.
Note that the alignment A in general contains further matches corresponding to
unpaired nucleotides. The probability of a particular state is then

Prob[θ] = Z−1 exp(−σ(θ)) (2)

where the score is given explicitly in the form

σ(θ) =
∑

(ij;kl)∈S

τij,kl +
∑

i∈A,k∈B /∈S

αik + γ
(
m + n − 2|A|) . (3)
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In the last term, Ngap = n + m − 2|A| is the number of gaps in the alignment.
The normalization constant

Z =
∑

θ

exp(−σ(θ)) (4)

is the partition function of the model. The probability of a feature Ω can now
be computed as the sum of the probabilities of all states θ ∈ Ω. In particular,
we are interested in Ω(p,q), the set of all states in which ApBq is a match in the
alignment.

2 Recursions

We first observe that equ.(1) can easily be transformed into a recursion for the
partition function Zij;kl of the model restricted to the subsequences A[i..j] and
B[k..l]. Explicitly, we obtain

Zij;kl = Zi+1,j;kle
γ + Zij;k+1,le

γ + Zi+1,j;k+1,le
αik

+
∑

(k,q) paired in B
(i,p) paired in A

Zi+1,p−1;k+1,q−1Zp+1,j;q+1,le
τij,pq (5)

Let us now consider all states that contain the match AxBy. We have to di-
stinguish four cases: (i) there is no matched base pair in S, (ii) (i, x; j, y) ∈ S,
(iii) (x, k; y, l) ∈ S, and (iv) AxBy is “immediately interior” to a matched pair
(i, j; k, l) ∈ S in the sense that i < x < j, k < y < l and there no other pair
(i′, j′, k′, l′) ∈ S such that i < i′ < x < j′ < j and k < k′ < y < l′ < l. Fig. 1
gives a graphical description: Clearly, these four cases are pairwise disjoint and
cover all possibilities. We can therefore write the partition function Qxy of all
states that contain the match AxBy in the alignment as follows:

Qxy =Z1,x−1;1,y−1e
αij Zx+1,n;y+1,n +

∑

i<x, k<y

Zi+1,x−1;k+1,y−1e
τi,x;k,y Ẑi,x;k,y +

∑

j>x, l>y

Zx+1,j−1;y+1,l−1e
τx,j;y,lẐx,j;y,l +

∑

i<x, j>x k<y, l>y

eτi,j;k,lZi+1,x−1;k+1,y−1e
αxyZx+1,j−1;y+1,l−1Ẑi,j;k,l

(6)

x,j;y,lZ
i,x;k,yZ i,j;k,lZ

Zx+1,j−1;y+1,l−1Zi+1,x−1;k+1,y−1Zi+1,x−1;k+1,y−1Z
x+1,j−1;y+1,l−1

Zx+1,n;y+1,mi,x−1;k,y−1Z
l

j i j

lk

i

ky

x

y

x x

yy

x

Fig. 1. Decomposition of the restricted partition function Qxy into unconstrained par-
tition functions Z... and Ẑ... of sub-problems. For details see text
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where Ẑi,j;k,l denotes the partition function over all partial states outside the
aligned interval [i, j][k, l], i.e., excluding the positions i, j, k, and l. This cor-
responds to the states of the sub-problem with A′ = A[1..i − 1]A[j + 1..n] and
B′ = B[1..k − 1]B[l + 1, m]. We can easily find recursions for computing Ẑi,j;k,l

from shorter subproblems (i.e., those with a larger “missing” interval) and the
values of Zi,j;k,l:

Ẑi,j;k,l =Ẑi,j+1;k,le
γ + Ẑi,j;k,l+1e

γ + Ẑi,j+1;k,l+1e
αj+1,l+1 +

∑

p<i, q<k

Ẑp,j+1;q,l+1e
τp,j+1;q,l+1Zp+1,i−1;q+1,k−1 +

∑

p>j+1, q>l+1

Ẑi,p;k,qe
τj+1,p;l+1,qZj+2,p−1;l+2,q−1

(7)

The probability for the match AxBy given the input data and scoring scheme is
simply

P xy = Qxy/Z (8)

Tabulating the O(n4) entries of the partition functions Zij;kl requires O(n6)
operation, just as the solution of the optimization problem. Then Ẑij;kl can
be computed also in O(n6) operations. Given these two tables, recursion 6 can
be evaluated in O(n4) steps for each value x and y. The matrix of matching
probabilities can therefore be computed in O(n4) memory and O(n6) CPU. Just
as in the case of sequence alignments and secondary prediction, the partition
function version is therefore not more expensive than the associated optimization
problem.

