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Abstract. Nowadays many real problems can be modeled as Constraint
Satisfaction Problems (CSPs). In many situations, it is desirable to be
able to state both hard constraints and soft constraints. Hard constraints
must hold while soft constraints may be violated but as many as possible
should be satisfied. Although the problem constraints can be divided
into two groups, the order in which these constraints are studied can
improve efficiency, particulary in problems with non-binary constraints.
In this paper, we carry out a classification of hard and soft constraints
in order to study the tightest hard constraints first and to obtain ever
better solutions. In this way, inconsistencies can be found earlier and the
number of constraint checks can be significantly reduced.

1 Introduction

Many problems arising in a variety of domains such as planning, scheduling,
diagnosis, decision support, scheduling and design can be efficiently modeled
as Constraint Satisfaction Problems (CSPs) and solved using constraint pro-
gramming techniques. Some of these problems can be modeled naturally using
non-binary (or n-ary) constraints. Although, researchers have traditionally fo-
cused on binary constraints [9], the need to address issues regarding non-binary
constraints has recently started to be widely recognized in the constraint satis-
faction literature.

One approach to solving CSPs is to use a depth-first backtrack search al-
gorithm [3]. General methods for solving CSPs include Generate and test [7]
and Backtracking [6] algorithms. Many works have been carried out to improve
the Backtracking method. One way of increasing the efficiency of Backtracking
includes the use of search order for variables and values. Some heuristics based
on variable ordering and value ordering [5] have been developed, because of the
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additivity of the variables and values. Constraints are also considered to be ad-
ditive, that is, the order of imposition of constraints does not matter; all that
matters is that the conjunction of constraints be satisfied [1].

In spite of the additivity of constraints, only a few works have be done on bi-
nary constraint ordering mainly for arc-consistency algorithms [10], [4], but little
work has be done on non-binary constraint ordering (for instance in disjunctive
constraints [8]), and only some heuristic techniques classify the non-binary con-
straints by means of the arity. However, less arity does not imply a tighter
constraint. Moreover, when all non-binary constraints have the same arity, or
these constraints are classified as hard and soft constraints, these techniques are
not useful.

In this paper, we propose a heuristic technique called Hard and Soft Con-
straint Ordering Heuristic (HASCOH) that classifies the non-binary constraints,
independently of the arity so that hard constraints are studied before soft con-
straints and then the tightest constraints are studied before the loosest con-
straints. This is based on the first-fail principle, which can be explained as

”To succeed, try first where you are more likely to fail”

HSACOH manages CSPs in a distributed way so that each agent is committed
to a set of constraints. The hard constraints that are more likely to fail are
studied first using a search algorithm. In this way, inconsistent tuples can be
found earlier so that backtrackings are avoided. Without loss of generality, we
do not consider preferences in soft constraints, that is, all soft constraints are
equally important. Thus, soft constraints are studied after the hard constraints
in order to satisfy as many soft constraints as possible. This model allows agents
to run concurrently to achieve partial solutions for any-time complete solutions.

2 Preliminaries

CSP: A constraint satisfaction problem (CSP) consists of a set of variables X =
{1, %2, ..., Tn }; a set of finite domains D = {Dy, Da, ..., D,, }, where each variable
z; € X has a set D; of possible values; and a finite collection of constraints
restricting the values that the variables can simultaneously take. We will classify
these constraints as hard and soft constraints: hard constraints must hold while
soft, constraints may be violated, but should be satisfied as much as possible.

State: one possible assignment of all variables; the number of states is equal
to the Cartesian product of the domain size.

Partition: A partition of a set C' is a set of disjoint subsets of C' whose
union is C. The subsets are called partition blocks.

Distributed CSP: A distributed CSP is a CSP in which the variables and
constraints are distributed among automated agents [11]. Each agent has several
variables and attempts to determine their values. However, there are interagent
constraints and the value assignment must satisfy these interagent constraints.

Objective in a CSP: A solution to a CSP is an assignment of values to all
the variables so that at least all the hard constraints are satisfied. Typical tasks



of interest are to determine whether a solution exists, to find one or all solutions
and to find an optimal or a good solution relative to a preference criterion.

