Transformation Rules
for Locally Stratified Constraint Logic Programs

Fabio Fioravanti', Alberto Pettorossi?, Maurizio Proietti®

(1) Dipartimento di Informatica, Universita dell’Aquila, L’Aquila, Italy
fioravanQunivaq.it
(2) DISP, University of Tor Vergata, Roma, Italy
adp@iasi.rm.cnr.it
(3) IASI-CNR, Roma, Italy

proietti@iasi.rm.cnr.it

Abstract We propose a set of transformation rules for constraint logic
programs with negation. We assume that every program is locally strati-
fied and, thus, it has a unique perfect model. We give sufficient conditions
which ensure that the proposed set of transformation rules preserves the
perfect model of the programs. Our rules extend in some respects the
rules for logic programs and constraint logic programs already consid-
ered in the literature and, in particular, they include a rule for unfolding
a clause with respect to a negative literal.

1 Introduction

Program transformation is a very powerful methodology for developing correct
and efficient programs from formal specifications. This methodology is particu-
larly convenient in the case of declarative programming languages, where pro-
grams are formulas and program transformations can be viewed as replacements
of formulas by new, equivalent formulas.

The main advantage of using the program transformation methodology for
program development is that it allows us to address the correctness and the effi-
ciency issues at separate stages. Often little effort is required for encoding formal
specifications (written by using equational or logical formalisms) as declarative
programs (written as functional or logic programs). These programs are correct
by construction, but they are often computationally inefficient. Here is where
program transformation comes into play: from a correct (and possibly inefficient)
initial program version we can derive a correct and efficient program version by
means of a sequence of program transformations that preserve correctness. We
say that a program transformation preserves correctness, or it is correct, if the
semantics of the initial program is equal to the semantics of the derived program.

A very popular approach followed when applying the program transformation
methodology, is the one based on transformation rules and strategies [9]: the rules
are elementary transformations that preserve the program semantics and the
strategies are (possibly nondeterministic) procedures that guide the application
of transformation rules with the objective of deriving efficient programs. Thus, a

program transformation is realized by a sequence P, ..., P, of programs, called
a transformation sequence, where, for i = 0,...,n—1, Py is derived from P
by applying a transformation rule according to a given transformation strategy.
A transformation sequence is said to be correct if the programs P, ..., P, have
the same semantics.

Various sets of program transformation rules have been proposed in the liter-
ature for several declarative programming languages, such as, functional [9,39],
logic [44], constraint [7,11,27], and functional-logic languages [1]. In this paper
we consider a constraint logic programming language with negation [19,28] and
we study the correctness of a set of transformation rules that extends the sets
which were already considered for constraint logic programming languages. We
will not deal here with transformation strategies, but we will show through some
examples (see Section 5) that the transformation rules can be applied in a rather
systematic (yet not fully automatic) way.

We assume that constraint logic programs are locally stratified [4,35]. This
assumption simplifies our treatment because the semantics of a locally stratified
program is determined by its unique perfect model which is equal to its unique
stable model, which is also its unique, total well-founded model [4,35]. (The def-
initions of locally stratified programs, perfect models, and other notions used in
this paper are recalled in Section 2.)

The set of transformation rules we consider in this paper includes the unfold-
ing and folding rules (see, for instance, [7,11,16,17,23,27,29,31,37,38,40,42,43,44]).
In order to understand how these rules work, let us first consider propositional
programs. The definition of an atom a in a program is the set of clauses that
have a as head. The atom a is also called the definiendum. The disjunction of the
bodies of the clauses that constitute the definition of a, is called the definiens.
Basically, the application of the unfolding rule consists in replacing an atom oc-
curring in the body of a clause by its definiens and then applying, if necessary,
some suitable boolean laws to obtain clauses. For instance, given the following
programs P; and Ps:

P:peqgAnr Py: pé——aAr
q+ —a pbAT
q+b q <+ —a

q<b

we have that by unfolding the first clause of program P; we get program Ps.
Folding is the inverse of unfolding and consists in replacing an occurrence
of a definiens by the corresponding occurrence of the definiendum (before this
replacement we may apply suitable boolean laws). For instance, by folding the
first two clauses of P, using the definition of ¢, we get program P;. An important
feature of the folding rule is that the definition used for folding may occur in a
previous program in the transformation sequence. The formal definitions of the
unfolding and folding transformation rules for constraint logic programs will be
given in Section 3. The usefulness of the program transformation approach based
on the unfolding and folding rules, is now very well recognized in the scientific
community as indicated by a large number of papers (see [29] for a survey).

A relevant property we will prove in this paper is that the unfolding of a clause
w.r.t. an atom occurring in a negative literal, also called megative unfolding,
preserves the perfect model of a locally stratified program. This property is
interesting, because negative unfolding is useful for program transformation,
but it may not preserve the perfect models (nor the stable models, nor the well-
founded model) if the programs are not locally stratified. For instance, let us
consider the following programs P; and P»:

Pi: p— g Py: p+p
q < p q < p
Program P, can be obtained by unfolding the first clause of P; (i.e., by first
replacing ¢ by the body —p of the clause defining ¢, and then replacing —=—p by
p). Program P; has two perfect models: {p} and {¢}, while program P, has the
unique perfect model {q}.

