
Supporting Tropos concepts in Agent OPEN*

Brian Henderson-Sellers", Paolo Oiorgini", and Paolo Bresciani'

1 University of Technology, Sydney, NSW 2007 Australia,
brian@it.uts.edu.au,

2 Department of Information and Communication Technology
University of Trento, Trento, Italy

paolo.giorgini@dit.unitn.it
3 ITC-irst, Povo (Trento), Italy

bresciani@itc.it

Abstract. The growth of interest in agent-orientation as a new paradigm
has introduced the need for developing concepts, tools and techniques for
modeling and engineering agent-based software systems. Object technol-
ogy has been supporting the development of information systems for
many years but is now slowly evolving to encompass more recent ideas
relating to the concept of "agent". Integrating agent concepts into ex-
isting 00 methodologies has resulted in several agent-oriented method-
ologies, one of which is Agent OPEN. In this paper, we evaluate the
existing Agent OPEN description against ideas formulated within Tro-
pos, an agent-oriented software development methodology.

1 Introduction

The explosive growth of application areas such as electronic commerce, enter-
prise resource planning and mobile computing has profoundly and irreversibly
changed our views on software and Software Engineering. Software must now be
based on open architectures that continuously change and evolve to accommo-
date new components and meet new requirements. Software must also operate on
different platforms, without recompilation, and with minimal assumptions about
its operating environment and its users. In addition, software must be robust and
autonomous, capable of serving a naive user with a minimum of overhead and
interference. These new requirements, in turn, call for new concepts, tools and
techniques for engineering and managing software.

For these reasons - and more - agent-oriented software development is gain-
ing popularity over traditional software development techniques. While object
technology has been in widespread use for the development of information sys-
tems for many years, new ideas from the agent-oriented community are beginning
to be addressed by extending existing 00 methodologies to support the develop-
ment of agent-based information systems (e.g., [27]).This is particularly evident
in the discussions regarding whether agent orientation is a brand new paradigm

* This is Contribution Number 03/10 ofthe Centre for Object Technology Applications
and Research (COTAR).

mailto:brian@it.uts.edu.au,
mailto:paolo.giorgini@dit.unitn.it
mailto:bresciani@itc.it


Ml

M2
is tailored to
meet the needs
ofa specific

Personalized
00 Development

Process

«instance of» OPEN
Process Framework

(metamodel)

offers
advice on

selection and
onstruction

generates
instances for

Repository of Predefined
Process Components

describes how
to use the

t user t methodologist

Fig. 1. The OPF metamodel generates a large number of instances from each metaclass,
which are stored in a repository. Individual process components are then selected and
used to construct the process.

requiring a non-OO mindset or whether it can be accommodated as an extension
of existing 00 ideas.

In this paper, we make the (common) assumption that adding support for
agent concepts into an existing object-oriented methodological approach is fea-
sible and useful. We begin with the 00 approach offered by the OPEN Process
Framework or OPF [9].Although some basic agent concepts have recently been
added [6] to create "Agent OPEN", Agent OPEN still lacks the sophisticated
support for agents necessary to provide complete support for agent-oriented soft-
ware development (AOSD).

Although it would be possible to use a combination of methodologies (e.g.,
here, OPEN complemented by Tropos), it is not practical for industry, which
preferably requires a single, coherent and integrated "package" to support appli-
cation development. This paper reports on the first results of a project intended
to ensure that Agent OPEN's repository of process components contains com-
plete support for AOSD. To accomplish this, each of the major AO methodologies



M2

OPF Repository
containing Individual
Process Component

Descriptions
M1

MO

Fig. 2. Three metalevels (M2, MI, MO) that providea frameworkin which the rela-
tionship betweenthe metamodel (M2), the repositoryand processinstances (MI) and
the implementedprocess (MO) can be seen to co-exist.

is analyzed in turn in order to discover agent-oriented process components cur-
rently deficient in the OPF repository of process components - actual method-
ologies being constructed from these components (Figure 1) using the principles
of method enginering [3].The first AO methodology to be analyzed in this way
is 'Iropos [2],which stresses the need for agent-orientation in early requirements
engineering - topics not already addressed in the OPEN literature.

In Section 2, we present these pre-existing agent extensions in the context
of the OPF itself. In Section 3 we outline the Tropos methodology and then in
Section 4 we evaluate whether the OPF in its extended form [6]is adequate to
support the concepts and process elements described in Tropos and, where not,
what further extensions are needed. We conclude in Section 5 with recommen-
dations and outline directions for future work.

2 The OPEN Process Framework and its Existing
Agent-oriented Enhancements

Integrating agent concepts into existing 00 methodologies has resulted in several
agent-oriented methodologies, for example, [7,4,27,1]. One which we will discuss
is the OPEN Process Framework, or OPF [11,17,9], which is a little different
from most others in that it offers a metamodel-underpinned framework rather
than (strictly) a methodology.

