Bagging Decision Multi-Trees*

V. Estruch C. Ferri J. Herndndez-Orallo M.J. Ramirez-Quintana'

DSIC, Univ. Politecnica de Valéncia , Cami de Vera s/n, 46020 Valéncia, Spain.
{vestruch,cferri, jorallo,mramirez}@dsic.upv.es

Abstract. Ensemble methods improve accuracy by combining the pre-
dictions of a set of different hypotheses. A well-known method for gen-
erating hypothesis ensembles is Bagging. One of the main drawbacks
of ensemble methods in general, and Bagging in particular, is the huge
amount of computational resources required to learn, store, and apply
the set of models. Another problem is that even using the bootstrap
technique, many simple models are similar, so limiting the ensemble di-
versity. In this work, we investigate an optimization technique based on
sharing the common parts of the models from an ensemble formed by de-
cision trees in order to minimize both problems. Concretely, we employ
a structure called decision multi-tree which can contain simultaneously a
set of decision trees and hence consider just once the “repeated” parts. A
thorough experimental evaluation is included to show that the proposed
optimisation technique pays off in practice.

Keywords: Ensemble Methods, Decision Trees, Bagging.

1 Introduction

With the goal of improving model accuracy, there has been an increasing interest
in defining methods that combine hypotheses. These methods construct a set of
hypotheses (ensemble), and then combine the components of the ensemble in
some way (typically by a weighted or unweighted voting) in order to classify
examples. The accuracy obtained will be often better than that of the individual
components of the ensemble. This technique is known as Ensemble Methods [3].

This accuracy improvement of ensemble methods can be intuitively justified
because the combined model represents an increase in expressiveness over the
single components of the ensemble, and the fact that the combination of uncor-
related errors avoids over-fitting. The quality of the generated ensemble highly
depends on the accuracy and diversity of its individual components [9)].

Many methods have been proposed to construct a set of classifiers from a
single evidence. These techniques have been applied in many different learning
algorithms. Dietterich [3] distinguishes different kinds of ensemble construction
methods, being probably the methods based on the manipulation of the training
examples the most frequently used. The common idea of this kind of methods
boils down to several times the same learning algorithm, each time with a dif-
ferent subset or weighting of the training examples, thus generating a different

* This work has been partially supported by CICYT under grant TIC2001-2705-C03-
01 and MCyT Accién Integrada HU 2003-0003.

classifier for each set. The relevant issue in these methods is to define a good
mechanism to generate subsets from the set of training examples. For instance,
Bagging |2, 16], Boosting [8,16] and Cross-validated committees [13] are ensemble
methods of this family.

Bagging is derived from the technique known as bootstrap aggregation. This
method constructs subsets by generating a sample of m training examples, se-
lected randomly (and with replacement) from the original training set of m
instances. The new subsets of training examples are called bootstrap replicates.

There have been some works that compare the performance of ensemble
methods. Dietterich has compared Bagging, Boosting and Randomisation en-
semble methods experimentally in [4]. The conclusions are that in problems
without noise Boosting gets the best results, while the results of Bagging and
Randomisation are quite similar. With respect to noisy datasets, Bagging is the
best method, followed by Randomisation, and, finally, Boosting.

Ensemble methods have also important drawbacks. Probably, the most im-
portant problem is that they require the generation, storage, and application of a
set of models in order to predict future cases. This represents an important con-
sumption of resources, in both scenarios: learning process and predicting new
cases. This important hindrances frequently limit the application of ensemble
methods to real problems.

Let us consider the following scenario, given the classical playtennis [11] prob-
lem; we construct an ensemble of four decision trees by applying Bagging, over
the C4.5 decision-tree learning algorithm, i.e., we learn four decision trees with
C4.5 from four different bootstrap replicates. The four trees learned are shown
in Figure 1.

Decision Tree 1 Decision Tree 2

Decision Tree 3 Decision Tree 4

Wind?

Wind?

Humidity?
Play=no Play=no

Temperature?

Play=yes Play=no

Fig. 1. Four different decision trees for the playtennis problem.

