
Privacy Preserving and Data Mining in an On-Line
Statistical Database of Additive Type

Francesco M. Malvestuto1, Mauro Mezzini 1

1 Computer Science Department, “La Sapienza” University of Rome, Italy

Abstract. In an on-line statistical database, the query-answering system should
prevent answers to statistical queries from leading to disclosure of confidential
data. On the other hand, a statistical user is inclined to data mining, that is, to
disclose pieces of information that are implicit in the (explicit) answers to his
queries. A key task for both is to find data that is derivable from given summary
statistics. We show that this task is easy if data is additive and the set of given
summary statistics can be modelled by a graph.

1 Introduction

An on-line statistical database [1] is an ordinary database which contains informa-
tion on individuals (persons, companies, organizations, et cetera) but its users are
allowed to only access summary statistics over categories of individuals. For example,
consider a bank database which contains a file called DEPOSITOR whose records
have the following fields: Name, Account, Gender, Age, Balance. The statisti-
cal users can ask for summary statistics on Balance over arbitrary categories of
depositors but the categories can be specified by logical formulae involving the fields
Gender and Age, but not the private fields Name and Account. Typically, such
summary statistics are obtained using the five aggregation functions: sum, count,
max, min, average. If f is any of these aggregation functions, the following are three
possible instances of a statistical query expressed in an SQL-like language

Q select f(Balance)
 from DEPOSITOR
 where Gender = Male and Age ≥ 25

Q' select f(Balance)
 from DEPOSITOR
 where Gender = Female and Age ≥ 25

Q" select Gender, f(Balance)
 from DEPOSITOR
 where Age ≥ 25

 groupBy Gender

It should be noted that Q" is equivalent to the couple {Q, Q'}; therefore, without
loss of generality, we can limit our considerations to statistical queries from which the
groupBy clause is missing.

According to the terminology introduced in [2], [3] the aggregation functions sum
and count are called additive, the aggregation functions min and max are called
semiadditive, and the aggregation function average is called computed. In this paper,
as in [2], [3] we focus on the special class of additive aggregation functions that take
on their values from a commutative group (e.g., the set of reals or the set of integers).
In other words, we only consider sum-queries, which in our bank database are the
statistical queries of the type sum(Balance). By the value of such a sum-query we
mean exactly the total sum of the values of Balance reported in the records of the
file DEPOSITOR that fall in the category specified by the logical formula contained in
the where clause. Answering such sum-queries (and, more in general, statistical que-
ries) raises concerns on the compromise of individual privacy and protection of confi-
dential data should be afforded. We call intrusive a sum-query asking for total of a
sensitive statistic [5], [11], [12]. Let Q be a sum-query of the type sum(Balance) on
our bank database. If Balance is a confidential field and the value of Q is sensitive
(e.g., according to the threshold criterion), then Q is intrusive. When an intrusive sum-
query is asked, the query-answering system (QAS) should issue a “non-informative”
response (see below). The statistical security of a database can also be attacked by a
nonintrusive sum-query. In our bank database, this is the case if Q is not intrusive, but
its value combined with the responses to previously answered sum-queries of the type
sum(Balance) can lead to the disclosure of the total balance for some sensitive
category of depositors. Then, we call Q tricky and the QAS should answer Q as if Q
were intrusive. Finally, if a sum-query is neither intrusive nor tricky, the QAS can be
safely answer it by releasing its value. The situation can be depicted as a competitive
game played by the QAS, which has as its opponent a hypothetical user, henceforth
referred to as the data miner, who at all times is well-informed of all answered sum-
queries and is able to identify and compute the data that are derivable from their re-
sponses, that is, those data that are implicitly released. To beat the data miner, the
QAS should control the amount of information released each time a new query is
answered by auditing the whole set of answered sum-queries. More precisely, given a
new sum-query Q, the auditing procedure should first find those data that are deriv-
able from the responses to Q and to previously answered sum-queries; next, if no
derivable data is sensitive, then the QAS can safely answer Q, otherwise in response
to Q the QAS will issue a “non-informative” answer, e.g., the set of feasible values of
Q consistent with the values of previously answered sum-queries. In order to find the
data that are derivable from the values of a given set of sum-queries, one can exploit
the additivity of the aggregation function sum and model the amount of information
conveyed by their answers with a set of linear equations with a 0-1 coefficient matrix
[10], [8]. In this paper, we address the derivability problem under the assumption that
the coefficient matrix is the incidence matrix of a graph, we call the query map. This
assumption corresponds to a query-overlap restriction, which is needed to make the
auditing procedure feasible [10], [8] but is powerful enough to deal with two-

dimensional tables with arbitrary sets of suppressed cells [9]. We shall show that, for
sum-queries whose values belong to a commutative group, the derivability problem
can be solved in linear time thanks to a simple characterization of the so-called in-
variant edges of the query map.