Method engineering (e.g., [3,25]) is then used to construct project-specific
or "situational" methods (a.k.a. methodologies). This is possible because of the
provision of a repository of method fragments (e.g., [26])or process components
(e.g., [9]).



/ Process metatn<>del / M21evel

•
instanceof ~

Process
(as published/distributed)

Mllevel

Process instance
(as enacted on an
individual roject)

MO level

Fig. 3. For process metamodelling, we adopt a 3 layer version of the 4 layer OMG
UML metamodel [19] i which every concept in layer x is an instance of a concept at
level x + 1 (except for the self-referential top layer).

Initially, the repository of method fragments in OPEN was aimed at pro-
viding the ability to construct methodologies in the general area of information
systems development. However, as new ideas emerged over the last few years,
projects to extend the contents of the OPF repository have seen additions in ar-
eas such as component-based development [14], web-based development [13,12]
and organizational transition [16]. Initial extensions to agent-oriented develop-
ment were formulated in [6,15] and it is these extensions which we evaluate for
completeness against the agent-oriented Tropos methodology - a comparison
which is the focus of this paper.

2.1 The OPEN Process Framework

OPF consists of (i) a process metamodel or framework from which can be gen-
erated an organizationally-specific process (instance) created, using a method
engineering approach [3], from (ii) a repository and (iii) a set of construction
guidelines. The metamodel can be said to be at the 1\12 metalevel (Figure 2) with
both the repository contents and the constructed process instance at the 1\11 level
(Figure 3). The 1\10 level in Figure 2 represents the execution of the organiza-
tion's (1\11) process on a single project. Each (1\11) process instance is created by
choosing specific process components from the OPF Repository (Figure 1) and
constructing (using the Construction Guidelines) a specific configuration - the
"personalized 00 development process". Then, using this method engineering
approach, from this process metamodel we can generate an organizationally-
specific process (instance).

The major elements in the OPF metamodel are Work Units (Activities, Tasks
and Techniques), Work Products and Producers [9]- see Figure 4. These three
components interact; for example producers perform work units, work units
maintain work products and producers produce work products. In addition to
these three metatypes, there are two auxiliary ones (Stages and Languages),
which interact as shown in Figure 4.



¥
provide

macro organization
to the

...-1 help to ~ Guidelines

For each element (represented
by box), OPEN permits the
user to select how many and
which instances will be used.
The OPF documentation
provides a comprehensive list
of suggestions on the best
selections together witb
guidelines on their best
organization.

Essential
Process

Components

produce

create
1----- evaluate

iterate
maintain

are
documented

using

Fig. 4. The fivemajor metatypes in the OPF metamodel(after [9]).

Activity is at the highest level in the sense that a process consists of a number
of Activities. Activities are large scale definitions of what must be done. They
are not used for project management or enactment because they are at too high
an abstraction level. Instead, OPEN offers the concept of Task (in agreement
with the terminology of the Project Managers' Body of Knowledge [8])which is
defined as being the smallest unit of work that can be project managed. Both
Activities and Tasks are kinds of Work Unit in the OPF metamodel (Figure 4).

Work Products are the outputs of the Activities. These work products may
be graphically or textually described. Thus, weneed a variety of languages to de-
scribe them. Typical examples here are English (natural language), UML (mod-
elling language) and C# (implementation language). Since the metamodel itself
is a "design model" , it is reasonable to document it with one of the available mod-
elling languages. Here, we use the Unified Modeling Language of the OMG [19]
since it is probably the most commonly used (at least in 00 developments).

While it is possible to analyze the metamodel directly, in this paper we
address the issue of whether the contents of the current repository for the OPF is
adequate for supporting agent-oriented developments. This repository contains
instances generated from each of the metaclasses in the metamodel. For each
metaclass there are potentially numerous instances. These are documented in



Tasks for AOIS Techniques likely to be useful
Identify agents' roles Environmental evaluation
Model the agent's environment Environmental evaluation
Identify system organization Environmental evaluation
Determine agent interaction protocol Contract nets
Determine delegation strategy Market mechanisms
Determine agent communication protocol FIPA KIF compliant language
Determine conceptual architecture 3-layer BDI model
Determine agent reasoning Deliberative reasoning: Plans

Reactive reasoning: ECA Rules
Determine control architecture Belief revision of agents

Commitment management
Activity scheduling
Task selection by agents
Control architecture

Determine system operation Learning strategies for agents
Gather performance knowledge
Determine security policy for agents [topic of future research]
Undertake agent personalization Environmental evaluation

User model incorporation
Identify emergent behaviour [topic of future research]

Table 1. Tasks and Techniques already proposed [6,15] for addition to the OPF repos-
itory in order to support the development of agent-oriented systems.

various books and papers, as noted earlier. The ones specific to agents are listed
in Table 1 (see next section).