In this paper we consider the following transformation rules (see Section 3):
definition introduction and definition elimination (for introducing and elimi-
nating definitions of predicates), positive and negative unfolding, positive and
negative folding (that is, unfolding and folding w.r.t. a positive and a negative
occurrence of an atom, respectively), and also rules for applying boolean laws
and rules for manipulating constraints.

Similarly to other sets of transformation rules presented in the literature
(see, for instance, [1,7,9,11,27,39,44]), a transformation sequence constructed by
arbitrary applications of the transformation rules presented in this paper, may
be incorrect. As customary, we will ensure the correctness of transformation
sequences only if they satisfy suitable properties: we will call them admissible
sequences (see Section 4). Although our transformation rules are extensions or
adaptations of transformation rules already considered for stratified logic pro-
grams or logic programs, in general, for our correctness proof we cannot rely
on already known results. Indeed, the definition of an admissible transforma-
tion sequence depends on the interaction among the rules and, in particular,
correctness may not be preserved if we modify even one rule only.

To see that known results do not extend in a straightforward way when
adding negative unfolding to a set of transformation rules, let us consider the
transformation sequences constructed by first (1) unfolding all clauses of a defi-
nition § and then (2) folding some of the resulting clauses by using the definition
0 itself. If at Step (1) we use positive unfolding only, then the perfect model se-
mantics is preserved [37,42], while this semantics may not be preserved if we use
negative unfolding, as indicated by the following example.

Ezxample 1. Let us consider the transformation sequence Py, Py, P>, where:
Py: p(X) + —q(X) Pi:pX) X<0A—¢q(X) P p(X)+ X<0Ap(X)
q(X) < X>0 q(X) < X>0 q(X) < X>0
q(X) < q(X) q(X) < q(X) q(X) < q(X)
Program P is derived by unfolding the first clause of Py w.r.t. the negative literal
—¢(X) (that is, by replacing the definiendum ¢(X) by its definiens X > 0V g(X),
and then applying De Morgan’s law). Program P, is derived by folding the first

clause of P; using the definition p(X) + —¢(X) in Py. We have that, for any
a < 0, the atom p(a) belongs to the perfect model of Py, while p(a) does not
belong to the perfect model of Ps.

The main result of this paper (see Theorem 3 in Section 4) shows the correctness
of a transformation sequence constructed by first (1) unfolding all clauses of
a (non-recursive) definition § w.r.t. a positive literal, then (2) unfolding zero
or more clauses w.r.t. a negative literal, and finally (3) folding some of the
resulting clauses by using the definition . The correctness of such transformation
sequences cannot be established by the correctness results presented in [37,42].

The paper is structured as follows. In Section 2 we present the basic def-
initions of locally stratified constraint logic programs and perfect models. In
Section 3 we present our set of transformation rules and in Section 4 we give
sufficient conditions on transformation sequences that ensure the preservation
of perfect models. In Section 5 we present some examples of program derivation
using our transformation rules. In all these examples the negative unfolding rule
plays a crucial role. Finally, in Section 6 we discuss related work and future
research.

2 Preliminaries

In this section we recall the syntax and semantics of constraint logic programs
with negation. In particular, we will give the definitions of locally stratified
programs and perfect models. For notions not defined here the reader may refer
to [2,4,19,20,26).

2.1 Syntax of Constraint Logic Programs

We consider a first order language £ generated by an infinite set Vars of variables,
a set Funct of function symbols with arity, and a set Pred of predicate symbols
(or predicates, for short) with arity. We assume that Pred is the union of two
disjoint sets: (i) the set Pred. of constraint predicate symbols, including the
equality symbol =, and (ii) the set Pred,, of user defined predicate symbols.

A term of L is either a variable or an expression of the form f(t1,...,tn),
where f is an n-ary function symbol and t1, ..., t, are terms. An atomic formula
is an expression of the form p(¢1,...,t,) where p is an n-ary predicate symbol
and ty,...,t, are terms. A formula of L is either an atomic formula or a formula
constructed from atomic formulas by means of connectives (=, A, V, =, <, <)
and quantifiers (3, V).

Let e be a term, or a formula, or a set of terms or formulas. The set of
variables occurring in e is denoted by wvars(e). Given a formula ¢, the set of the
free variables occurring in ¢ is denoted by F'V (). A term or a formula is ground
iff it does not contain variables. Given a set X = {Xj,...,X,,} of n variables,
by VX ¢ we denote the formula VX, ...VX,, p. By V(¢) we denote the universal
closure of ¢, that is, the formula VX ¢, where FV () = X. Analogous notations
will be adopted for the existential quantifier 3.

A primitive constraint is an atomic formula p(ty,...,t,) where p is a predi-
cate symbol in Pred.. The set C of constraints is the smallest set of formulas of £
that contains all primitive constraints and is closed w.r.t. negation, conjunction,
and existential quantification. This closure assumption simplifies our treatment,
but as we will indicate at the end of this section, we can do without it.