3 Constraint Ordering: An Any-time Proposal

Our main objective is to classify the problem constraints in an appropriate order
depending on the desired goals. One way to manage the problem constraints is by
means of the natural order in which they are inserted into the problem. However,
when managing hard and soft constraints there is a natural and reasonable
order where the hard constraints are managed first and the soft constraints are
managed later. This natural constraint ordering is presented in Figure 1. Each
hard and soft constraint satisfies a portion of the search space, but no ordering
is carried out to avoid constraint checking.
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Fig. 1. Natural ordering of hard and soft constraints

In many real problems, the main objective is to obtain a solution that satisfies
hard constraints, as soon as possible, and as many soft constraints as possible.
In this case, an any-time proposal may be appropriate. A feasible solution may
be improved at any time by another solution that satisfies more soft constraints.
Thus, both hard and soft constraints are classified from the tightest ones to the
loosest ones. This constraint ordering is presented in Figure 2.

The search space of the correctly ordered hard and soft constraints has a
behavior which is similar to the behavior of the left tails of normal curves,
in which the height of each curve is bounded by the entire search space. The
height of the tail of the hard constraints represents the valid search space for the
problem. This restricted search space is the only valid search space for finding
problem solutions and the rest of the search space can be removed.

Furthermore, the height of the tail of the soft constraints may be zero, because
soft constraints are generally over-constrained. However, these constraints are
dispensable and the objective is to satisfy as many soft constraints as possible.
These soft constraints are classified from the tightest one to the loosest one.
Thus, the first solution generated by the study of hard constraints is checked
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Fig. 2. Constraint ordering in the any-time proposal

with all soft constraints and this solution is labeled with the number of satisfied
soft constraints. Due to the any-time behavior, the following solution satisfying
all hard constraints is checked with the soft constraints from the tightest one
to the loosest one, and this constraint checking is aborted when its label can
not be greater than the label of the first solution. Thus, at any time, the best
solution is maintained with its label, and a future solution is checked with soft
constraints while its label may reach the label of the current best solution.

Here, we will focus on this any-time behavior in which, depending on the
user requirements, the solutions can be improved in order to satisfy more soft
constraints. Thus our main objective is to classify both hard and soft non-binary
constraints in the appropriate order to be solved by some of the current tech-
niques that manage non-binary constraints in a natural way [2].

4 Our Distributed Model: HASCOH

Agent-based computation has been studied for several years in the field of artifi-
cial intelligence and has been widely used in other branches of computer science.
HASCOH is meant to be a framework for interacting agents to achieve a consis-
tent state. The main idea of our multi-agent model is based on carrying out a
partition of the hard constraints, in k groups called blocks of constraints, so that
the tightest constraints are grouped and studied first by autonomous agents.
To this end, a preprocessing agent carries out a partition of the hard con-
straints, similar to a sample in finite population, in order to classify both hard
and soft constraints from the tightest hard constraints to the loosest soft con-
straints. Then, a group of agents called hard block agents concurrently manages
each block of hard constraints, generated by the preprocessing agent. Also, an
agent called soft agent manages all soft constraints. Each hard block agent is in
charge of solving its partial problem by means of a search algorithm. Thus, a
problem solution is incrementally generated from the first hard block agent to
the last hard block agent. Without loss of generality we consider all variables
are involved in the hard constraints. Afterwards, the soft agent is committed
to checking the solutions obtained by the hard block agents. Therefore, as an
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Fig. 3. Multi-agent model

any-time proposal, and depending on the time available, these solutions may
be improved by means of the concurrent search in order to find a solution that
satisfies as many constraints as possible.

Figure 3 shows the multi-agent model, in which consistent partial states (s;;)
are concurrently generated by each hard block agent and sent to the following
hard block agent until a consistent state is found (by the last hard block agent).
For example, state: s11+ 821 +...+ Sk is a problem solution. Then, the soft agent
checks this solution, and it is labeled with the number of satisfied soft constraints.
We must take into account that a solution is incrementally generated, however
partial solutions are concurrently generated due to many partial solutions will
not take part in a solution.

4.1 Preprocessing Agent

The preprocessing agent classifies the constraints in the appropriate order by
means of a sample from a finite population in statistics where there is a popu-
lation, and a sample is chosen to represent this population. In our context, the
population is composed by the states generated by means of the Cartesian Prod-
uct of variable domain bounds and the sample is composed by s(n) random and
well distributed states (s is a polynomial function) in order to represent the en-
tire population. As in statistic, the user selects the size of the sample (s(n)). The
preprocessing agent studies how many states st; : st; < s(n) satisfy each con-
straint ¢;. Thus, each constraint ¢; is labeled with p;: ¢;(p;), where p; = st;/s(n)
represents the probability that c; satisfies the whole problem. Therefore, the
computational complexity is |c|s(n). Thus, the preprocessing agent classifies the
hard constraints in ascending order of the labels p; and the soft constraints in



descending order of the labels p;. The behavior of a preprocessing agent is shown
in Figure 4. It can be observed that a sample of states is selected from the span-
ning tree. Each state is checked with the constraints and the evaluation value
Ts; may be stored to be used by local search algorithms. Furthermore, each con-
straint ¢; is labeled in order to be classified. Thus, as we pointed in Figure 3,
these ordered constraints are partitioned in k blocks (geometrically distributed)
to divide the problem in k interdependent subproblems. Each subproblem will
be solved by an agent, called block agent.