2.2 The Current Agent OPEN

As a consequence of the modular nature of the OPEN approach to method-
ology, via the notion of a repository of process components together with the
application of method or process engineering [24J,it is relatively easy to add ad-
ditional meta-elements and extremely easy to add additional examples of process
components to the repository (as instances of pre-existing meta-elements). To
extend this approach to support agent-oriented information systems, Debenham
and Henderson-Sellers [6Janalyzed the differences between agent-oriented and
object-oriented approaches in order to be able to itemize and outline the nec-
essary additions to the OPEN Process Framework's repository in the standard
format provided in [17J.The focus of that work was primarily on instances of
the meta-class WorkUnit useful for agent-oriented methodologies and processes.
Table 1 lists the Tasks and Techniques so far added to the OPF repository (no
new Activities were identified).



3 The Tropos Methodology

The Tropos methodology [2,5,10,20] was designed to support agent-oriented
systems development, with a particular emphasis on the early requirements en-
gineering phase.

In particular, Tropos aims at two important objectives:

1. raising the conceptual level of Requirements Engineering techniques, so that
formal and semiformal languages and representations can be used since the
very early stages of requirements elicitation and analysis (this means that
empirical measures, tables, and transcripts or cards provided in free text
form [23])have to be transformed into more precise and more easily analyz-
able formats, so that transforming them into functional and non-functional
requirements -to feed the Software Engineering process- results to be a
more straightforward step);

2. providing and supporting the system architecture and functions definition
with a set of "social-oriented" notions -to be used aside the traditional sys-
tem oriented concepts- that allowsfor a easier mapping of the requirements
provided in terms of social and organizational needs -as provided by Re-
quirements Engineering- into the characteristics (functional, architectural,
and design oriented) of the system-to-be.

Tropos aims at this objective by adopting two specific strategies:

1. It pays attention to the activities that precede the specification of the pre-
scriptive requirements, like understanding how and why the intended sys-
tem can meet the organizational goals (Late Requirements Analysis). Even
before this phase, it is important to understand and analyze the organiza-
tional goals themselves (Early Requirements Analysis). In this, Tropos is
largely inspired by the Eric Yu's i*framework for requirements engineering,
which offersactors, goals, and actor dependencies as primitive concepts. The
i*framework has been presented in detail in [29Jand has been related to dif-
ferent application areas, including requirements engineering [28], business
process reengineering [31],and software processes [30].

2. Tropos deals with all the phases of system requirement analysis and all the
phases of system design and implementation in a uniform and homogeneous
way, based on common mentalistic notions as those of actors, goals, soft-
goals, plans, resources, and intentional dependencies.

One of the main advantages of the Tropos methodology is that it allows to
capture not only the what or the how, but also the why a piece of software is
developed. This, in turn, allowsfor a more refined analysis of the system depen-
dencies and, in particular, for a much better and uniform treatment not only of
the system functional requirements, but also of its non-functional requirements.

The choice of focusing on the goals (and all the related mentalistic notions)
along all the phases of the Tropos methodology, has in important impact on the
overal process of software development, including the very implementation of the



system, specially if, although not exclusively, an Agent Oriented Programming
[18]is adopted. In particular, agent oriented specifications and programs use the
same notions and abstractions used to describe the behavior of human agents
and the processes involving them; thus, the conceptual gap between users' spec-
ifications (in terms of why and what) and system realization (in terms of what
and how), is reduced to a minimum.

The Tropos methodology is mainly based on four phases [20,2]:

- Early Requirements Analysis, aimed at definingand understanding a problem
by studying its existing organizational setting;

- Late Requirements Analysis, conceived to define and describe the system-to-
be, in the context of its operational environment;
Architectural Design, that deals with the definition of the system global
architecture in terms of subsystems;
Detailed Design, aimed at specifying each architectural component in further
detail, in terms of inputs, outputs, control and other relevant information.

In particular, in this paper we will concentrate on the Early Requirements
Analysis phase of Tropos. During the Early Requirements Analysis the existing
organizational setting is analyzed, in terms of actors, who plays some role in
the organization, and of their intentional dependencies in the context of the or-
ganization. The output of this phase is an organizational model which includes
relevant actors and their respective intentional dependencies. Actors, in the or-
ganizational setting, are characterized by having goals that each single actor, in
isolation, would be unable ---or not as well or as easily- to achieve. Intentional
dependencies are used to describe this kind of relationships among actors. Goals
are the the elements around which the intentional dependencies are established.

Thus, in a nutshel we can say that the stated aim of Tropos is to use agent
concepts in the description and definition of the methodology rather than using
agent concepts in a minor extension to existing 00 approaches. Tropos takes the
BDI model [22,18], formulated to describe the internal view of a single agent,
and applies those concepts to the external view in terms of problem modelling
as part of requirements engineering.

It is for this reason that, in Tropos, AI derived mentalistic notions such as ac-
tors (or agents), goals, soft-goals, plans, resources, and intentional dependencies
are used in all the phases of software development, from the first phases of early
analysis down to the actual implementation. Tropos also includes descriptions
of Work Products and several Techniques such as Means-End Analysis, useful
in requirements engineering.