An atom is an atomic formula p(t1,...,¢,) where p is an element of Pred,
and tq,...,t, are terms. A literal is either an atom A, also called positive literal,
or a negated atom — A, also called negative literal. Given any literal L, by L
we denote: (i) —A, if L is the atom A, and (ii) A, if L is the negated atom
—A. A goal is a (possibly empty) conjunction of literals (here we depart from
the terminology used in [2,26], where a goal is defined as the negation of a
conjunction of literals). A constrained literal is the conjunction of a constraint
and a literal. A constrained goal is the conjunction of a constraint and a goal.

A clause v is a formula of the form H < ¢AG, where: (i) H is an atom, called
the head of v and denoted hd(v), and (ii) ¢ A G is a constrained goal, called the
body of v and denoted bd(7). A conjunction of constraints and/or literals may
be empty (in which case it is equivalent to ¢rue). A clause of the form H <+ ¢,
where ¢ is a constraint and the goal part of the body is the empty conjunction
of literals, is called a constrained fact. A clause of the form H <, whose body is
the empty conjunction, is called a fact.

A constraint logic program (or program, for short) is a finite set of clauses. A
definite clause is a clause whose body has no occurrences of negative literals. A
definite program is a finite set of definite clauses.

Given two atoms p(ty,...,t,) and p(us,...,u,), we denote by p(t1,...,t)
= p(uy,...,u,) the constraint: ¢ty = u; A ... A t, = u,. For the notion of
substitution and for the application of a substitution to a term we refer to
[2,26]. Given a formula ¢ and a substitution {X;/t1,..., X, /tn} we denote by
e{X1/t1,..., Xn/tn} the result of simultaneously replacing in ¢ all free occur-
rences of X1,..., X, by t1,...,t,.

We say that a predicate p immediately depends on a predicate ¢ in a program
P iff there exists in P a clause of the form p(...) + B and g occurs in B. We
say that p depends on g in P iff there exists a sequence py,...,pp, with n> 1,
of predicates such that: (i) p; = p, (ii) p, = ¢, and (iii) for i = 1,...,n—1, p;
immediately depends on p;y;. Given a user defined predicate p and a program
P, the definition of p in P, denoted Def (p, P), is the set of clauses in P such
that p is the predicate symbol of hd(7).

A wvariable renaming is a bijective mapping from Vars to Vars. The applica-
tion of a variable renaming p to a formula ¢ returns the formula p(p), which is
said to be a wvariant of p, obtained by replacing each (bound or free) variable
occurrence X in o by the variable p(X). A variant of a set {¢1, ..., o} of formu-
las is the set {p(¢1),...,p(¢n)}, also denoted p({¢1,...,¥n}). During program
transformation we will feel free to silently apply variable renamings to clauses
and to sets of clauses because, as the reader may verify, they preserve program
semantics (see Section 2.2). Moreover, we will feel free to change the names of the
bound variables occurring in constraints, as usually done in predicate calculus.

2.2 Semantics of Constraint Logic Programs

In this section we present the definition of the semantics of constraint logic
programs with negation. This definition extends similar definitions given in the
literature for definite constraint logic programs [19] and logic programs with
negation [4,35].

We proceed as follows: (i) we define an interpretation for the constraints,
following the approach used in first order logic (see, for instance, [2]), (ii) we
introduce the notion of D-model, that is, a model for constraint logic programs
which is parametric w.r.t. the interpretation D for the constraints, (iii) we intro-
duce the notion of locally stratified program, and finally, (iv) we define the perfect
D-model (also called perfect model, for short) of locally stratified programs.

An interpretation D for the constraints consists of: (1) a non-empty set D,
called carrier, (2) an assignment of a function fp: D™ — D to each n-ary function
symbol f in Funct, and (3) an assignment of a relation pp over D™ to each n-ary
predicate symbol in Pred.. In particular, D assigns the set {(d,d) |d € D} to the
equality symbol =.

We assume that D is a set of ground terms. This is not restrictive because
we may add suitable 0-ary function symbols to L.

Given a formula ¢ whose predicate symbols belong to Pred., we consider the
satisfaction relation D |= ¢, which is defined as usual in first order predicate
calculus (see, for instance, [2]). A constraint c is said to be satisfiable iff its
existential closure is satisfiable, that is, D |= 3(c). If D }= J(c), then c is said to
be unsatisfiable in D.