Example 1. Consider again the file called DEPOSITOR, where Balance is a field
of real type, and the value-set of the field Age consists of the following three inter-
vals: Age < 25, 25 ≤ Age < 45, Age ≥ 45. We assume that Balance is a confiden-
tial field and that

Q select sum(Balance)
 from DEPOSITOR
 where Gender = Male and Age < 25

 is the only intrusive sum-query. Consider the four sum-queries

Q1 select sum(Balance)
 from DEPOSITOR
 where Gender = Male and Age < 45

Q2 select sum(Balance)
 from DEPOSITOR
 where Age < 25 or Gender = Male and Age ≥ 45

Q3 select sum(Balance)
 from DEPOSITOR
 where Age ≥ 45 or Gender = Male and 25 ≤ Age < 45

Q4 select sum(Balance)
 from DEPOSITOR
 where Gender = Female and Age < 45

and assume that the values of Q1, Q2, Q3 and Q4 are 24, 29, 18 and 12, respec-
tively. If the values of the four sum-queries are all released, the amount of information
conveyed by their answers is modelled by the following equation system

x1 + x2 = 24
x1 + x3 + x4 = 29
x2 + x3 + x6 =18

x4 + x5 =12











(1)

where the variables x1, x2, x3, x4, x5 and x6 stand for the total balances of the de-
positors belonging to the categories specified by the following six atomic formulae:

C1 = (Gender = Male and Age < 25)
C2 = (Gender = Male and 25 ≤ Age < 45)
C3 = (Gender = Male and Age ≥ 45)
C4 = (Gender = Female and Age < 25)
C5 = (Gender = Female and 25 ≤ Age < 45)
C6 = (Gender = Female and Age ≥ 45)

The coefficient matrix of equation system (1) is the incidence matrix of a graph and
the corresponding query map is shown in Figure 1.

1

2

3
24 18

29

C
4

12

1

C2

C3

C4
C5

C6

Figure 1

Note that the value of the intrusive sum-query Q is represented by x1. Since the
general solution of equation system (1) is

(x1 = a, x2 = 24 – a, x3 = 29 – a – b, x4 = b, x5 = 12 – b, x6 = –35 + 2a + b)

where a and b are two arbitrary real numbers, the value of x1 is not determined
and, hence, the value of Q is protected. Suppose now that a new sum-query arrives:

Q5 select sum(Balance)
 from DEPOSITOR
 where Gender = Female and Age ≥ 25

and assume that the value of Q5 is 7. If the QAS answers Q5, then the amount of
information conveyed by the answers to Q1, …, Q5 is obtained by adding the equation
x5 + x6 = 7 to equation system (1) and the corresponding query map is shown in Fig-
ure 2.

1

2

3
24 18

29

4

12

5
7

C1

C2

C3 C5

C6

C4

Figure 2

The general solution is now

 (x1 = 15, x2 = 9, x3 = 14 – b, x4 = b, x5 = 12 – b, x6 = –5 + b)

so that the value of Q is disclosed. Therefore, the QAS should not answer Q5 by re-
leasing its value, but should issue the set of feasible values of Q5 consistent with the
answers to Q1, …, Q4, that is, the whole set of real numbers.

Let us now state the derivability problem in formal terms. Let A be an (additive)
commutative group with zero 0, and let G be a graph (with no isolated vertices) where
loops are allowed. Without loss of generality, we assume that G is connected. A ver-
tex labeling (an edge labeling, respectively) of G is a mapping from V(G) (E(G),
respectively) to A. Given a vertex labeling q of G, an edge labeling x of G is compati-
ble with q if x is a solution of the equation system

∑e∈E(v) x(e) = q(v) (v ∈ V)

where E(v) denotes the set of edges of G incident to v. A vertex labeling of G is
admissible if there is an edge labeling compatible with it. For example, the null vertex
labeling (that is, the vertex labeling being zero everywhere) is admissible. Given an
admissible vertex labeling q of G, we call the vertex-weighted graph (G, q) a map. An
edge e of G is an A-invariant edge of the map (G, q) if x(e) = x'(e) for every two edge
labelings x and x' compatible with q. Let X(q) be the set of all edge labelings com-
patible with q. If 0 is the null vertex labeling, then it is easily seen that X(q) is a trans-
lation of X(0), that is, X(q) = x + X(0), where x is any edge labeling of G compatible
with q. Therefore, the set of A-invariant edges of the map (G, q) is the set of edges e
such that y(e) = 0 for all y in X(0) and, hence, it is the same for every map (G, q).
Accordingly, the reference to q can be omitted and such edges will be referred to as
the A-invariant edges of G.