3 Stochastic Backtracking

As described in [5], backtracking in the recursions (1) can be performed in O(n3)
to obtain a score-optimal alignment. When the partition functions Zi,j;k,l for
the sub-problems are known, it is possible sample from the distribution of the
alignments by means of “stochastic backtracking”. This approach has recently
been implemented for pairwise sequence alignment [14] and for RNA structure
prediction in the latest release of the Vienna RNA Package [8,16], see also [17,
18], and [19], where the idea was used to generate random RNA structures with
uniform distribution. This method generalizes in a straightforward way to the
Sankoff algorithm: From equ.(5) we obtain immediately that the sub-alignment
of x[i..j] with y[k..l] can be of one of the four types listed below with their
corresponding probabilities p:
Deletion of xi p = Zi+1,j;kle

γ/Zij;kl

Deletion of yk p = Zij;k+1,le
γ/Zij;kl

Unpaired Match of xi and yj p = Zi+1,j;k+1,le
αik/Zij;kl

Matched pair (xi, xp), (yk − yq) p = Zi+1,p−1;k+1,q−1Zp+1,j;q+1,le
τij,pq/Zij;kl

Choosing in each step of the backtracking procedure one of these alternati-
ves with the correct probability results again in an algorithm that produces an
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DA0980 DF1140

GGGCCGGUAGUCUAGC-GGAAGGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAU-CCCGGCCGGUCC-A--
((((((((..(((...-....)))..(((((.......)))))..)..(((((.......-))))))))))))-.--
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUC-AAUUCCGUCCACGACCACCA
((((((((..(((........)))..(((((.......)))))..)..(((((...-....))))))))))))....
recalculated score: 27.29029 6
GGGCCGGUAGUCUAGCGGAA-GGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAU-CCCGGCCGGUCC-A--
(.(((((..((((.......-)))).(((((.......))))).....((.((.(...).-)).))))))).)-.--
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGG-UUCAAUUCCGUCCACGACCACCA
(.(((((..((((........)))).(((((.......))))).....((.((-(...)..)).))))))).)....
recalculated score: 24.59171 6
GGGCCGGUAGUCUA-GCGGAAGGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUCCCGGCCGGUC---CA
(((.((((.((((.-......)))).(((((.......)))))..)..((((((...)..)))))))).))---).
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUCAAUUCCGUCCACGACCACCA
(((.((((.((((........)))).(((((.......)))))..)..((((((...)..)))))))).))...).
recalculated score: 29.47619 4

low temperature: T = 0.5, γ = −1.5

GGGCCGGUAGUCUAGCGGA-A-GGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUCCCGGCCGGUCCA---
((((((((.(((.......-.-.))).(((((.......)))))..).)(.((((...)..))).).)))))).---
GGUCGUGUAGCUC-AGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUCAAUUCCGUCCACGACCACCA
((((((((.(((.-.........))).(((((.......)))))..).)(.((((...)..))).).))))))....
recalculated score: 21.14102 6
GGGCCGGUAGUC-UAGCGGAAGGACGCCCGCCUUGCG--CGCGGGA-GAUCCCGGGUUC-GAAUCCCGGCCGGUCC--A-
(((.(((...((-.........)...((((.......--..)))).-.)..(((((...-...).))))))).)))--.-
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGAC-U-GAAGCUCUGC-GUGUCGGCGGUUCAA-UUCCGUCCACGACCACCA
(((.(((...((..........)...((((..-.-......))))-..)..(((((.....-.).))))))).)))....
recalculated score: 5.04139 12
GGGCCGGUAGUCUA-GC--GGAAGGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUCC-CGGCCGGUCC-A--
.((((((...(...-..--.)....(..((.((.......)).))...).(.((((....).))-).))))))).-.--
GGUCGUGUAGCU--CAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGU-UCAAUUCCGUCCACGACCACCA
.((((((...(.--......)....(..((.((.......)).))...).(.((((-...).)).).))))))).....
recalculated score: 6.33874 10

High temperature: T = 1, γ = −2

Fig. 2. Left: Two base pairing probability matrices of tRNAs taken from M. Sprinzl’s
tRNA database [15]: DA0980 (TGC from Thermoproteus tenax and DF1140 (GAA
from Mycoplasma capricolum). Right: examples of pairwise alignments generated with
two different parameter sets. The number of gaps (second column of numbers below
the alignment) increases with temperature T even though −γ/T decreases