Given an interpretation D for the constraints, a D-interpretation I assigns a
relation over D™ to each n-ary user defined predicate symbol in Pred,,, that is, I
can be identified with a subset of the set Bp of ground atoms defined as follows:
Bp ={p(di,...,dy,)|p is a predicate symbol in Pred, and (d,...,d,) € D"}.
A waluation is a function v: Vars — D. We extend the domain of a valuation
v to terms, constraints, literals, and clauses as we now indicate. Given a term
t, we inductively define the term v(t) as follows: (i) if ¢ is a variable X then
v(t) = v(X), and (ii) if ¢ is f(¢1,...,t,) then v(t) = fo(v(t1),...,v(t,)). Given
a constraint ¢, v(c) is the constraint obtained by replacing every free variable
X € FV(c) by the ground term v(X). Notice that v(c) is a closed formula which
may be not ground. Given a literal L, (i) if L is the atom p(t1,...,t,), then v(L)
is the ground atom p(v(t1), - ..,v(t,)), and (ii) if L is the negated atom —A, then
v(L) is the ground, negated atom —w(A). Given a clause v: H <~ ¢AL{A...ALy,,
v(7) is the clause v(H) < v(c) Av(L1) A ... Av(Lp).

Let I be a D-interpretation and v a valuation. Given a literal L, we say that
v(L) is true in I iff either (i) L is an atom and v(L) € I, or (ii) L is a negated
atom —A and v(A) ¢ I. We say that the literal v(L) is false in I iff it is not
true in I. Given a clause v: H < ¢ ALy A ... A Ly, v(v) is true in I iff either
(i) v(H) is true in I, or (ii) D [~ v(c), or (iil) there exists i € {1,...,m} such
that v(L;) is false in I.

A D-interpretation I is a D-model of a program P iff for every clause v in P
and for every valuation v, we have that v() is true in I. It can be shown that

every definite constraint logic program P has a least D-model w.r.t. set inclusion
(see, for instance [20]).

Unfortunately, constraint logic programs which are not definite may fail to
have a least D-model. For example, the program consisting of the clause p < —¢
has the two minimal (not least) models {p} and {q}. This fact has motivated
the introduction of the set of locally stratified programs [4,35]. For every locally
stratified program one can associate a unique (minimal, but not least, w.r.t. set
inclusion) model, called perfect model, as follows.

A local stratification is a function o: Bp — W, where W is the set of countable
ordinals. If A € Bp and o(A) is the ordinal «, we say that the stratum of A
is a. Given a clause v in a program P, a valuation v, and a local stratification
o, we say that a clause v(7y) of the form: H <~ ¢ ALy A... A Ly, is locally
stratified w.r.t. o iff either D |= —c or,fori=1,...,m, if L; is an atom A then
o(H) > o(A) else if L; is a negated atom —A then o(H) > o(A). Given a local
stratification o, we say that program P is locally stratified w.r.t. o, or o is a
local stratification for P, iff for every clause v in P and for every valuation v,
the clause v(7) is locally stratified w.r.t. o. A program P is locally stratified iff
there exists a local stratification o such that P is locally stratified w.r.t. o. For
instance, let us consider the following program Even:

even(0)

even(X) « X=Y+1 A —even(Y)
where the interpretation for the constraints is as follows: (1) the carrier is the set
of the natural numbers, and (2) the addition function is assigned to the function
symbol +. The program Fwven is locally stratified w.r.t. the stratification function
o such that for every natural number n, o(even(n)) = n.

The perfect model of a program P which is locally stratified w.r.t. a stratifi-
cation function o is the least D-model of P w.r.t. a suitable ordering based on
o, as specified by the following definition. This ordering is, in general, different
from set inclusion.

Definition 1. (Perfect Model) [35]. Let P be a locally stratified program, let o
be any local stratification for P, and let I, J be D-interpretations. We say that
I is preferable to J, and we write I < J iff for every Ay € I—J there ezists
As € J—1T such that 0(A1) > 0(As). A D-model M of P is called a perfect
D-model (or a perfect model, for short) iff for every D-model N of P different
from M, we have that M <N.

It can be shown that the perfect model of a locally stratified program always
exists and does not depend on the choice of the local stratification function o,
as stated by the following theorem.

Theorem 1. [35] Every locally stratified program P has a unique perfect model
M(P).

By Theorem 1, M(P) is the least D-model of P w.r.t. the < ordering. For
instance, the perfect model of the program consisting of the clause p + —¢ is

{p} because o(p) > o(q) and, thus, the D-model {p} is preferable to the D-model
{q} (i-e., {p} <{q}). Similarly, it can be verified that the perfect model of the
program Even is M (Even) = {even(n)|n is an even non-negative integer}. In
Section 4 we will provide a method for constructing the perfect model of a locally
stratified program based on the notion of proof tree.

Let us conclude this section by showing that the assumption that the set C of
constraints is closed w.r.t. negation, conjunction, and existential quantification
is not really needed. Indeed, given a locally stratified clause H + ¢ A GG, where
the constraint c is written by using negation, or conjunction, or existential quan-
tification, we can replace H <+ ¢ A G by an equivalent set of locally stratified
clauses. For instance, if ¢ is 3X d then we can replace H + ¢ A G by the two
clauses:

H + newp(Y1,...,Yo.) NG
newp(Yy,...,Y,) < d

where newp is a new, user defined predicate and {Y1,...,Y,} = FV(3IX d).
Analogous replacements can be applied in the case where a constraint is written
by using negation or conjunction.