The problem is to find the set of all A-invariant edges of G and to compute the
value of each of them given a map (G, q). This problem was solved in linear time in
the following two cases:

— A = Z (the set of integers) and G is bipartite [7]: the Z-invariant edges are all
and the only bridges of G;

— A = R (the set of reals) and G is arbitrary [9]: the R-invariant edges are all and
the only edges of G whose removal increases the number of bipartite components of
G.

The above result for A = R was achieved using matroid-theoretic arguments, which
are useless for an arbitrary commutative group A. In this paper, using some results of
the theory of magic graphs [6] we show that the set of A-invariant edges of an arbi-
trary graph and the value of each of them can be found in linear time.

2 Background

Let A be a commutative group with zero 0. If a is an element of A, by 2a we de-
note the sum a+a. An element b of A is even if there is an element a of A such that b
= 2a. If b is even, by half(b) we denote the set {a∈A: 2a = b}. Accordingly, half(0)
= {a∈A: 2a = 0} = {a∈A: a = –a}. For example, if A is the set {0, 1, …, p–1} with
the integer addition mod p then, if p is even, say p = 2k, then half(0) = {0, k}; oth-
erwise, half(0) = {0}. The following result is borrowed from the theory of magic
graphs [6] where only loopless graphs are considered.

Proposition 1 Let G be a connected, loopless graph and let q be a vertex labeling
of G.

(i) If G is bipartite, then q is admissible if and only if ∑v∈U q(v) = ∑v∈W q(v),
where {U, W} is the bipartition of V(G); otherwise, q is admissible if and only if the
sum ∑v∈V(G) q(v) is even.

(ii) If q is admissible, then an edge labeling compatible with q can be found in lin-
ear time using the following algorithm, where by a leaf of a graph we mean a vertex
with exactly one incident edge that is not a loop.

Algorithm 1

 (1) Find a spanning tree T of G.
 (2) If G is not bipartite, find an edge e* = (u*, v*) whose addition to T creates

 an odd cycle, and set T := T + e*.
 (3) For each edge e ∈ E(G)–E(T), set x(e) := 0.

 (4) Until T contains no leaves, repeat:

Find a leaf u of T. Let e be the edge incident to u and let w be the
other end-point of e. Set x(e) := q(u), q(w) := q(w)–q(u), and delete
u and e from T.

(5) If E(T) = Ø (that is, if G is bipartite), then Exit. Otherwise, let {U, W} be
the bipartition of the vertex set of the tree T–e* with U containing the end-
points u* and v* of e*. Set b := ∑v∈U q(v) – ∑v∈W q(v). Choose an element
a∈half(b) and set x(e*) := a, q(u*) := q(u*)–a and q(v*) := q(v*)–a. Delete
e* from T.

 (6) Until T is a one-point graph repeat:

Find a leaf u of T. Let e be the edge incident to u and let w be the
other end-point of e. Set x(e) := q(u), q(w) := q(w)–q(u), and delete
u and e from T.

(In Appendix I Algorithm 1 is applied to the map shown in Figure 2.)

Consider now a connected graph G where loops are allowed and let q be any vertex
labeling of G. An edge labeling compatible with q can be always found using the
algorithm (henceforth referred to as Algorithm 2) obtained from Algorithm 1 by re-
placing step (2) by the step

 (2') Find a loop e*, and set T := T + e*.

and steps (5) and (6) by the single step

 (5') If v* is the end-point of e*, set x(e*) := q(v*).

(In Appendix II Algorithm 2 is applied to the information model shown in Figure 1.)
So, one has

Proposition 2 Every vertex labeling q of a graph containing loops is admissible and
an edge labeling compatible with q can be found in linear time.

3 Characterization of invariant edges

Let G be a connected graph and let Y = X(0). An edge labelling in Y will be called
a circulation in G over A (an A-circulation, for short); moreover, if y is an A-
circulation in G, the edge set {e ∈ E(G): y(e) ≠ 0} is called the support of y. Bearing
in mind that an edge e of G is A-invariant if and only if y(e) = 0 for all y in Y, we have

that an edge of G is A-invariant if and only if it does not belong to the support of any
A-circulation. Let us distinguish the following three cases: G is bipartite, G is not
bipartite and is loopless, G contains loops.