A crucial role is given to the earlier analysis of requirements that precedes
prescriptive requirements specification. In particular, aside from the understand-
ing of how the intended system will fit into the organizational setting, and what
the system requirements are, Tropos addresses also the analysis of the why the
system requirements are as they are, by performing an in-depth justification
with respect to the organizational goals.



Info
Bureau

(a) (b)

Fig. 5. (a) Example actor diagram showing goals attached to actors; (b) Example actor
diagram showing an explicit dependee, depender and dependum

Thus, the stakeholder intentions are modelled as goals which, through a goal-
oriented analysis, eventually lead to the functional and non-functional require-
ments of the system-to-be. In Tropos, early requirements are assumed to involve
social actors who depend on each other for goals to be achieved, tasks to be
performed, and resources to be furnished. Tropos includes actor diagmms for
describing the network of social dependency relationships among actors, as well
as goal diagmms for analyzing goals through a means-ends analysis in order to
discover ways of fulfilling them. These primitives have been formalized using
intentional concepts from AI, such as goal, belief, ability, and commitment [2].

An Actor Diagram is a graph, where each node may represent either an actor,
a goal, a soft-goal, a task or a resource. Links, among nodes, may be used to
form paths like: depender ---> dependum ---> dependee, where the depetuier and
the dependee are actors, and the dependum is either a goal, a soft-goal, a task or
a resource. Each path between two actors indicates that one actor depends on
another for something (represented by the dependum) so that the former may
attain some goal/soft-goal/task/resource. In other terms, a dependency describes
an "agreement" between two actors (the depetuler and the dependee), in order
to attain the dependum. The depetuler is the depending actor, and the dependee
the actor who is depended upon. The type of the dependum describes the nature
of the dependency (and, therefore, of the implied agreement). Goal dependencies
are used to represent delegation of responsibility for fulfilling a goal; soft-goal
dependencies are similar to goal dependencies, but their fulfillment cannot be
defined precisely (for instance, the appreciation is subjective, or the fulfillment
can occur only to a given extent); task dependencies are used in situations where
the dependee is required to perform a given activity; and resource dependencies
require the dependee to provide a resource to the depender. As exemplified
in Figure 5, actors are represented as circles; dependums -goals, soft-goals,
tasks and resources- are respectively represented as ovals, clouds, hexagons
and rectangles".

4 In this paper only examples of goals and soft-goals are shown.



"""/
/

/
I

I,,
I

I
\
\
\
\
\

\\'-----"
"-

"-
"- •..

... •..
"-

"-
\
\
\
\
\
\

\

I
I,,,

I
I

I
I

/

""""

---------------
Fig. 6. Example goal diagram

As an example of actor diagram, let us consider Figure 5 (adapted from [2]),
in which the following actors have been identified:

- Info Bureau, that is a government agency, the objectives of wich include
improving public information services, increasing tourism through new in-
formation services, also encouraging Internet among the citizens.

- Citizens,who want easily accessible information, of any sort, and (of course)
good administration of public resources.

Thus, in Figure 5-a the Citizen is characterized by one goal (get information)
and one soft-goal (ensure taxes well spent). In Figure 5-b (that represent a first,
simple evolution of figure Figure 5-a), the soft-goal (ensure taxes well spent is
shown as a dependency between the Citizen and the Info Bureau.

Once the stakeholders have been identified, along with their goals and social
dependencies, the analysis proceeds in order to enrich the model with further
details. In particular, the rationale of each goal relative to the stakeholder who is
responsible for its fulfillment has to be analyzed. Basically, this is done through
means-end analysis and goal/plan decomposition. It is important to stress that
what goals are associated with each actor is a decision of the corresponding
stakeholder, not the design team.

An example of the result of such an analysis from the perspective of Info
Bureau is given by the goal diagram depicted in Figure 6. Here, the goal analysis
for Info Bureau, relative to the goal that Citizen delegates to Info Bureau as a



Activity
Early requirements engineering
Tasks Related Techniques
Model actors
Model capabilities for actors Capabilities identification and analysis
Model dependencies for actors and goals Delegation analysis
Model goals Means-End Analysis

Contribution Analysis
AND/OR Decomposition

Model plans Means-End Analysis
AND/OR Decomposition

Work Products
(Tropos) actor diagram
(Tropos) capability diagram
(Tropos) goal diagram
(Tropos) plan diagram

Table 2. Activity, Tasks, Techniques and Work Products proposed for inclusion in the
OPF repository as a result of analyzing Tropos.

result of the previous analysis, is given. Inside the goal diagram, soft-goal anal-
ysis is performed identifying the goals and soft-goals that contribute positively
(or negatively) to the soft-goal. For example, the soft-goal taxes well spent gets
positive contributions from the soft-goal good services,and, in the end, from the
goal provideeCulture servicestoo.