3 The Transformation Rules

In this section we present a set of rules for transforming locally stratified con-
straint logic programs. We postpone to Section 6 the detailed comparison of our
set of transformation rules with other sets of rules which were proposed in the
literature for transforming logic programs and constraint logic programs. The
application of our transformation rules is illustrated by simple examples. More
complex examples will be given in Section 5.

The transformation rules are used to construct a transformation sequence,

that is, a sequence P, ..., P, of programs. We assume that Py is locally strat-
ified w.r.t. a fixed local stratification function o: Bp — W, and we will say
that Py, ..., P, is constructed using 0. We also assume that we are given a set

Pred;,; C Pred,, of predicates of interest.

A transformation sequence Py, ..., P, is constructed as follows. Suppose that
we have constructed a transformation sequence P, ..., Py, for 0<k<n-—1, the
next program Py in the transformation sequence is derived from program P
by the application of a transformation rule among R1-R10 defined below.

Our first rule is the definition introduction rule, which is applied for intro-
ducing a new predicate definition. Notice that by this rule we can introduce a
new predicate defined by m (> 1) non-recursive clauses.

R1. Definition Introduction. Let us consider m (>1) clauses of the form:
01 : newp(Xy,...,Xn) a1 NGy

Om : newp(Xy,...,Xp) ¢ e AGpy

where:

(i) newp is a predicate symbol not occurring in {P,,..., P},
(ii) Xy,..., X} are distinct variables occurring in FV ({c1 AG1,...,cm AGn}),
(

iii) every predicate symbol occurring in {G4,...,Gpy} also occurs in Py, and
(iv) for every ground substitution ¥ with domain {Xi,..., X},

o(newp(Xy, ..., X,)?9) is the least ordinal a such that, for every valuation v and
foreveryi=1,...,m,

either (iv.1) D | —w(¢;¥) or (iv.2) for every literal L occurring in v(G;9), if L
is an atom A then a>0o(A) else if L is a negated atom —A then a>o(A).

By definition introduction (or definition, for short) from program Pj we derive
the program Pyy1 = P,U{d1,...,dn}. For k > 0, Defs,; denotes the set of clauses
introduced by the definition rule during the transformation sequence Py, ..., Py.
In particular, Defs, = {).

Condition (iv), which is needed to ensure that o is a local stratification for
each program in the transformation sequence Fy,..., Py11 (see Proposition 1),
is not actually restrictive, because newp is a predicate symbol not occurring
in Py and, thus, we can always choose the local stratification o for P, so that
Condition (iv) holds. As a consequence of Condition (iv), o(newp (X1, ..., X))
is the least upper bound of S, U S;, w.r.t. < where:

Sp = {o(A4) | 1<i<m, v is a valuation, A occurs in v(G;19),

D E v(ed)}, and
Sp ={0(A)+1|1<i<m, v is a valuation, = A occurs in v(G;9),
D E v(e)}.
In particular, if for i = 1,...,m, D | =3(¢;¥), then S, U S,, = § and we have
that o(newp(X1,...,Xp)0) =0.

The definition elimination rule is the inverse of the definition introduction
rule. It can be used to discard from a given program the definitions of predicates
which are not of interest.

R2. Definition Elimination. Let p be a predicate such that no predicate of
the set Pred;,; of the predicates of interest depends on p in Pj. By eliminating
the definition of p, from program Pj we derive the new program Py = Pj, —

Def (p, Pr).

The wunfolding rule consists in: (i) replacing an atom p(t1,...,¢,) occur-
ring in the body of a clause, by a suitable instance of the disjunction of the
bodies of the clauses which are the definition of p, and (ii) applying suitable
boolean laws for deriving clauses. The suitable instance of Step (i) is computed
by adding a constraint of the form p(t1,...,t,) =K for each head K of a clause
in Def (p, Py). There are two unfolding rules: (1) the positive unfolding rule, and
(2) the negative unfolding rule, corresponding to the case where p(ti,...,tm)
occurs positively and negatively, respectively, in the body of the clause to be
unfolded. In order to perform Step (ii), in the case of positive unfolding we ap-
ply the distributivity law, and in the case of negative unfolding we apply De
Morgan’s, distributivity, and double negation elimination laws.

R3. Positive Unfolding. Let v : H < ¢cAGr AAAGR be a clause in program
Py and let P, be a variant of P, without common variables with . Let

v Kl(—Cl/\Bl

Ym @ Ky < ¢ A By,
where m > 0 and By, ..., B,, are conjunction of literals, be all clauses of program
P} such that, fori =1,...,m, DE3IcAA=K; A¢).
By unfolding clause v w.r.t. the atom A we derive the clauses

m: H+—cNA=KiNci NG, AN Bi AGgr

Nm, : H+cNA=K,, ANc;y NG ANB,, N\Gg
and from program P, we derive the program Py = (P, —{v})U{n1,...,0m}
Notice that if m =0 then, by positive unfolding, clause «y is deleted from Pj.