The Partition Function Variant of Sankoff’s Algorithm 733

G G U C G U G U A G C U C A G U C G G U A G A G C A G C A G A C U G A A G C U C U G C G U G U C G G C G G U U C A A U U C C G U C C A C G A C C A C C A

G G U C G U G U A G C U C A G U C G G U A G A G C A G C A G A C U G A A G C U C U G C G U G U C G G C G G U U C A A U U C C G U C C A C G A C C A C C A

A
C

C
U

G
G

C
C

G
G

C
C

C
U

A
A

G
C

U
U

G
G

G
C

C
C

U
A

G
A

G
G

G
C

G
C

G
C

G
U

U
C

C
G

C
C

C
G

C
A

G
G

A
A

G
G

C
G

A
U

C
U

G
A

U
G

G
C

C
G

G
G

G
G

G
C

C
G

G
U

A
G

U
C

U
A

G
C

G
G

A
A

G
G

A
C

G
C

C
C

G
C

C
U

U
G

C
G

C
G

C
G

G
G

A
G

A
U

C
C

C
G

G
G

U
U

C
G

A
A

U
C

C
C

G
G

C
C

G
G

U
C

C
A

0

0.5

1

1.5

0

0
.
51

1
.
5

G G U C G U G U A G C U C A G U C G G U A G A G C A G C A G A C U G A A G C U C U G C G U G U C G G C G G U U C A A U U C C G U C C A C G A C C A C C A

G G U C G U G U A G C U C A G U C G G U A G A G C A G C A G A C U G A A G C U C U G C G U G U C G G C G G U U C A A U U C C G U C C A C G A C C A C C A

A
C

C
U

G
G

C
C

G
G

C
C

C
U

A
A

G
C

U
U

G
G

G
C

C
C

U
A

G
A

G
G

G
C

G
C

G
C

G
U

U
C

C
G

C
C

C
G

C
A

G
G

A
A

G
G

C
G

A
U

C
U

G
A

U
G

G
C

C
G

G
G

G
G

G
C

C
G

G
U

A
G

U
C

U
A

G
C

G
G

A
A

G
G

A
C

G
C

C
C

G
C

C
U

U
G

C
G

C
G

C
G

G
G

A
G

A
U

C
C

C
G

G
G

U
U

C
G

A
A

U
C

C
C

G
G

C
C

G
G

U
C

C
A

0

0.5

1

1.5

0

0
.
51

1
.
5

T = 0.5, γ = −1.5 T = 1, γ = −2

Fig. 3. Match probabilities for the pairwise alignments of the two tRNAs DA0980 and
DF1140 from Fig. 2. The area of the squares at position x, y is proportional to P xy. The
small panels along the axes show the position-wise entropies relative to each sequence

alignment in O(n3) steps, such that the probability of an alignment with score
σ is p = exp(−σ), Fig. 2. The advantage of this procedure is that an ensemble
of on the order of n3 sample alignments can be computed economically (since
we need O(n6) time for the forward recursion and only O(n3) for backtracking
a single alignment). These samples can then be used to estimate the probabi-
lities of features such as particular multiloops or non-local sequence-structure
combinations.

4 An Example

As an example we consider here the alignment of two rather disparate tRNA
sequences, Figs. 2 and 3. We use here

τ(PA
ij , Ai, Aj ; PB

kl , Bk, Bl) = 2 lnn + lnPA
ij + lnPB

kl (9)

for the pair score and neglect sequence similarity altogether, i.e., αik = 0. Note
that for both sequences the predicted optimal secondary structures is not the
clover-leaf, as shown in the l.h.s. of Fig. 2. Nevertheless, most stochastic back-
trackings retrieve the clover-leaf as consensus structure of the two molecules.
Since sequence similarity was not used in the scoring, the exact position of gaps
within loop regions is arbitrary. For low temperatures (upper right panel in
Fig. 2) alignments differ almost exclusively in the D-loop and at the 3’ end of
the tRNAs. The local reliability of the alignment can be measured by the entropy
of the match probabilities

S(x) = −
∑

y

P xy lnP xy − p0(x) ln p0(x) (10)
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where p0(x) = 1 − ∑
y P xy is the probability the position x is unmatched (i.e.,

opposite to a gap in the alignment). As can be seen in Fig.3, the alignment
is typically much more well-defined in paired regions. For large values of the
temperature T this difference disappears, however.

