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Abstract. Dynamic of population growth on two-dimensional lattice
N, x N, = 1000 x 1000 is simulated with rules that involve interac-
tion between neighbours. Biological aging is described by a systematic
decrease with each time step of parameter g(i), a measure of the health
condition for each individual i. When ¢ drops down below a minimum
value, the death of the item occurs. The death toll is also caused by the
Verhulst factor which accounts for the limited living space. Newly borns
inherit g from parent’s, plus some extra value to help them to start the
life game. This basic rule is enriched by (a) some corrections of the pa-
rameter g(i) according to its current values among the nearest and next
nearest neighbours, and/or (b) the possible limitation of newborns to be
placed in the close neighbourhood of parents. We discuss influence of the
birth rate on the size of the final population and its age distributions,
then g-g correlations ¢ of the health condition g on the nearest neigh-
bours. Main conclusion is that interaction between neighbours may play
important role modifying the population characteristics, also the restric-
tions on whether the babies are bound to stay with parents or not yield
different results.

1 Introduction

Population evolution is governed by a set of rules which describe how the
state of population n(t) at time ¢ yields the population n(t + 1) at the next
time-step ¢t + 1. The rules must account for the elimination mechanism of
items and also for a new items entering the society. In equilibrium, the number
of deaths An must be balanced by same number of birth, on the average.
Probabilistic approach to the rules may lead to either an analytical description
of continuous time sequence or to iterative procedures suitable for computer
simulations. Among them, cellular automata may be considered as the tool
which we apply in this work. In the simplest model we assume death caused by
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the limited environmental capacity IV, so that in each time step we eliminate a
fraction n(t)/N of population, known as the Verhulst factor [I]. The deaths are
compensated by introducing a fraction B of the remaining individuals, perhaps
with the limitation on the minimum reproduction age R. The net balance
predicts the equilibrium n and also age distribution n(a). In a more realistic
approach we need to account for different deaths mechanisms. Among them,
the most often named are bad mutations, oxygen radicals and longevity genes.
In the Penna model [2], the population evolution is seen as controled by the
accumulation of bad mutations, passed over to offsprings which also may catch
additional mutations. The mutations for each individual (i) are represented by
bit ’1’ in the genome - a computer word. The bad mutations are not harmful
until they are activated. This takes place when we disclose the next bit position
at each time step, and the sum of already active mutations is then compared
against a threshold value (T'). The individual dies on reaching this value. The
child genome is inherited from its parent (cloning in the asexual version of the
Penna model) with eventually additional mutations spelled at randomly chosen
bits of the genome. This Penna model is perhaps the most popular evolu-
tion model which simulates biological aging and genetic death (see [3] for review).

Both the rate of born babies, as well as possible deaths scenarios are far
more complex then the very simple model presented in this paper. The aim
of this work is to test how the very local interactions between neighbouring
items may be important. We intend to account for a socializing factor in local
communities such as a family or close neighbours. Very often members of such
small communities create their own rules and influence each other. This influence
may be incorporated into the more general rules that control all population. The
first simple idea is to try to adjust parameter g(i), a sort of a fitness parameter
of each member i, so that better neighbour improves our condition, and poorer
neighbour makes us less fit. In the 2D lattice model, each item occupies a cell
and state of all items in the neighbouring cells has some effect on the cell in
consideration.

2 Model

The population n is displaced on a two-dimensional N = N, x N, = 1000 x
1000 lattice, each i-th item occupying one cell. Individuals are characterized by
a goodness parameter g(i) ranging from a minimum value g, below which
the item is considered dead, up to a certain g,,q, value. At each time step of
simulation the age a(i) is icreased by one and the goodness g is diminished by
Ag. The Initial population n(0) < N at time ¢ = 0 is randomly spread all over
the lattice. At each simulation step ¢ — ¢ + 1, all items are scanned. For each
item we apply the following rules.

— The item is eliminated with probability n(t)/N, the Verhulst factor.

— If it survives and its age a is at least the minimum reproduction age R,
B babies may be born. That is, only when randomly chosen cell where we
intend to place the newborn is empty, the actual number of offsprings is B;
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Fig. 1. Normalized population = as a function of the birth rate B. The top curve is
the logistic case. Results marked by squares are obtained for the newborns randomly
located on the lattice, (B = 0). Circles correspond to the case when babies are
located in the neighbourhood of parents,(Byf;, = 1)

otherwise the number is smaller or even zero if all proposed cells happen to
be full. In this asexual version, the baby at age a = 0 gets initial g of the
parent, plus some extra ¢ value as a beneficial amount.

— Looking around, the i-th item’s ¢(¢) is increased (by gn, = 2 in case of
any of the four nearest neighbours and by gnn, = 1 for the 4 next nearest
neighbours) if the neighbour has larger g. If the neighbour has smaller g,
g(1) is decreased by gn, and/or gnnn, respectively. In other words, the social
interaction makes the local society tends to become more uniform.

— Elimination caused by poor health condition takes now place for the weakest
members with g < gmin-

— The last step which completes the transition from ¢ to t+1 era is the update,
the age a increases by one and goodness g drops by Ag.

It may be noticed some similarities with the Penna model. The systematic
decrease in g has similar effect as the activation of bad mutations in the Penna
model. The extra amount § of g value inherited from parent is equivalent to
resetting the baby’s counter of the active bad mutations to zero.