Example 2. Let Py be the following program:
1. p(X)+ X>1Aq(X)
2. qV)«Y=0
3. qY)«Y=Z+1Aq(Z)
where we assume that the interpretation for the constraints is given by the
structure R of the real numbers. Let us unfold clause 1 w.r.t. the atom ¢(X).
The constraint X > 1A X =Y AY = 0 constructed from the constraints of
clauses 1 and 2 is unsatisfiable, that is, R | -3X3IY (X >1A X =Y AY =0),
while the constraint X >1A X =Y AY =741 constructed from the constraints
of clauses 1 and 3, is satisfiable. Thus, we derive the following program Pj1:
lu. p(X)« X>IANX=YAY=Z+1Aq(Z)
2. qV)«Y=0
3. qY)«Y=Z+1Aq(2)

R4. Negative Unfolding. Let v: H < ¢AGp A—A AN Gpg be a clause in
program Py, and let P;, be a variant of P, without common variables with ~.

Let
Y1t Kl <— C1 /\Bl

Ym : Kpm < ¢ A By,
wherem > 0 and By, ..., B, are conjunction of literals, be all clauses of program
P/ such that, for i = 1,...,m, D = I(c A A = K; A ¢;). Suppose that, for
i=1,...,m, there exist an idempotent substitution ¢#; = {X;1 /ti1, ..., Xin/tin}
and a constraint d; such that the following conditions hold:

Q) DEVYe— (A=K;Ac) & (Xa=ta A ... AN Xim=tin N d}))),
(i) {Xi1, ..., Xin} CV;, where V; = FV(v;), and
(iii) FV(d; A B;;)) CFV(c A A).
Then, from the formula
Yo: eANGLA-(AVI (A=KiAey ABy)V...vV3AV, (A=K, Aci ABp))AGR

we get an equivalent disjunction of constrained goals by performing the following
steps. In these steps we silently apply the associativity of A and V.

10

Step 1. (Eliminate 3) Since Conditions (i), (ii), and (iii) hold, we derive from 1)
the following equivalent formula:

’g[)l . C/\GL N —|((d1 /\31191) V...V (dm /\Bm'ﬂm)) /\GR
Step 2. (Push — inside) We apply to ¢; as long as possible the following rewrit-

ings of formulas, where d is a constraint, At is an atom, G, G, G2 are goals,
and D is a disjunction of constrained literals:

~(dAG)VD) — ~(dAG)A-D

~(dAG) s —dV (dA-G)
—I(Gl N GQ) — —|G1 \Y —|G2
——At — At

Thus, from ¢, we derive the following equivalent formula:
1/12 . C/\GL/\("dl \Y (d1 A (L11191 V...V Llpﬁl)))
AN
A (=, V (dm A (L1 V - N L))
ANGg
where Lll/\---/\Llp is Bl, . and Lml /\/\Lmq is Bm
Step 3. (Push V outside) We apply to 15 as long as possible the following rewrit-
ing of formulas, where ¢, @2, and (3 are formulas:
@1 A (p2Vp3) — (1 Ap2) V (01 A ps)
and then we move constraints to the left of literals by applying the commutativity
of A. Thus, from > we get an equivalent formula of the form:
3 : (C/\€1 NG ANQ@Qy /\GR)\/...\/(C/\ET/\GL/\QT/\GR)
where ey, ..., e, are constraints and @1, ..., Q, are goals.
Step 4. (Remove unsatisfiable disjuncts) We remove from 3 every disjunct (c A
e; NG AQj ANGR), with 1<j<r, such that D |= =3(c A e;), thereby deriving
an equivalent disjunction of constrained goals of the form:
Yy: (cAest AGLAQIAGR)V ...V (cNes NG AQs AGR)
By unfolding clause v w.r.t. the negative literal = A we derive the clauses
m: H—cANete NG ANQ1 AGR

Ns: H—cNes NG ANQs NGRr
and from program P we derive the program P11 = (P, — {y}H) U {m,...,ns}.

Notice that: (i) if m = 0, that is, if we unfold clause v w.r.t. a negative literal = A
such that the constraint cA A= K; Ac; is satisfiable for no clause K; < ¢; A B; in
P}, then we get the new program Py, by deleting —A from the body of clause
v, and (ii) if we unfold clause vy w.r.t. a negative literal =A such that for some
clause K; < ¢; AB; in P, D = V(c — V; (A=K, A ¢;)) and B; is the empty
conjunction, then we derive the new program Pj;1 by deleting clause v from P.

An application of the negative unfolding rule is illustrated by the following
example.