5 Concluding Remarks

We have introduced here a partition function version of the Sankoff algorithm.
The algorithm is quite expensive both in memory and CPU time; the resource
requirement is, however, essentially the same as for the “classical” version that
computes the optimal alignment only. From the partition functions we can, in ad-
dition to the optimal alignment, also discriminate reliable from unreliable parts
of a structure-based alignment of RNA molecules. Stochastic pairwise alignments
are useful in many different contexts: Numerous tools in bioinformatics require
pairwise sequence alignments as input data. The present approach thus provides
a tool that can be used to produce alignments with realistically distributed errors
and varying overall quality (by choosing the temperature parameter T ). These
can be used to investigate the sensitivity of the method with respect to realistic
variations of the input alignments. In particular, used as an input of a multiple
alignment methods such as t-coffee [20] it can be used to produce multiple
alignments together with estimates of local alignment quality. While the Sankoff
algorithm is too slow to scan large portions of a genome for conserved RNAs, it
is still useful to post-process candidates for structurally conserved RNA detec-
ted by other methods, e.g. qrna [21]. The current implementation uses simple
linear gap costs. A generalization to affine gap costs is straightforward along the
lines of Gotoh’s algorithm [22] for sequence alignments and should improve the
placement of scattered gaps.
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DFG Bioinformatics Initiative BIZ-6/1-2.

References

1. Sankoff, D.: Simultaneous solution of the RNA folding, alignment, and proto-
sequence problems. SIAM J. Appl. Math. 45 (1985) 810–825

2. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence depen-
dence of thermodynamic parameters provides robust prediction of RNA secondary
structure. J. Mol. Biol. 288 (1999) 911–940

3. Gorodkin, J., Heyer, L.J., Stormo, G.D.: Finding the most significant common
sequence and structure motifs in a set of RNA sequences. Nucl. Acids Res. 25
(1997) 3724–3732

4. Mathews, D.H., Turner, D.H.: Dynalign: An algorithm for finding secondary struc-
tures common to two rna sequences. J. Mol. Biol. 317 (2002) 191–203



The Partition Function Variant of Sankoff’s Algorithm 735

5. Hofacker, I.L., Bernhart, S., Stadler, P.F.: Alignment of rna base pairing probabi-
lity matrices. Bioinformatics (2003) submitted.

6. McCaskill, J.S.: The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers 29 (1990) 1105–1119

7. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.:
Fast folding and comparison of RNA secondary structures. Monatsh. Chemie 125
(1994) 167–188

8. Hofacker, I.L.: Vienna RNA secondary structure server. Nucl. Acids Res. 31 (2003)
3429–3431

9. Lathrop, R.H.: The protein threading problem with sequence amino acid interac-
tion preferences is np-complete. Protein Eng. 7 (1994) 1059–1068

10. Bucher, P., Hoffmann, K.: A sequence similarity search algorithm based on a pro-
babilistic interpretation of an alignment scoring system. In States, D.J., Agarwal,
P., Gaasterland, T., Hunter, L., Smith, R.F., eds.: Proceedings of the Fourth In-
ternational Conference on Intelligent Systems for Molecular Biology (ISMB ’96),
Menlo Park, CA, AAAI Press (1996) 44–50

11. Kschischo, M., Lassig, M.: Finite-temperature sequence alignment. Pacific Sym-
posium Biocomputing 1 (2000) 624–35

12. Miyazawa, S.: A reliable sequence alignment method based on probabilities of
residue correspondences. Protein Eng. 8 (1994) 999–1009

13. Yu, Y.K., Hwa, T.: Statistical significance of probabilistic sequence alignment and
related local hidden markov models. J. Comp. Biol. 8 (2001) 249–282

14. Mückstein, U., Hofacker, I.L., Stadler, P.F.: Stochastic pairwise alignments. Bioin-
formatics S153-S160 (2002) 18 ECCB 2002.

15. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A., Steinberg, S.: Compilation of
tRNA sequences and sequences of tRNA genes. Nucl. Acids Res. 26 (1998) 148–153

16. Flamm, C., Hofacker, I.L., Stadler, P.F.: Computational chemistry with RNA
secondary structures. Kemija u industriji (2004) Proceedings CECM-2, Varaždin,
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