4.2 Hard Block Agent

A block agent is a cooperating agent with a set of properties. We make the
following assumptions (Figure 4(right)):

k

— There is a partition of the set of hard constraints C' = [ J C; generated by the
preprocessing agent, and each hard block agent a; hasl alblock of constraints
C;.

— Ejach hard block agent a; knows a set of variables, V;, which are involved
in its block of constraints C';. These variables fall into different sets: used
variables set (U;) and new variables set (v;), that is: V; =7; Uwv;.

— The domain D; corresponding to variable x; is maintained in the first hard
block agent a; in which z; is involved, (i.e.), z; € v;.

— Each hard block agent a; assigns values (by a search algorithm) to variables
that have not yet been assigned, that is, a; assigns values to variables x; € v;,
because variables x;, € v; have already been assigned by previous agents
A1,@2, ..., A5 1.

— Bach hard block agent a; knows the consistent partial states generated by
the previous agents ai,as,...,aj—1. Thus, agent a; knows assignments of
variables included in sets: 1,72, ..., V1.
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Fig. 4. Behavior of preprocessing agent and hard block agent

Hard block agents cooperate to achieve a consistent state. Hard block agent 1
tries to find a consistent state for its partial problem. When it has a consistent



partial state, it communicates this partial state to hard block agent 2. Hard block
agent 2 studies the second set of tightest hard constraints using the variable
assignments generated by hard block agent 1. Meanwhile, agent 1 tries to find
any other consistent partial state. So, each hard block agent j (j < k), using
the variable assignment of the previous hard block agents 1,2,..,7 — 1, tries to
concurrently find a more complete assignment. A problem solution is obtained
when the last hard block agent k finds a consistent state.

4.3 Soft Agent

Once hard block agents find a consistent state, this solution is sent to the soft
agent. This agent is committed to checking solutions with soft constraints in
order to return the best solution at any-time.

The first solution generated by the hard block agents is sent to the soft
agent. The soft agent checks this solution with all soft constraints to evaluate
the goodness of this solution. Thus, this solution is labeled with the number of
satisfied soft constraints. The second solution generated by the hard block agents
is also sent to the soft agent, and this solution is checked with soft constraints
starting from the tightest ones. The constraint checking continues as long as the
label of this solution may be greater than the label of the first solution. For
instance, if there are ten soft constraints and the first solution satisfies seven
soft constraints (its label is 7), the second solution will be checked with the soft
constraints (from the tightest to the loosest). When this solution is not consistent
with two soft constraints, the soft constraint checking is aborted, because this
solution will not satisfy more constraints than the first solution. Thus, any other
solution will be checked with soft constraints as long as its label may reach the
label of the current best solution.

Example: The 4-queens problem is a classical search problem in the artificial
intelligence area. We have extended this problem to include soft constraints. The
problem is to place four queens z1, 29, 23,24 on a 4 x 4 chessboard so that no
two queens can capture each other. Thus, hard constraints impose the condition
that no two queens are allowed to be placed on the same row, the same column,
or the same diagonal. We also add two soft constraints: queen 1 value must be
less or equal than queen 2 value: z; < z3 and the sum of queen 1 and queen 2
values must be less or equal than queen 3 value: z; 4+ 2o < z3. This modified
4-queens problem is internally managed in Figure 5.

Figure 5 shows the behavior HASCOH. The preprocessing step checks how
many partial states (from a given sample: 16 tuples {(1,1), (1,2),---, (4, 3),(4,4)})
satisfy each constraint and classifies them afterwards. It can be observed that
some hard constraints are tightest than others. Constraints c1, ¢4, cg only satisfy
6 partial states, while constraints ¢y and c5 satisfy 8 partial states and constraint
cs satisfies 10 partial states. Furthermore, soft constraint 2 is tightest than soft
constraint 1.
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Fig. 5. The 4-queens problem in our distributed model.