11

Ezample 3. Suppose that the following clause belongs to program Pj:
v: h(X) + X>0A—p(X)
and let
p(Y) < Y=Z+1NZ>0Aq(Z)
p(Y)Y=Z-1ANZ>1Nq(Z)N-r(2)
be the definition of p in Py. Suppose also that the constraints are interpreted in
the structure R of the real numbers. Now let us unfold clause v w.r.t. =p(X).
We start off from the formula:
Yo: X>0AN-(YAZ(X=YAY=Z+1ANZ>0Aq(Z))V
WIAZ(X=YANY=Z-1ANZ>1Nq(Z) A—r(Z)))
Then we perform the four steps indicated in rule R4 as follows.
Step 1. Since we have that:
REVXVYVZ(X>0—- ((X=YAY=Z41AZ>0) +
Y=XANZ=X-1NX>1)))
and
REVXVYVZ(X>0— ((X=YAY=Z-1AZ>1)
Y=XAZ=X+1)))
we derive the formula:
i X>0A((X>1Aq(X—1)V (@(X+1) A -r(X+1)))
Steps 2 and 3. By applying the rewritings indicated in rule R4 we derive the
following formula:
Y3 (X>20A-X>1A-q(X+1))V
(X>0AN-X>1Ar(X+1))V
(X>0ANX>1Aq(X=1)A-g(X+1))Vv
(X>0ANX>1Aq(X=1)Ar(X+1))
Step 4. Since all constraints in the formula derived at the end of Steps 2 and 3
are satisfiable, no disjunct is removed.

Thus, by unfolding h(X) < X >0A —p(X) w.r.t. =p(X) we derive the following
clauses:

(X))~ X>0AN-X>1A—-g(X+1)

X))~ X>0N-X>1Ar(X+1)

(X))~ X>0NX>1A-q(X—-1)A—-q(X+1)

h(X) ¢~ X>0NX>1A~q(X-1)Ar(X+1)
The validity of Conditions (i), (ii), and (iii) in the negative unfolding rule allows
us to eliminate the existential quantifiers as indicated at Step 1. If these condi-
tions do not hold and nonetheless we eliminate the existential quantifiers, then
negative unfolding may be incorrect, as illustrated by the following example.

Ezample 4. Let us consider the following programs Py and Py, where P is ob-
tained by negative unfolding from Py, but Conditions (i)—(iii) do not hold:

Py: p+ —q P p+ —r(X)
q < r(X) q <+ 7(X)
r(X) «+ X=0 r(X) «+ X=0

12

We have that: p € M (P,) while p € M (P;). (We assume that the carrier of the
interpretation for the constraints contains at least one element different from 0.)

The reason why the negative unfolding step of Example 4 is incorrect is that
the clause ¢ < r(X) is, as usual, implicitly universally quantified at the front,
and VX (¢ + r(X)) is logically equivalent to ¢ < 3X r(X). Now, a correct
negative unfolding rule should replace the clause p < —¢ in program P, by
p < —3AX r(X), while in program P; we have derived the clause p «+ —r(X)
which, by making the quantification explicit at the front of the body, can be
written as p « 3X —r(X).

The folding rule consists in replacing instances of the bodies of the clauses
that are the definition of a predicate by the corresponding head. As for unfolding,
we have a positive folding and a negative folding rule, depending on whether
folding is applied to positive or negative occurrences of (conjunctions of) literals.
Notice that by the positive folding rule we may replace m (> 1) clauses by one
clause only.

R5. Positive Folding. Let 7v1,...,7my, with m > 1, be clauses in P, and let
Defs), be a variant of Defs, without common variables with 1, ..., 7y,. Let the
definition of a predicate in Defs), consist of the clauses

(512 K(—dl/\Bl

Om : K < dmn A B,

where, for ¢ = 1,...,m, B; is a non-empty conjunction of literals. Suppose
that there exists a substitution ¢ such that, for ¢ = 1,...,m, clause ~; is of
the form H + c¢ A d;9 AN G AN B;Y A G and, for every variable X in the set
FV(d; A B;) — FV(K), the following conditions hold: (i) X is a variable not
occurring in {H, ¢, Gr,Gr}, and (ii) X¢ does not occur in the term Y¢, for any
variable Y occurring in d; A B; and different from X.

By folding clauses ~v1,...,vYm using clauses d01,...,0,, we derive the clause 7:
H + ¢NGp ANKJAGpg and from program P, we derive the program Py, =

(P — {7,y ym}) U{n}

The following example illustrates an application of rule R5.

Ezample 5. Suppose that the following clauses belong to Py:

m: (X))« X>1AY=X-1ApY,1)

Yo: B(X) 4+ X>1IAY=X+1A—qY)
and suppose that the following clauses constitute the definition of a predicate
new in Defs,:

0 new(Z,C) + V=Z-CApV,C)

do: new(Z,C) <« V=Z+CA—-q(V)
For ¥ = {V/Y,Z/X,C/1}, we have that v = M(X) < X >1A(V=Z-C A
p(V,C))¥ and v2 = h(X) + X >1A (V=Z4C A —q(V))?, and the substitution
¥ satisfies Conditions (i) and (ii) of the positive folding rule. By folding clauses
~1 and 72 using clauses §; and d> we derive:

13

n: WM(X) < X>1Anew(Z,1)

R6. Negative Folding. Let v be a clause in P, and let Defs}, be a variant of
Defs,, without common variables with y. Suppose that there exists a predicate
in Defs}, whose definition consists of a single clause § : K + d A A, where A is
an atom. Suppose also that there exists a substitution ¥ such that clause «y is of
the form: H «+ ¢cAdY NG A—AY AGgr and FV(K) = FV(d A A).