Case 1. G is bipartite. If G is a tree then Y = {0} (see Algorithm 1) so that each
edge of G is A-invariant. Assume that G is not a tree. For every cycle C, no edge in C
is A-invariant since, arbitrarily chosen a nonzero element a of A, one can construct an
A-circulation (see Figure 3) whose support is C.

 a

a

–a –a

Figure 3 An A-circulation associated with an even cycle

Therefore, the A-invariant edges of G are all bridges. On the other hand, if e is a
bridge of G and G' is either component of G–e, then

 y(e) = [∑v∈U ∑e∈E(v) y(e)] – [∑v∈W ∑e∈E(v) y(e)] = 0

where {U, W} is the bipartition of V(G') and e is incident to U. To sum up, the A-
invariant edges of G are all and the only bridges of G.

Case 2. G is not bipartite and is loopless. Let T be a spanning tree of G with the ad-
dition of an edge e* (see Algorithm 1) creating an odd cycle, say C. Given an arbitrary
element a of half(0), with C we can associate an A-circulation (see Figure 4), whose
support is empty or C depending on whether a = 0 or a ≠ 0, respectively.

a

a

a

Figure 4 An A-circulation associated with an odd cycle

Let ca be such an A-circulation associated with C. If G = T, then Y = {ca: a ∈
half(0)} (see Algorithm 1) so that, if half(0) = {0} then each edge of G is A-
invariant; otherwise (that is, if half(0) ≠ {0}), an edge is A-invariant if and only if it is

a bridge. Let now assume that G ≠ T and let E(G)–E(T) = {e1, …, ek}. The addition of
ei to T creates a closed even walk Ci which is either an even cycle or an L-odd set [4],
that is, a pair of edge-disjoint odd cycles joined by a (possibly one-point) path. Given
an arbitrary element a of A, with Ci we can associate an A-circulation as follows. If
Ci is an even cycle, then the A-circulation is of the form shown in Fig. 3; if Ci is an L-
odd set, then the A-circulation is of the form shown in Fig. 5.

 –a

–a

–a
a 2a a

–a

Figure 5 An A-circulation associated with an L-odd set

Let ci,ai
 be such an A-circulation associated with Ci for some element ai of A. As

proven in [6], every A-circulation y in G can be written as

 y = ca + ∑i=1,…,k ci,ai

for some element a of half(0) and some elements a1, …, ak of A. Let us distin-
guish two subcases depending on whether half(0) = {0} or half(0) ≠ {0}.

Case 2(i): half(0) = {0}. Then, an edge e is A-invariant if and only if e does not
belong to any even cycle and to any L-odd set, that is, if and only if either e is a bridge
and G–e has a bipartite component or e belongs to all odd cycles of G. Note that in
both cases, e is characterized by the property that G–e has one more bipartite compo-
nent than G. As an example, the R-invariant edges of the graph of Figure 2 are the
edges (1,2) and (1, 3).

Case 2(ii): half(0) ≠ {0}. Then, the A-invariant edges are all bridges since they be-
long to no cycles. Furthermore, if half(0) ≠ A then an edge e is A-invariant if and only
if e is a bridge and G–e has a bipartite component; otherwise (that is, if half(0) = A)
then 2a = 0 for all a so that an edge is A-invariant if and only if it is a bridge.

Case 3. G contains loops. Let T be a spanning tree of G with the addition of a loop
e* (see Algorithm 2). If G = T then Y = {0} so that each edge of G is A-invariant.
Otherwise, let E(G)–E(T) = {e1, …, ek}. The addition of ei to T again creates a closed

even walk Ci which is either an even cycle or an L-odd set having e* as one of its
cycles. Given an arbitrary element a of A, with Ci we can associate an A-circulation
as follows. If Ci is an even cycle, then the A-circulation is of the form shown in Fig. 3;
if Ci is an L-odd set, then the A-circulation is of either form shown in Fig. 6.

2a a a

–a

–a a

–2a

a

Figure 6 An A-circulation associated with an L-odd set containing a loop

Set ci,ai
 be such an A-circulation associated with Ci for some element ai of A. It

can be proven that every A-circulation y in G can be written as

 y = ∑i=1,…,k ci,ai

for some elements a1, …, ak of A. Let us distinguish two subcases depending on
whether half(0) = {0} or half(0) ≠ {0}.

Case 3(i): half(0) = {0}. Then, an edge e is A-invariant if and only if e does not
belong to any even cycle and to any L-odd set, that is, if and only if e either is a bridge
and G–e has a bipartite component or e belongs to all odd cycles of G. As an example,
the graph of Figure 1 has no R-invariant edges.