If we observe the four decision trees, we can appreciate that there are many
similarities among them. For instance, Decision Tree 1 and Decision Tree 2, as
well as Decision Tree 3 and Decision Tree 4, have the same condition at the root.
More concretely, Decision Tree 1 and Decision Tree 2 are almost identical, the
only difference between both trees is that Decision Tree 1 has an additional split
in a node considered as a leaf in Decision Tree 2.

Furthermore, the first consequence of this phenomenon is that most of the
solutions are similar, and hence, the errors can be correlated. All these patterns
and regularities are not considered when learning ensembles of decision trees,
and therefore, this process is also usually expensive in terms of computational
cost. Motivated by these two problems, we present in this work an algorithm that
exploits these regularities, and therefore, it allows a better dealing of resources
when learning ensembles of decision trees. We employ a structure called decision
multi-tree that can contain simultaneously a set of decision trees sharing their
common parts. In previous works [6], we developed the idea of options trees [10]
into the multi-structure, using a beam-search method to populate the multi-tree,
mostly based on the randomisation technique, and several fusion techniques to
merge the solutions in the multi-tree. One of the most delicate things of our
previous approach was the choice of alternate splits. The use of Bagging in multi-
trees solves this problem and, furthermore, it can allow a fairer comparison
between the multi-tree and other ensemble methods. Although the presented
algorithm is based on Bagging, the same idea could be easily applied to other
ensembles methods such as Boosting.

The paper is organised as follows. First, in Section 2, we introduce the de-
cision multi-tree structure. Section 3 introduces the algorithm that allows a
decision multi-tree to be constructed by employing bootstrap replicates. A thor-
ough experimental evaluation is included in Section 4. Finally, the last section
presents the conclusions and proposes some future work.

2 Decision Multi-trees

In this section we present the decision multi-tree structure. This structure can be
seen as a generalisation of a classical decision tree. Basically, a decision multi-tree
is a tree in which the rejected splits are not removed, but stored as suspended
nodes. The further exploration of these nodes after the first solution is built
permits the generation of new models. For this reason, we call this structure
decision multi-tree, rather than a decision tree. Since each new model is ob-
tained by continuing the construction of the multi-tree, these models share their
common parts.

Likewise, a decision multi-tree can also be seen as an AND/OR tree [12,
14], if one considers the split nodes as being OR-nodes and considers the nodes
generated by an exploited OR-node as being AND-nodes.

Formally, a decision multi-tree is formed by an AND-node on the root, with
a set of children which are OR-nodes (each one represents the split considered).
Each OR-node can be active or suspended. The active OR-nodes have a set of
children which are AND-nodes corresponding to a descendant of the split. This

schema is repeated for each new descendant node (AND-node), until an AND-
node that is not further explored and it is assigned a class (a leaf).

Play=yes Play=no

Humidity?

Play=no Play=yes = Play=yes
Wind?

Wesak Strong

Play=yes Play=no Play=no Play=yes

Fig. 2. The multi-tree structure.

Figure 2 shows a decision multi-tree that contains the four decision trees of
Figure 1. AND-nodes are represented with no filled circles and they have an arc
under the node. Leaves are represented by rectangles. OR-nodes are expressed by
black-filled circles. In a decision multi-tree, as we can see, there are alternatively
levels of AND-nodes and OR-nodes. Note that a classic decision tree can be seen
as a decision multi-tree where only one OR-node is explored at each OR-node
level.

In previous work [7], we have introduced an ensemble method that employs
the decision multi-tree structure. In that work, the ensemble method performs a
beam-search population of the decision multi-tree based on a random selection
of the suspended nodes to be explored. However, one of the critical issues about
this technique is the criterion for choosing the OR-node to “wake” from its
suspended state.

3 Bagging Construction of a Decision Multitree

In this section we present our method to construct a decision multi-tree by using
different training sets. As in Bagging, each training set is a bootstrap replicate
of the original training set. However, as we have mentioned in the introduction,
our approach differs from Bagging in that we construct a single structure (a
multi-tree) that includes the ensemble of decision trees obtained by Bagging but
without repeating their common parts.