5 Evaluation of HASCOH

In this section, we compare the performance of our model HASCOH with two
well-known and complete CSP solvers: Generate and Test (GT) and Backtrack-
ing (BT), because they are the most appropriate techniques for observing the
number of constraint checks. This empirical evaluation was carried out with two
different types of problems: benchmark problems and random problems.

Benchmark Problems: The n-queens problem is a classical search prob-
lem in the artificial intelligence area. The 4-queens problem was studied in the
previous section.

In Table 1, we present the amount of constraint check saving in the n-queens
problem using GT with our model (HASCOH+GT) and BT with our model
(HASCOH+BT). Here, our objective is to find all solutions. The results show
that the amount of constraint check saving was significant in HASCOH+GT and
Mod+BT due to the fact that our model classifies the constraints in the appro-
priate order, so that the tightest constraints were checked first, and inconsistent
tuples were discarded earlier.



Table 1. Number of constraint check saving using our model with GT and BT in the

n-queens problem.

HASCOH+GT | HASCOH+BT
queens Constraint Constraint
Check Saving Check Saving

5 2.1 x 10% 2.4 x 102

10 4.1 x 10*? 3.9 x 107

20 1.9 x 102° 3.6 x 1018

50 2.4 x 107° 3.6 x 10%2

100 2.1 x 10143 2.1 x 10106

150 5.2 x 10219 3.7 x 1016!

200 9.4 x 10295 8.7 x 10219

Random Problems: Benchmark sets are used to test algorithms for specific
problems. However, in recent years, there has been a growing interest in the
study of the relation among the parameters that define an instance of CSP in
general (i.e., the number of variablesnumber of constraints, domain size, arity
of constraints, etc). Therefore, the notion of randomly generated CSPs has been
introduced to describe the classes of CSPs. These classes are then studied using
empirical methods.

In our empirical evaluation, each set of random constraint satisfaction prob-
lems was defined by the 4-tuple < n,c, s,d >, where n was the number of vari-
ables, ¢ the number of hard constraints, s the number of soft constraints and
d the domain size. The problems were randomly generated by modifying these
parameters. We considered all constraints as global constraints, that is, all con-
straints had maximum arity. Thus, Table 2 sets three of the parameters and
varies the other one in order to evaluate the algorithm performance when this
parameter increases. We evaluated 100 test cases for each type of problem and
each value of the variable parameter.

Table 2. Number of constraint checks using Backtracking filtered with Arc-
Consistency.

BT-AC| HASCOH+BT-AC BT-AC| HASCOH+BT-AC
problems constraint constraint problems constraint constraint
checks checks checks checks
< 5,5,5,10 > | 14226.5 2975.5 < 3,5,5,10 > 150.3 33.06
< 5,10,5,10 > | 60250.3 5714.2 < 3,5,5,20 > 260.4 55.2
< 5,20,5,10 > | 203542.2 12548.5 <3,5,5,30 > 424.3 85.26
< 5,30,5,10 > | 325487.4 17845.7 < 3,5,5,50 > 970.5 180.1
< 5,50,5,10 > | 513256.7 24875.5 <3,5,5,70 > | 2104.8 380.9
< 5,75,5,10 > | 704335.1 34135.3 <3,5,5,90 > | 4007.4 701.7
< 5,100,5,10 >| 895415.3 43396.6 < 3,5,5,110 >| 7851.4 1205.1

The number of constraint checks using BT filtered by arc-consistency (as a
preprocessing) (BT-AC) and BT-AC using our model (HASCOH+BT-AC) is
presented in Table 2. On the left side of the table, we present the number of con-



straint checks in problems where the number of hard constraints was increased
from 5 to 100 and the number of variables, soft constraints and the domain size
were set at 5,5 and 10, respectively: < 5,¢,5,10 >. The results show that the
number of constraint checks was reduced in all cases. On the right side of the
table, we present the number of constraint checks in problems where the domain
size was increased from 10 to 110 and the number of variables, the number of
hard constraints and the number of soft constraints were set at 3,5 and 5, re-
spectively: < 3,5,5,d >. The results were similar and the number of constraint
checks was also reduced in all cases.

6 Conclusions and Future Work

In this paper, we propose a distributed model for solving Constraint Satisfaction
Problems (CSPs) in which agents are committed to solving their partial problems
by means of search algorithms. The solutions are incrementally created by each
hard block agent in order to satisfied the hard constraints and as many soft
constraints as possible. Hard and soft constraints are ordered to reduce the
number of constraint checks.

As future work, we are working on a distributed model in which block agents
can dynamically interchange constraints, depending on the evaluation values, so
that the preprocessing agent can be removed and block agents can carry out this
constraint partition.
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