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Abstract. The performance of face recognition systems that use two-
dimensional images is dependent on consistent conditions such as lighting, 
pose, and facial appearance. We are developing a face recognition system that 
uses three-dimensional depth information to make the system more robust to 
these arbitrary conditions. We have developed a face matching system that 
automatically correlates points in three dimensions between two 2.5D range 
images of different views. A hybrid Iterative Closest Point (ICP) scheme is 
proposed to integrate two classical ICP algorithms for fine registration of the 
two scans. A robust similarity metric is defined for matching purpose. Results 
are provided on a preliminary database of 10 subjects (one training image per 
subject) containing frontal face images of neutral expression with a testing 
database of 63 scans that varied in pose, expression and lighting.  

1. Introduction 

Automatic human face recognition has gained a lot of attention during the last decade 
[1]. A few approaches utilized depth information provided by 2.5D range images [2-
5], but most efforts have been devoted to face recognition from only two-dimensional 
(2D) images [1]. Current 2D face recognition systems can achieve good performance 
in constrained environments, however, they still encounter difficulties in handling 
large variations in pose and illumination [6]. Utilizing 3D information can improve 
face recognition performance [6, 7]. Range images captured by 3D sensor [8, 9] 
explicitly represent  face surface shape information as well as providing registered 
color texture images. Face recognition based on range images has been addressed in 
different ways [2-4, 10, 11]. 

In this research 2.5D range images are used for face recognition. A 2.5D image is 
a simplified three-dimensional (x, y, z) surface representation that contains at most 
one depth (z) value for every point in the (x, y) plane (see Figure 1). A full three- 
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Fig. 1. An example for Minolta Vivid 910 facial scan. (a) Texture image; (b) range image, the 
more red a point, the closer it is to the sensor; (c) 3D rendering of the face scan. 



dimensional model could account for a more robust recognition system, however, 
there is an added cost to construct and store the complete 3D face model.  

2. Face Alignment and Matching 

Our face recognition system is illustrated in Fig. 2.  
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Fig. 2. Matching a given 2.5D face scan to 2.5D face scans in a database. a) Automatic feature 
point detection; b) the genuine scan and an imposter scan in the database with feature points 
labeled. c) Coarse alignment between the test scan and the gallery scan. d) Fine iterative 
registration to find the closest match. 

2.1 Automatic Feature Point Localization and Coarse Alignment 

A minimum of three corresponding points is needed in order to calculate the rigid 
transformation between two 2.5D scans. Once the three corresponding points are 
known, the transformation can be made using a combination of rigid transformation 
matrices following the guidelines described by Weinstein [12]. 

Using the procedure described by Dorai and Jain [13], we determine the local 
shape information at each point within the 2.5D image. This shape index at point p is 
calculated using the maximum (κ1) and minimum (κ2) local curvature (see Equation 
1). This calculation produces a shape scale between zero and one. A value near one 
represents a dome shape and a value close to zero represents a cup or dent shape. A 
value in the middle (0.5) represents a saddle point. 
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This shape calculation is independent of the coordinate system and, therefore, is a 
potentially useful metric for finding similar points between scans with different poses. 
The faces shown in Figure 3(b) are examples of 2.5D face images with the grayscale 
representing the shape index at a particular location, a dark point has a shape index 
close to zero and a lighter point has a shape index close to one.  
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Fig. 3. (a) Texture Image; (b) shape index; (c) shape index after applying 30x10 averaging 
mask (compared with (b), the shape index value is inversed for better illustration). 

For simplicity, we pick a combination of the inside of an eye, the outside of the eye 
and the nose tip, which vary, based on the pose of the range image. Of these, the 
easiest point to identify is the inside edge of an eye right next to the bridge of the 
nose, because this point (and the area around this point) has a shape index value that 
is very close to zero. A simple averaging mask of size 30 x 10 can be used to identify 
this area on the shape space (See Figure 3(c)). We use the inside edge of the eye as an 
anchor in order to identify other feature points within the face image. Some failures in 
our system occur when these points are misclassified. 

Once the inside eyes are found, other feature points within the face can be located 
using a simple model of the relative locations between the points. The outside of the 
eye is detected by following the rut (defined by the shape space) that consistently runs 
along the bottom of the eye. The mouth tips are found by looking for a valley in the 
shape space below the eyes. The mouth tips are not robust features because of the 
movement of the mouth. Despite this, the inside eye, outside eye and a mouth point 
form a plane that can be used to reliably locate the nose tip which is the farthest point 
from the plane formed by these three points. 