The goal provideeCultural servicesis decomposed (AND decomposition) into
four subgoals: make reservations, provideinfo, educational servicesand virtual vis-
its. As basic eCultural service, the InfoBureaumust provide information (provide
info), which can be logistic info, and cultural info. More in detail, accordingly
with the original scenario introduced in [2], Logisticinfo concerns, for instance,
timetables and visiting instructions for museums, while cultural info concerns
the cultural content of museums and special cultural events. This content may
include descriptions and images of historical objects, the description of an ex-
hibition, and the history of a particular region. Virtual visits are services that
allow, for instance, Citizento pay a virtual visit to a city of the past (Rome dur-
ing Ceesar's time!). Educational services includes presentation of historical and
cultural material at different levels (e.g., high school or undergraduate univer-
sity level) as well as on-line evaluation of the student's grasp of this material.
Make reservations allows the Citizen to make reservations for particular cultural
events, such as concerts, exhibitions, and guided museum visits.



4 Supporting Tropos Concepts in the OPEN Process
Framework

In this section, we evaluate the existing Agent OPEN description (summarized
in Section 2.2 above) against ideas formulated within the Tropos methodology,
seeking any omissions or poor support of Tropos elements in the OPF. We then
make recommendations for enhancements to the OPF in order that it can fully
support all agent-oriented concepts formulated in Tropos.

Several new process components (method chunks) need to be added to the
existing OPF repository. These are primarily Tasks and Techniques but there
is also one new Activity: Early Requirements Engineering (in Tropos called the
Early Requirements Analysis phase) as well as some work products. All of these
are outlined below in standard OPEN format and summarized for convenience
in Table 2.

4.1 Activity

An Activity in the OPF describes a coarse granular "job to be done". It describes
"what" needs to be done but not "how". One new Activity is proposed here for
inclusion in the OPF repository based on contributions made by Tropos.

Early Requirements Engineering Early requirements engineering focusses
on domain modeling. It consists of identifying and analyzing the relevant actors
in organizations and their goals or intentions. These actors may correspond with
the stakeholders but may also include other social elements (individuals, but
also organizations, organizational units, teams, and so on) who do not directly
share an interest in the project, but still need to be modelled in order to produce
a sufficiently complete picture of the organizational domain. Each organization
active element is modelled as a (social) actor that is dependent upon another
(social) actor in order for them to achieve some stated goal. During Early Re-
quirements Engineering, these goals are decomposed incrementally and finally
the atomic goals can be used to support an objective analysis of alternatives.

The results of this analysis can be documented using a variety of Tropos
diagrams. Goals, actors and dependencies can be depicted on an actor diagram
and, in more detail, on a goal diagram. These results then form the basis for
the "late requirements analysis" which in OPEN is called simply Requirements
Engineering in which the system requirements are elicited in the context of the
stakeholders' goals identified in this activity of Early Requirements Engineering.

4.2 Tasks

A Task in the OPF describes a granular "job to be done". As with Activities, a
Task describes what is to be done but not how. However, the granularity is at
an individual developer's scale, in comparison to the team scale of an Activity.
In this section, we describe five new/modified Tasks in the layout style used as
standard in the OPEN literature (e.g. [11]).



Task: Model actors
Focus: People, other systems and roles involved
Typical supportive techniques: Business process modelling, Soft systems analysis
Explanation. While the concept of actors in 00 systems already exists (and
is supported in the original OPF), the Tropos methodology extends the 00
notion of an actor beyond that of a single person/system/role interacting with a
system to that of a more general entity that has strategic goals and intentionality
within the system or organizational setting [2]including also, for example, whole
organizations, organizational units and teams. Actors in Tropos can represent
either agents (both human and artificial) or roles or positions (a set of roles,
typically played by a single agent). This new Task thus considerably extends
the existing concepts related to traditional 00 actors. To model an actor, one
must identify and analyze actors of both the environment and the system (or
system-to-be). Tropos encourages the use of this Task in the early requirements
phase for the modelling of domain stakeholders and their intentions as social
actors. Actors can be depicted using (Tropos) actor diagrams (see below).

Task: Model capabilities for actors
Focus: Capability of each actor in the system
Typical supportive techniques: Capabilities identification and analysis
Explanation. The capability of an actor represents its ability to define, choose
and execute a plan (for the fulfilment of a goal), given specific external envi-
ronmental conditions and a specific event [2].Capability modelling commences
after the architecture has been designed, subsequent to an understanding of the
system sub-actors and their interdependencies. Each system subactor must be
provided with its own individual capabilities, perhaps with additional "social
capabilities" for managing its dependencies with other actors/subactors. Pre-
viously modelled goals and plans generally now become an integral part of the
capabilities. Capabilities can be depicted using (Tropos) capability diagrams and
plan diagrams (see below).