3 Results and Discussion

We used for the minimum goodness factor g,,;,, = 90, below which items are
eliminated. Biological aging makes g(i) drop down at rate of Ag = 1 per time
step. The follow-the-neighbour shifts of current g(i)’s are gn, = 2 and gnpn = 1,
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or none if we switched off this interaction. The minimum reproduction age was
assumed R = 0. The babies gain credit § = 2, so that g(baby)=g(parent)+4 for
newborns.

Figure [0 shows population size vs birth rate. The logistic game, with the
Verhulst factor as the only possible elimination mechanism of an item, offers
the most densely populated case. The equilibrium population shows no critical
birth rate B. below which the population is extinct. In the described cellular
automata model, the death also occurs for other reasons - below the minimum
health condition - and so population x is then smaller.
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Fig. 2. Correlation c of individuals’ health condition against the birth rate B. Results
marked by squares or circles are obtained for the case of babies kept close to parents;
circles correspond to the follow-the-neighbour-condition rule, while results marked by
squares ignore the neighbours. The triangles are for no babies spread over the whole
lattice, yet we still mind the neighbours

In particular, we have nonzero B.. The two lower curves are obtained for
different bounds imposed on the available living space by the two facts. Firstly,
within the lattice cell approach, each item is subject to the (Pauli) exclusion
principle that any cell cannot be occupied by more then one individual. So the
effective space is not the lattice N, x N, = 1000 x 1000 size yet it is smaller by
factor (1-z). Secondly, the rule of an offsprlng to be kept in close vicinity of the
parent diminishes further the effective space, the lowest curve in Fig. [l

Results shown on Fig. 2 is the summary of how far the health conditions
of the nearest neighbours are correlated. The invisible horizontal ¢ = 0 line of
uncorrelated values is due to the obvious case of babies placed on the whole
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Fig. 3. Age distribution f for babies (a = 0), young (¢ = 1), mature (a = 2,3) and old
(a > 3) members of society, with the follow-the-neighbour-condition rule, against the
birth rate. Babies are free to choose location

lattice and ignoring our local neighbours. The most striking effect is for babies
kept close to parents, the squares in the figure, as the basic mechanism of cloning
ensures offsprings become similar to parents. (This also creates a local environ-
ment which may differ from the overall environmental characteristics.) However,
if we switch on interaction between neighbours, the effect is less correlated po-
pulation. We may see neighbours and influence neighbours who do not belong to
the family. And vice versa, the neighbours also affect us. As we said, if babies
are placed close by, it plays dominant role for the correlation. The correlations
are still present if we accept the influence of neighbours only, and let children to
wander all around. This time correlations are relatively smaller and they drop
down with the birth rate. This is expected since for larger B, the more randomly
placed new items brings in more uncorrelated strangers to the local community,
before they become assimilated after the many iteration steps.

The division line between different age groups increases monotically with
birth rate B. This is so since for higher reproduction rate there is larger inflow
of younger generation members. Also there is less room left for older generation
from the point of view of limited environmental space. Figures [ and [ are
obtained for the newly borned placed randomly or in vicinity of parents. It
is seen some, yet not very drastic, influence of this on the age distribution of
the population. For small birth rates, with no bonds on where the children go,
about 17% of populations are seniors. This fraction diminishes to 10% for large
B, according to the mentioned mechanism of repelling older members if we need
to accomodate more youngsters. However, if children are forced do stay close by,
the corresponding numbers are smaller: 11% and 6%. And, simultaneolusly, the
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Fig. 4. Age distribution as in B], yet this time babies are bound to stay near the parents

percentage of youngsters go up. In other words, the age distribution indicates
that the whole population becomes younger. It may be interpreted as result of
the benificial influence of babies, which gain the extra vital power on birth, and
so improve the condition of parents if they are in the neighborhood. At the same
time, the babies condition lessens. When growing up, on reaching the old age,
they enter it with poorer health condition and so the death toll is higher. This
is why percentage of the very old is smaller. However, we must be careful in
interpretation of results for given birth rate B. Apart from general tendency,
no direct quantitative comparison is possible as the efective birth rate By is
always smaller then B since no doubly occupied cells are allowed. The point is,
this limitation is much more severe for the case when babies stay by parents,
Byip = 1.

For example, the age distribution n(a) obtained from computer simulation
strongly depends on the assumed restriction. The usually discussed characte-
ristics is the mortality ¢(a) = 1 — n(a + 1)/n(a), which is a fraction of the
population at age a that will be eliminated before reaching the next (a + 1)
age. The well known Gompertz law of exponential ¢(a) dependence, q(a) ~ e*?,
predicts a straight line on a plot of S(a) = log ¢ against age a. The results of si-
mulations are presented on Fig.[d. It is seen that the linear dependence of S(a) is
not held. In human populations we observe a minimum and it is only for humans
of age above 20 or 30 that the dependence is more or less linear; perhaps with
exception of very old individuals when again the deviation from the Gompertz
law may be observed. We do not intend to analyse the clear deviations from the
Gompertz law, which may stem out from many reasons, and which is currently
widely discussed in many publications, also in the already mentioned review [3].
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Fig. 5. Simulation results of age dependence of S(a) = log ¢, the exponential Gompertz
law of mortality g(a) predicts a straight line. The line with a minimum is for whole
lattice as possible location for newborns, the other line corresponds to offsprings located
in close neighborhood to parent

In summary, we only conclude that by suitable choice of the model parame-
ters, corresponding to different proposed mechanisms of evolution, we may try
to reproduce population characteristics and try to interpret results in terms of
appropriate rules controling the population dynamics.
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