2.2 Fine Alignment with Hybrid ICP 

After coarse alignment the scans are not registered well due to the localization errors 
of the feature points. The fine alignment process can be formulated as follows: Given 
two partially overlapping sets of 3D points, P and Q, roughly aligned, find the best 
(rigid) transformation Ψ to align them so that the the error function E = Dist(Ψ (P), 
Q) is minimized, where the Dist(.) is the distance metric. Our fine registration process 
follows the Iterative Closest Point (ICP) framework [14-16]. With an initial estimate 
of the rigid transformation, the algorithm iteratively refines the transform by 
alternately choosing corresponding (control) points in two scans and finding the best 
rigid transformation that minimizes an error function based on the distance between 
them. In Besl and McKay [14], the point-to-point distance is applied and a fast close-
form solution is provided when calculating the transformation matrix during each 
iteration. The point-to-plane distance in Chen and Medioni [15] makes the ICP 
algorithm less susceptible to local minima than the point-to-point metric [14, 17]. 
This algorithm shows that if the two meshes are close to each other, the point-to-plane 
distance is the best approximation for the true distance between the two surfaces [18]. 
But calculating the point-to-plane distance takes longer than the point-to-point 
distance.  We integrate these two classical ICP algorithms [14, 15] in a zigzag running 
style, which is called hybrid ICP algorithm. Besl’s scheme is used to compute an 



estimation of the alignment, followed by Chen’s scheme for a refinement. Since the 
distance metrics are utilized interactively, it is possible to achieve a better registration 
result than each individual. The control points are selected only within the 
overlapping area to avoid outliers. A scheme similar to RANSAC [19, 20] is applied. 
Each time a number of control points are chosen randomly and ICP is applied based 
on the points selected. This procedure of control point selection and applying ICP is 
repeated several times. We pick the alignment with the minimum registration error as 
the final result. 

2.3 Matching 

In our experiments, the intensity (color), shape index, along with the 3D Cartesian 
coordinates are used for facial scan matching. One way to define the similarity metric 
is to combine these attributes into a single feature vector. Each attribute has relatively 
independent interpretation so they are treated separately in this matching scheme. The 
N control points used in the fine registration stage are represented by pi, i=1,2…N. 
• Surface matching. Surface matching in fine registration stage provides the 

registration error, which can be used as a matching score between two facial scans.  

∑
=

Ψ=
N

i
iiD SpD

N
E

1

)),((1  (2) 

where Ψ is the transformation, D(.) represent the point-to-plane distance between 
transformed point Ψ(pi) and the tangent plane Si at the position of its counterpart 
in the other scan surface [15]. 

• Texture matching. The 2.5D surface registration from two scans also registers the 
corresponding color texture maps. Let pi (i=1,2…N) denote the control points in 
scan P, and qi be the closest counterpart in scan Q after the transformation Ψ is 
applied to P. Let I(pi) be the texture intensity at pi. Then the texture vectors of P 
and Q are represented as TP = {I(pi), i=1,2…N} and TQ = {I(qi), i=1,2…N}, 
respectively. The matching score between two registered texture vectors is 
calculated as follows, ( )QPQPT TTTTMS ⋅>=< /, , where TP and TQ are the two 

texture vectors, < . > denotes the dot-product, ⋅  represents the norm of the texture 
vector. The MST is normalized to a range from 0 to 1. 

• Shape Index Matching. Each point in the facial scan is associated with a shape 
index calculated by Eq. 1. Similar to the texture matching, the matching score 
based on the shape index attribute can be defined as, 

( )QPQPT SSSSMS ⋅>=< /, , where SP and SQ are the two shape index vectors of 

the control point sets. The MSS is also normalized to range from 0 to 1. 
 

The surface matching distance, the registered texture matching score, and the 
registered shape index matching score can be integrated in a cascade mode or in a 
combination mode. The range information is more robust than the texture information 
under varying pose and lighting conditions. The shape index attribute is subject to 



estimation errors due to the discretization of the range data. Therefore, the surface 
matching distance is considered as the primary dissimilarity metric. In the cascade 
mode, only the test scan, whose surface matching distance is low enough, will 
proceed to the texture and shape index matching stages. In the combination mode, the 
texture and shape index matching scores are used to weight the surface matching 
distance. The final matching distance is computed as: 

)1()1( STD MSMSEMD −⋅−⋅=  (3) 

The smaller the MD, the better the matching. The combined matching distance can be 
considered as a combination of range and texture evidence by the product rule [21].  