In order to implement this, we use the first bootstrap replicate for filling the
multi-tree with a single decision tree. Then, for each new bootstrap replicate

we continue the construction of the multi-tree, but only exploiting those nodes
which have not been considered in the previous bootstrap replicates (i.e. they
are suspended OR-nodes).

3.1 Algorithm
The following algorithm formalises this process:

Algorithm Bagging-Multi-tree (INPUT E:dataset, n:integer; OUTPUT M :multi-
tree) {n is the number of iterations}

M=Initialize_multi_tree(); {M only contains an empty AND-node}
for i=1 to n do
D=Bootstrap_replicate(E); {a bootstrap replicate is generated}
if i=1 then LearnM (M.root, D)
else LearnM Bagg(M.root, D)

end for
end

As we can see, the algorithm begins by generating an empty multi-tree, that is,
a multi-tree that only contains one AND-node. Then, a bootstrap replicate is
obtained and processed in each step of the main loop. At the first iteration, a
multi-tree is constructed (procedure LearnM) and, for the following iterations,
this structure is populated using a new bootstrap replicate for selecting the
suspended OR-node that must be exploited (procedure LearnM Bagg). In what
follows we describe both processes.

Procedure LearnlM generates a multi-tree by selecting in each OR-level the
best OR-node to be exploited (using, e.g. GainRatio or other splitting criterion).
The process is repeated for the descendant of the active OR-node until a leaf is
reached.

Procedure LearnM (INPUT X:AND-node, D:training dataset; OUTPUT
M:multi-tree)

if X =leaf then exit;
List_of OR_nodes=Create_OR_nodes(X, D); {generate a list with one OR-
node for each possible split and their descendants (AND-nodes)}
B=Select_Best_.OR_node(L, D); {the best node according to the split opti-
mality criterion is selected}
Activate(B); {the selected OR-node is activated}
for Y € children_of(B) do
D'=filter(D,Y); {the examples of D that fall in node Y are selected}
LearnM (Y, D")
end for
end procedure
As in the above process, Procedure LearnM Bagg also selects in each OR-level
the best OR-node to be exploited. But in this case the selected OR-node can
be active or suspended. If it is an active node (which means that it has been
exploited previously) then the procedure continues exploring their children. How-
ever, if it is an OR-node suspended, it is activated and their children are added

to the multi-tree.

Procedure LearnM Bagg (INPUT X:AND-node, D:training dataset; OUT-
PUT M:multi-tree)

if X=leaf then exit;
List_.of \OR_nodes=Update_OR_nodes(X, D);{update the split optimality of
OR-nodes according to the training set D}
B=Select_Best_ OR_node(L, D);
if B is active then
for Y € children_of(B) do
D'=filter(D,Y);
LearnM Bagg(Y,D’)
end for
else
Activate(B);
for Y € children_of(B) do
D’'=filter(D,Y);
LearnM (Y, D") {the multi-tree is expanded from node Y'}
end for
end procedure
As regards the combination of predictions, there is an important difference with
respect to classical ensemble methods: fusion points are distributed allover the
multi-tree structure. Concretely, we combine the votes at the AND-nodes using
the maximum fusion strategy. This strategy obtains the best results according
to the experiments of [6].

3.2 Bagging Decision Trees versus Bagging Decision Multi-trees

Although the algorithm presented in this section is inspired by the Bagging
method over decision trees, there are some differences between these two tech-
niques and there can be differences in the errors performed by both methods.
The most significant differences are how the ensemble is used for predicting new
cases.

In Bagging decision trees, there is a significant probability (as we will see in
the experiments) of learning similar trees. In the prediction phase, the repeated
decision trees will be more determinant in the final decision. In the decision
multi-tree, since we avoid duplicated trees, all the leaves have identical weight
in the final decision. Note that this mechanism of ignoring repeated leaves for
the prediction can be intuitively justified by the fact of having a set of models
semantically different can help to improve the accuracy of the predictions.