Task: Model dependencies for actors and goals
Focus: How/if an actor depends on another for goal achievements
Typical supportive techniques: Delegation analysis
Explanation. In Tropos, a dependency may exist between two actors so that one
actor depends in some way on the other in order to achieve its own goal, a goal
that cannot otherwise be achieved or not as well or as easily without involving
this second actor. Similarly, a dependency between two actors may exist for
plan execution or resource availability [2].The actors are named, respectively,
the depender and the dependee while the dependency itself centres around the
dependum. Dependencies can be depicted using (Tropos) actor diagrams and, in
more detail, in goal diagrams (see below).

Task: Model goals



Focus: Actor's strategic interests
Typical supportive techniques: Means-end analysis, contribution analysis, AND/OR
decomposition
Explanation. A goal represents an actor's strategic interests [2]- Tropes recom-
mends both hard and soft goals. Modelling goals requires the analysis of those
actor goals from the view point of the actor itself. The rationale for each goal
relative to the stakeholder needs to be analyzed - typical Techniques are shown
in Table 2. Goals may be decomposed into subgoals, either as alternatives or
as concurrent goals. Plans may also be shown together with their decomposi-
tion, although details of plans are shown in a Plan Diagram (q.v.). Goals can be
depicted using (Tropes) goal diagrams (see below).

Task: Model plans
Focus: Means to achieve goals
Typical supportive techniques: Means-end analysis, AND/OR decomposition
Explanation. A plan represents a means by which a goal can be satisfied or, in the
case of a soft goal, satisficed [2,29]. Plan modelling complements goal modelling
and rests on reasoning techniques analogous to those used in goal modelling.
Plans can be depicted using [Tropos) goal diagrams and plan diagrams (see
below).

4.3 Techniques

To complement the "what" of Activities and Tasks, OPF Techniques detail
"how" they are to be achieved. We have identified four new Techniques from
'Iropos and describe them here in the standard format for OPF Techniques [17].

Technique: Means-End Analysis
Focus: Identifying means to achieve goals
Typical tasks for which this is needed: Model goals, Model plans
Description. Means-end analysis aims at identifying plans, resources and goals
as well as means to achieve the goals.
Usage. To perform means-end analysis, the followingare performed iteratively:

- Describe the current state, the desired state (the goal) and the difference
between the two

- Select a promising procedure for enabling this change of state by using this
identified difference between present and desired states.

- Apply the selected procedure and update the current state.

If this successfully finds an acceptable solution, then the iterations cease; oth-
erwise they continue. If no acceptable solution is possible, then failure is an-
nounced.



Technique: Contribution Analysis
Focus: Goals contributing to other goals
Typical tasks for which this is needed: Model goals
Description. Contribution analysis identifies goals that may contribute to the
(partial) fulfilment of the final goal. It may be alternatively viewed as a kind
of means-end analysis in which the goal is identified as the means [2]. Contri-
bution analysis applied to soft-goals is often used to evaluate non-functional
requirements.
Usage. Identify goals and soft-goals that can contribute either positively or neg-
atively towards the achievement of the overall goal or soft-goal. Of course the
focus is on identifying positive contributions, but the technique may also lead,
as a side effect, to the identification of negative contributions. Annotate these
appropriately (say with + or -). A + label indicates a positive, partial contri-
bution to the fulfilment of the goal being analyzed. Contribution analysis is very
effective for soft goals used for eliciting non-functional (quality) requirements.

Technique: ANDJOR Decomposition
Focus: Goal decomposition
Typical tasks for which this is needed: Model goals, Model plans
Description. This is a technique to decompose a root goal into a finer goal struc-
ture.
Usage. Start with a high level goal and decompose into subgoals. These subgoals
may either be alternatives (OR decomposition) or additive (AND decomposi-
tion).

Technique: Capabilities identification and analysis
Focus: Capabilities identification
Typical tasks for which this is needed: Model capabilities for actors
Description. For each goal introduced, we identify a set of capabilities that the
responsible actor should have in order to fulfill the goal. When the achievement
of the goal involves other actors, the analysis is expanded also to these actors.
Capabilities for the interaction/collaboration are then identified and analyzed
contextually (see [2]for more details).
Usage. Start with a goal associated to an actor and identify the capabilities
needed locally. If the goal involvesother actors the analysis is extended to these
actors with respect to their contribution in the achievement of the goal.

Finally, we had to consider also the technique Delegation Analysis. Indeed,
this technique is not new in OPF (see [17]), but its original focus is on mod-
eling objects, possibly to create components, and it is aimed at transforming
designs. In the Tropos context, instead, Delegation Analysis processes the (Tro-
pos) Actor Diagrams, that are work products of both the Early Requirements
Engineering activity ("early requirements analysis" in Tropos) and the Require-
ments Engineering activity ("late requirements analysis" in Tropos). An example



of (Tropos) Delegation Analysis is presented in Section 4.4, as the transforma-
tion of Figure 5-a into Figure 5-b. Here, we simply recommend modification of
the Delegation Analysis technique introduced in [17],in order to deal also with
the agent and Tropos typical notions (i.e., actor, goal, task, resource, depender,
dependum and dependee), so as to fully accommodate the Tropos process.