By folding clause v using clause 6 we derive the clause n: H <+ ¢ Add AN Gp A
-~ KYAGR and from program Pj, we derive the program Pj1; = (Py—{v})U{n}.

The following is an example of application of the negative folding rule.

Ezample 6. Let the following clause belong to Pj:
v h(X)+ X>0Aq(X)A-r(X,0)

and let new be a predicate whose definition in Defs,, consists of the clause:
d: new(X,C)+ X>CAr(X,C)

By folding 7 using d we derive:
n: h(X) ¢~ X>0Aq(X) A —-new(X,0)

The positive and negative folding rule are not fully symmetric for the following
three reasons.

(1) By positive folding we can fold several clauses at a time by using several
clauses whose body may contain several literals, while by negative folding we
can fold a single clause at a time by using a single clause whose body contains
precisely one atom. This is motivated by the fact that a conjunction of more
than one literal cannot occur inside negation in the body of a clause.

(2) By positive folding, for i = 1, ..., m, the constraint d¢; occurring in the body
of clause ~; is removed, while by negative folding the constraint di} occurring in
the body of clause 7 is not removed. Indeed, the removal of the constraint di
would be incorrect. For instance, let us consider the program P of Example 6
above and let us assume that 7 is the only clause defining the predicate h. Let
us also assume that the predicates ¢ and r are defined by the following two
clauses: ¢(X) < X <0 and r(X,0) < X <0. We have that h(—1) ¢ M(P).
Suppose that we apply the negative folding rule to clause v and we remove the
constraint X >0, thereby deriving the clause h(X) < ¢(X)A-new(X,0), instead
of clause n. Then we obtain a program whose perfect model has the atom h(—1).
(3) The conditions on the variables occurring in the clauses used for folding are
less restrictive in the case of positive folding (see Conditions (i) and (ii) of R3)
than in the case of negative folding (see the condition FV(K) = FV(d A A)).
Notice that a negative folding rule where the condition FV(K) = FV(dA A) is
replaced by Conditions (i) and (ii) of R5 would be incorrect, in general. To see
this, let us consider the following example which may be viewed as the inverse
derivation of Example 4.

Example 7. Let us consider the following programs Py, P;, and P, where P,
is obtained from P, by definition introduction, and P; is obtained from P; by

14

incorrectly folding p « —r(X) using ¢ < r(Y"). Notice that FV(q)# FV (r(X))
but Conditions (i) and (ii) are satisfied by the substitution {Y/X}.

Py: p+ wr(X) Pi: p+ —r(X) Py p+ —q
r(X) «+ X=0 r(X) «+ X=0 r(X)+ X=0
g+ 1Y) g+ r(Y)

We have that: p € M (Py) while p € M (P,). (We assume that the carrier of the
interpretation for the constraints contains at least one element different from 0.)

If we consider the folding and unfolding rules outside the context of a transfor-
mation sequence, either rule can be viewed as the inverse of the other. However,
given a transformation sequence P, ..., P,, it may be the case that from a pro-
gram P, in that sequence we derive program Py by folding, and from program
P11 we cannot derive by unfolding a program Pyo which is equal to Pj. This is
due to the fact that in the transformation sequence P, ..., P, P41, in order to
fold some clauses in program P}, we may use clauses in Defs; which are neither
in P nor in Pj41, while for unfolding program Py, we can only use clauses
which belong to Pg41. Thus, according to the terminology introduced in [29], we
say that folding is, in general, not reversible. This fact is shown by the following
example.

Example 8. Let us consider the transformation sequence:

Py: p+gq P p+gq Py p+gq Ps: per
q < q < q < q <
r<q r < r <

where P; is derived from Py by introducing the definition r < ¢, P» is derived
from P, by unfolding the clause r + ¢, and P is derived from P, by folding
the clause p < ¢ using the definition r < g. We have that from program P; we
cannot derive a program equal to Py by applying the positive unfolding rule.

Similarly, the unfolding rules are not reversible in general. In fact, if we derive a
program Pj,y; by unfolding a clause in a program Pj, and we have that Defs, = 0,
then we cannot apply the folding rule and derive a program P2 which is equal
to Py, simply because no clause in Defs,, is available for folding.

The following replacement rule can be applied to replace a set of clauses with
a new set of clauses by using laws based on equivalences between formulas. In
particular, we consider: (i) boolean laws, (ii) equivalences that can be proved
in the chosen interpretation D for the constraints, and (iii) properties of the
equality predicate.

R7. Replacement Based on Laws. Let us consider the following rewritings
I = I between sets of clauses (we use I7 < I as a shorthand for the two
rewritings I'1 = I and I'» = I). Each rewriting is called a law.

15

Boolean Laws

(1) {H+ cNAN-AANG} <0

(2) {H+cANHAG} <0

(3) {H(—C/\Gl/\Al/\Az/\Gz} == {H(—C/\Gl/\Az/\Al/\Gz}
(4) {H+cNANANG} = {H+cNANG}

(5) HeenG, & [H«cAGy)

H(—C/\d/\G1/\G2}

{H <+ cNA