Case 3(ii): half(0) ≠ {0}. If half(0) ≠ A then an edge e is A-invariant if and only if
either e is a bridge and G–e has a bipartite component or e is a loop and G–e is
loopless; otherwise (that is, if half(0) = A), an edge e is A-invariant if and only if
either e is a bridge and G–e has a loopless component or e is a loop and G–e is
loopless.

To sum up, we have the following.

Proposition 3 Let G be a connected graph and A a commutative group. If half(0) =
{0}, then an edge e of G is A-invariant if and only if either e is a bridge and G–e has a
bipartite component or e belongs to all odd cycles of G. If {0} ⊂ half(0) ⊂ A, then an
edge e of G is A-invariant if and only if either e is a bridge and G–e has a bipartite
component or e is a loop and G–e is loopless. If half(0) = A, then an edge e of G is A-

invariant if and only if either e is a bridge and G–e has a loopless component or e is a
loop and G–e is loopless.

4 Computational aspects

A consequence of Proposition 3 is that the set of A-invariant edges of a graph can
be found in time linear since:

— the set of bridges whose removal creates one more bipartite component can
be found in linear time [9], and the same can be easily proven for the set of bridges
whose removal creates one more loopless component;

— the presence of a loop whose removal creates a loopless graph can be
checked in linear time;

— the set of edges belonging to all odd cycles can be found in linear time [9].

Once the set of A-invariant edges of a graph G has been found, in order to deter-
mine their values for a map (G, q) one can use Algorithm 1 or Algorithm 2, depending
on whether G is or is not loopless.

5 An open problem

We solved the problem of finding the A-invariant edges of a map and of computing
their values, where A is an arbitrary commutative group. The case that A is the set of
non-negative elements of an “ordered” commutative group is open. However, if A is
the set of non-negative reals, then the solution is known [9] and it also applies to the
case that A is the set of non-negative integers provided that the underlying graph is
bipartite [7].

References

1. Adam, N.R. & Wortmann, J.C. (1989). Security control methods for statistical databases:
a comparative study. ACM Computing Surveys 21, 515-556.

2. Chang Chen, M., & McNamee, L., & Melkanoff, M. (1988). A model of summary data

and its applications to statistical databases, Proc. IV Int. Working Conf. on “Statistical &
Scientific Database Management” (M. Rafanelli et alii, eds.), Lecture Notes in Computer
Sciences 339, 354-372.

3. Chang Chen, M., & McNamee, L. (1989). On the data model and access method of sum-
mary data management. IEEE Trans. on Knowledge and Data Engineering 1, 519-529.

4. Conforti, M. & Rao, M.R (1987). Cut set and the max cut problem. Math. Oper. Res., 12 ,

193-204.

5. Cox, L.H. (1980). Suppression methodology and statistical disclosure control. J. American

Statistical Association 75, 377-385.

6. Doob, M. (1974). Generalization of magic graphs. J. Combinatorial Theory B 17, 205-

217.

7. Gusfield, D. (1988). A graph-theoretic approach to statistical data security. SIAM J. Com-

puting 17, 552-571.

8. Malvestuto, F.M. (2003). A query-overlap restriction for statistical database security. UN-

ECE/EUROSTAT Worksession on “Statistical Confidentiality”, Luxembourg.

9. Malvestuto, F.M. & Mezzini, M. (2002). A linear algorithm for finding the invariant edges

of an edge-weighted graph. SIAM J. on Computing 31, 1438-1455.

10. Malvestuto, F.M. & Moscarini, M. (1999). An audit expert for large statistical databases.

In Statistical Data Protection, EUROSTAT, 29-43.

11. Willenborg, L. & de Waal, T. (1996). Statistical Disclosure Control in Practice. Lecture

Notes in Statistics, Vol. 111, Springer-Verlag, New York.

12. Willenborg, L. & de Waal, T. (2000). Elements of Statistical Disclosure. Lecture Notes in

Statistics, Vol. 155, Springer-Verlag, New York.

Appendix I

1

2

3

4

5 1

2

3

4

5 e*

Step 1 Step 2

1

2

3
24 18

29

4
0

5
 7

12

Step 3

1

2

3
24 11

17

4
0

5
 7

12

Step 4

Step 5 Step 6

1

2

3
15 2

17

4
0

5
 7

12

U

W

 9
1

2

3

15 2

4
0

5
 7

12

 9

Appendix II

e*

Step 1 Step 2'

Step 3 Step 4

Step 5'

1

2

3

4

1

2

3

4

1

2

3
24 18

29

4

12

0

0 1

2

318

23
4

0

0

6

1

2

318

23
4 -11

0

0

6

-11