4.4 Work Products

OPF Work Products describe artefacts that are created, consumed and/or main-
tained. Some of these act as deliverables, either to other team members or to a
third party client. Four new work products are identified and described here.

Work Product: (Tropos) Actor Diagram In Tropos, the actor diagram
graphically depicts actors (as circles), their goals (as ellipses and clouds) at-
tached to the relevant actor (Figure 5-a) together with a network of dependen-
cies between the actors (Figure 5-b). In Figure 5-a, Citizen has two goals: the
hard goal to get informationand the soft goal to ensure taxes wellspent. However,
this soft goal is best delegated to the Info Bureau actor. To show this delegation,
the delegated goal is shown explicitly as a dependum (cloud symbol) connected
by two line segments to the two actors (Citizen and Info Bureau) (Figure 5-b).

Work Product: (Tropos) Capability Diagram A capability diagram is
drawn from the viewpoint of a specific agent. They are initiated by an event
caused by an external event. Nodes in the diagram model plans (which can be
expanded through the use of a Plan Diagram (q.v)) and transition arcs model
events. Beliefs are modelled as objects [2].Each node in the capability diagram
may be expanded into a Plan Diagram (q.v.). Capability diagrams in Tropos use
UML activity diagrams.

Work Product: (Tropos) Goal Diagram Figure 6 shows an example goal
diagram in which the focus is that of how Info Bureau tries to achieve the dele-
gated soft-goal taxes wellspent. Providing good serviceswith reasonable expenses,
Info Bureau can contribute to spend taxes well. Good services may include good
cultural services, which in turn may include services available via the web. So
provideeCultural servicescan contribute positively in achieving the sotfgoal good
cultural services.Figure 6 shows also the partial AND decomposition of the pro-
vide eCultural servicesgoal.

Work Product: (Tropos) Plan Diagram A plan diagram depicts the internal
structure of a plan, summarized as a single node on a Capability diagram (q.v.).
Plan diagrams in Tropos use UML activity diagrams.



5 Conclusions and Future Work

Based on an understanding that 00 methodologies can usefully be enhanced to
support agency, we report here on the first results of a project to extend the
OPEN Process Framework (OPF) to include agent-oriented support found in
various agent-oriented (AO) methodologies. Initial analysis of the Tropos AO
methodology identifies its significant support for early requirements. It captures
many aspects of agent-oriented requirements gathering not previously docu-
mented.

In analyzing the extent to which other methodological frameworks, and in
particular the OPEN Process Framework, supports these ideas, many deficien-
cies were identified. Here, we have itemized these gaps in OPEN's repository of
process components and proposed additions to the repository specificallyto ad-
dress activities, tasks, techniques and work products found in Tropos but, until
now, not available in the OPF repository.

We intend to progress this cross-fertilization between OPEN and Tropos,
specifically taking advantage of the strengths of each: the early requirements
engineering and agent focus of Tropos and the full lifecycle process of OPEN
together with its metamodel-based underpinning that permits it to be used for
situated method engineering [3].

References

1. Bernon, C., Gleizes, P.-P., Picard, G. and Glize, P., The ADELFE methodology for
an intranet system design, Procs. Agent-Oriented Information Systems 2002 (eds.
P. Giorgini, Y. Lesperance, G. Wagner and E. Yu), May 2002, Toronto, Canada.

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J. and Perini, A.: Tropos: an
agent-oriented software development methodology. Journal of Autonomous Multi-
Agent Systems (2003) in press

3. Brinkkemper, S.: Method engineering: engineering of information systems develop-
ment methods and tools. Inf. Software Techno!' 38(4) (1996) 275-280

4. Caire, G., Chainho, P., Evans, R., Garijo, F., Gomez Sanz, J., Kearney, P., Leal,
F., Massonet, P., Pavon, J. and Stark, J., Agent-oriented analysis using MES-
SAGEjUML, Procs. Second Int. Workshop on Agent-Oriented Software Engineering
(AOSE-200l), Montreal, Canada, May 2001, 101-107 (2001)

5. Castro J., Kolp M. and Mylopoulos J.: Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Information Systems. Elsevier, Amster-
dam, the Netherlands (2003) in press

6. Debenham, J. and Henderson-Sellers, B., Designing agent-based process systems
- extending the OPEN Process Framework, Chapter VIII in Intelligent Agent
Software Engineering (ed. V. Plekhanova), Idea Group Publishing (2003) 16(}-190

7. DeLoach, S.A., Multiagent systems engineering: a methodology and language for
designing agent systems, Procs. Agent-Oriented Information Systems '99 (AOIS'99),
Seattle, WA, USA, 1 May (1999)

8. Duncan, W.R.: A Guide to the Project Management Body of Knowledge, Project
Management Institute, PA, USA (1996) 176pp

9. Firesmith, D.G. and Henderson-Sellers, B.: The OPEN Process Framework. An
Introduction, Addison-Wesley, Harlow, UK (2002) 330pp