Additionally, in a decision multi-tree the fusion of the predictions is per-
formed internally at the OR-nodes, while in an ensemble of decision trees the
voting is performed using each independent decision tree. Performing the fusion
in the internal nodes of the multi-tree can alter the colour of the final decision.
Furthermore, it represents an important improvement in the response time of
the ensemble.

4 Experiments

In this section, we present an experimental evaluation of our approach, as is
implemented in the SMILES system [5]. SMILES is a multi-purpose machine
learning system which (among many other features) includes the implementation
of a multiple decision tree learner.

Table 1. Datasets used in the experiments.

[[# [Datasets [Size [Classes[Nom. Attr.[Num. Attr.]|
1 |Balance Scale 325 |3 0 4
2 |Breast Cancer 699 |2 0 9
3 |Breast Cancer Wisconsin 569 (2 1 30
4 |Chess 3196|2 36 0
5 |Dermatology 366 (6 33 1
6 |Hayes-Roth 106 |3 5 0
7 |Heart Disease 920 (5 8 5
8 |Hepatitis 155 |2 14 5
9 |Horse-colic-outcome 366 |3 14 8
10{Horse-colic-surgical 366 (2 14 8
11|House Congressional Voting [435 |2 16 0
12|Iris Plan 158 |3 0 4
13]MONK’s1 566 |2 6 0
14|MONK’s2 601 |2 6 0
15|MONK’s3 554 |2 6 0
16|New Thyroid 215 |3 0 5
17|Postoperative Patient 90 (3 7 1
18|Segmentation Image Database|2310(7 0 14
19|Teaching Assistant Evaluation|151 |3 2 3
20| Thyroid ANN 7200(3 15 0
21|Tic-Tac-Toe Endgame 958 (2 8 0
22|Wine Recognition 178 |3 0 13

For the experimental evaluation, we have employed 22 datasets from the UCI
dataset repository [1]. Some details of the datasets are included in Table 1.

For the experiments, we used GainRatio [15] as a splitting criterion. Pruning
is not enabled. The experiments were performed on a Pentium III-800 Mhz with
180MB of memory running Linux 2.4.2.

First, let us examine how the multi-tree grows with respect to the number
of iterations of Bagging. Table 2 shows the mean of the number of nodes (AND
nodes and OR nodes) in the multi-tree of all the datasets. The results are rather
surprising since the number of nodes does not increase as one would expect. This
reflects the facts that Bagging tends to repeat frequently the same decision trees.
We also must remark that we do not remove the suspended OR nodes. This is
the reason for the relatively high number of nodes of the multi-tree with just
one iteration.

Table 2. Mean size of multi-trees in number of nodes (OR-nodes and And-
nodes).

[[Number of iterations[[1 [20 [40 | 60 J]
(I Mean size [[4021]9287[12927]|15493]|

Table 3 shows the accuracy comparison (10 x 10-fold cross-validation) between
classical Bagging as it is implemented in Weka (we call it BagDT), and the pro-
posed algorithm as it is implemented in Smiles (we call it BagMDT) depending

Table 3. Mean accuracy.

1 20 40 60
BagMDT|BagDT||BagMDT BagDT||BagMDT |BagDT || BagMDT|BagDT
1 77,94 79,40 79,26 81,92 80,13 82,85 80,63 82,92
2 93,81 94,12 94,28 96,07 94,64 96,11 94,81 96,28
3 92,43 94,22 93,48 95,61 93,13 95,91 93,29 95,91
4 99,61 99,40 99,37 99,43 99,42 99,40 99,28 99,40
5 91,58 93,80 94,00 96,43 94,31 96,89 94,75 97,05
6 72,13 72,50 73,44 47,31 73,44 54,25 73,19 52,56
7 51,64 47,26 54,58 46,21 54,72 46,45 55,98 46,52
8 76,20 78,98 77,27 83,23 77,47 82,38 77,80 82,76
9 62,72 65,82 64,14 65,66 64,81 65,77 65,33 65,79
10 78,53 83,15 81,92 82,86 82,19 83,12 82,50 83,06
11 94,74 95,47 94,95 96,45 94,77 96,55 94,81 96,58
12 94,13 94,60 95,13 94,57 94,13 94,33 94,47 94,20
13 96,73 95,11 95,93 99,84 96,42 | 100,00 95,73 | 100,00
14 70,97 62,66 67,62 66,38 67,45 66,91 66,17 67,19
15 97,47 98,67 98,00 98,74 97,69 98,90 97,93 98,88
16 92,81 92,95 92,76 94,24 93,29 94,56 93,10 94,76
17 66,00 59,89 66,25 63,23 65,88 64,44 65,50 65,00
18 95,91 96,90 95,29 97,67 95,23 97,69 95,23 97,62
19 61,93 56,46 56,93 59,35 57,33 61,50 55,60 60,51
20 99,23 99,72 99,15 99,65 99,06 99,65 98,98 99,65
21 77,16 79,16 79,54 83,17 80,32 83,82 80,34 83,80
22 93,00 93,49 93,12 95,26 93,06 95,79 92,94 95,90