3. Experiments 

All range images were collected using a Minolta Vivid 910 scanner [9], which uses 
structured laser light to record the face scans in less than a second. Each point in a 
scan has a texture color (r, b, g) as well as a location in 3-space (x, y, z). This data is 
stored in individual (p×q) matrices. Some of the data points are not valid (e.g., points 
outside the range of the scanner) so there is also a (p×q) binary flag matrix that is true 
for all the valid points in the scan. The range image is of size 480×640 in the fast scan 
mode of the Minolta sensor (with a reported depth accuracy of approximately 0.1 
mm) and downsampled to 240×320 in our experiment to reduce the computation cost. 
The registered color texture image has the same size as the range image. There are 10 
subjects in our collected database. The frontal scan with neutral expression for each 
subject was used to construct the training database. The test database consists of 63 
scans of the same 10 people, which varied in pose (up to left and right 60 degrees 
from the frontal view), facial expression and lighting. 

In order to properly evaluate the performance of the system, it is tested in two 
experimental modes; automatic and manual. In automatic mode, the algorithm selects 
the feature points used in coarse registration, where as in the manual mode, the 
feature points are labeled by hand. The error between the manually selected feature 
points and the automatically selected feature points is 18.12mm with a standard 
deviation of 37.58mm. The error is calculated by taking the average distance between 
the manual labeled points and the automatically extracted points.  

The fine alignment and face recognition system has been tested on both manually 
selected feature points and automatically selected feature points. The recognition 
accuracy is given in Table 1. Besides the hybrid ICP, two classical ICP algorithms are 
presented for comparison. Table 1 provides a detailed accuracy for the hybrid ICP, 
which achieves the best performance among three ICP schemes.  

One error out of 15 frontal test scans was achieved when comparing frontal 2.5D 
face images. This is noteworthy considering that many of the test images had people 
with different expressions than the training images (i.e., some were smiling). When 
the testing database was extended to include semi-profile images, the error went up 
but still maintained a reasonable recognition rate of 5 errors out 63 (92% accuracy). 
These results assume that the coarse alignment procedure is correctly done. The 
combined total error of the entire automatic system is 10 out of 63 (84% accuracy). 



The hybrid ICP scheme is more robust to the localization errors of feature points, 
which outperforms the other two classical ICP algorithms on the surface matching 
(range image only). The combination of surface, texture and shape index matching 
achieves better performance than surface matching based on the range image alone. 

Table 1. Number of rank-one failed tests due to recognition. The combination of range, texture 
and shape index matching is computed as Eq. 3. The number of iterations (10,10) represents a 
total of 10 iterations for Besl’s ICP scheme and 10 iterations for Chen’s scheme. 

Algorithm Number of 
Iterations 

Feature Point 
Extraction 

Range 
image only

Range + Texture 
+ Shape Index 

ICP_hybrid (10, 10) Manual 6 5 
ICP_hybrid (10, 10) Auto 13 10 
ICP_Chen [15] 20 Manual 10 6 
ICP_Chen [15] 20 Auto 16 14 
ICP_Besl [14] 20 Manual 19 5 
ICP_Besl [14] 20 Auto 33 15 

4. Conclusions and Future Work 

We have presented a face recognition system that is more robust to variations in pose 
and lighting. This system can match 2.5D scans of arbitrary poses with lighting and 
expression variations to a database of neutral expression frontal 2.5D scans. Unlike 
the appearance-based method [22], the proposed matching scheme does not need an 
extensive training process based on a collected large-scale database.  

A Hybrid ICP scheme is proposed to integrate two classical ICP algorithms to 
achieve better registration performance. Besides the range image, other attributes, 
such as the registered texture and shape index information, are also used to design a 
combined metric for the facial scan matching.  

This research is an encouraging first step in designing a system that is capable of 
recognizing faces with arbitrary pose and illumination. There are a number of 
directions that we are planning to consider in our future work. The first will be to 
improve the automatic coarse recognition system by incorporating a more complete 
model of the human face. We also plan on increasing the training database to include 
profile images. This should make a more robust template set and increase the systems 
matching capabilities. With a better model we will also consider methods for 
matching arbitrary two-dimensional training data.  
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