10. Giorgini P., Perini A., Mylopoulos J., Giunchiglia F. and Bresciani P.: Agent-
Oriented Software Development: A Case Study . Proceedings of the Thirteenth
International Conference on Software Engineering and Knowledge Engineering
(SEKE01), June 13-15 2001, Buenos Aires, Argentina (2001)

11. Graham, I., Henderson-Sellers, B. and Younessi, H.: The OPEN Process Specifica-
tion, Addison-Wesley, Harlow, UK (1997) 314pp

12. Haire, B., Henderson-Sellers, B. and Lowe, D., Supporting web development in
the OPEN process: additional tasks, Procs. 25th Annual International Computer
Software and Applications Conference. COMPSAC 2001, IEEE Computer Society
Press, Los Alamitos, CA, USA (2001) 383-389

13. Haire, B., Lowe, D. and Henderson-Sellers, B., Supporting web development in the
OPEN process, Object-Oriented Information Systems (eds. Z. Bellahsene, D. Patel
and C. Rolland), LNCS 2425, Springer-Verlag, 2002.

14. Henderson-Sellers, B., An OPEN process for component-based development, Chap-
ter 18 in Component-Based Software Engineering: Putting the Pieces Together (eds.
G.T. Heineman and W. Councill), Addison-Wesley, Reading, MA, USA, 2001.

15. Henderson-Sellers, B. and Debenham, J., 2003, Towards OPEN methodological
support for agent oriented systems development, Procs. First International Confer-
ence on Agent-Based Technologies and Systems (eds. B.H. Far, S. Rochefort and
M. Moussavi), University of Calgary, Calgary, Canada, 14-24

16. Henderson-Sellers, B. and Serour, M., Creating a process for transitioning to ob-
ject technology, Proceedings Seventh Asia-Pacific Software Engineering Conference.
APSEC 2000, IEEE Computer Society Press, Los Alamitos, CA, USA, 2000.

17. Henderson-Sellers, B., Simons, A.J.H. and Younessi, H.: The OPEN Toolbox of
Techniques, Addison-Wesley, UK (1998) 426pp + CD

18. Kinny, D., Georgeff, M. and Rao, A., A methodology and modelling techniques for
systems of BD! agents, TR 58, Australian Artificial Intelligence Institute (1996)

19. OMG: OMG Unified Modeling Language Specification, Version 1.4, September
2001, OMG document formal/01-09-68 through 80 (13 documents) [Online]. Avail-
able http://www.omg.org (2001)

20. Perini A., Bresciani P., Giorgini P., Giunchiglia G. and Mylopoulos J.: A Knowl-
edge Level Software Engineering Methodology for Agent Oriented Programming. In
J. P. Mi.iller, E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth In-
ternational Conference on Autonomous Agents, May 2001, Montreal, Canada, 2001.

21. Perini A., Bresciani P., Giorgini P., Giunchiglia F. and Mylopoulos J.: Towards
an Agent Oriented approach to Software Engineering. In A. Omicini and M. Vi-
roli, editors, WOA 2001 - Dagli oggetti agli agenti: tendenze evolutive dei sistemi
software, 4-5 September 2001, Modena, Italy, Pitagora Editrice Bologna (2001)

22. Rao, A.S. and Georgeff, M.P., BDI agents: from theory to practice, Technical Note
56, Australian Artificial Intelligence Institute (1995)

23. Robertson, S. and Robertson, J., Mastering the requirements process. Number
0201360462 in ACM press books. Addison-Wesley (1999)

24. Rupprecht, C., Fi.inffinger, M., Knublauch, H. and Rose, T., Capture and disserni-
antion of experience about the construction of engineering processes, Procs. CAiSE
2000, LNCS 1789, Springer Verlag, Berlin, 294-308 (2000)

25. Ter Hofstede, A.H.M. and Verhoef, T.F., On the feasibility of situational method
engineering, Information Systems, 22, 401-422 (1997)

26. van Slooten, K., Hodes, B., Characterizing IS development projects, in Proceedings
of the IFIP TC8 Working Conference on Method Engineering: Principles of method
construction and tool support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chap-
man&Hall, Great Britain, 29-44 (1996)

http://www.omg.org


27. Wooldridge, M., Jennings, N.R. and Kinny, D., The Gaia methodology for agent-
oriented analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3,
285-313 (2000)

28. E. Yu. Modeling organizations for information systems requirements engineering.
In Proceedings of the First IEEE International Symposium on Requirements Engi-
neering, pages 34-41, San Jose, January 1993. IEEE.

29. E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Department of Computer Science, 1995.

30. E. Yu and J. Mylopoulos. Understanding 'why' in software process modeling,
analysis and design. In Proceedings Sixteenth International Conference on Software
Engineering, Sorrento, Italy, May 1994.

31. E. Yu and J. Mylopoulos. Using goals, rules, and methods to support reasoning
in business process reengineering. International Journal of Intelligent Systems in
Accounting, Finance and Management, 1(5), January 1996.