Geomean|| 82.18 81.66 82.60 81.67 82.73 82.55 82.69 82.46
Average 83.49 83.35 83.93 83.79 84.04 84.42 84.02 84.38

on the number of iterations of the ensemble method. We have employed the ver-
sion 3.2.3 of Weka 1. We use J48 as base classifier (the Weka version of C4.5),
with the default settings, except from pruning, which is not enabled.

The results of both algorithms are similar. Initially, there is a slight advan-
tage for the BagMDT due to some small differences between the two systems in
the implementation of the C4.5 algorithm. When the number of iterations is in-
creased, both learning methods improve the accuracy, and the difference between
them is partially reduced (even BagDT obtain better results if we consider the
arithmetic average). Nonetheless, it seems that BagMDT reaches the saturation
point earlier, probably because the repeated “good” branches are not weighted
more for higher number of iterations.

Table 4 contains the average learning time for each classifier and dataset,
and the geometric and arithmetic mean of all the datasets. From a practical
point of view, it is resource consumption where we see the advantages of using
decision multi-trees when learning ensembles of decision trees, since the training
time is significantly reduced. To appreciate better this feature, Figure 3 shows the
geometric average training time of Bagging, using Weka, and Smiles depending on
the size of the ensemble. While Bagging decision trees shows a linear increase in
time, Bagging decision multi-trees shows also a linear increase with a significant
lower slope.

5 Conclusions

In this work, we present an algorithm that reduce the high computational cost
characteristic of Bagging method. The technique is based on the use of the multi-

! http://www.cs.waikato.ac.nz/~ml/weka/

2,27
18
16
14
12
19 BagMDT
08 \ BagDT

Seconds

0,6 1
0,4 1
0,2

Iterations

Fig. 3. Training time comparison.

Table 4. Mean training time.

1 20 40 60
BagMDT |BagDT||BagMDT |BagDT|[BagMDT|BagDT | BagMDT|BagDT
1 0,04 0,08 0,31 1,07 0,59 2,29 0,85 3,24
2 0,08 0,06 0,67 1,07 1,29 2,32 1,87 3,19
3 0,32 0,29 2,50 4,24 4,81 8,73 6,94 13,02
4 0,26 0,53 2,28 6,39 4,43 12,44 6,51 18,72
5 0,08 0,04 0,60 0,65 1,11 1,28 1,60 1,93
6 0,01 0,01 0,01 0,18 0,03 0,35 0,04 0,57
7 0,27 0,18 2,53 5,41 5,96 10,43 21,95 15,88
8 0,04 0,03 0,26 0,36 0,48 0,75 0,72 1,13
90 0,15 0,03 1,01 0,51 2,30 1,10 2,82 1,36
10 0,12 0,04 0,87 1,16 1,61 2,06 2,36 3,13
11 0,02 0,03 0,15 0,39 0,39 0,78 0,43 1,18
12 0,01 0,01 0,04 0,09 0,08 0,18 0,12 0,27
13 0,01 0,02 0,06 0,25 0,16 0,47 0,17 0,74
14 0,01 0,04 0,13 0,50 0,33 0,91 0,35 1,50
15 0,01 0,01 0,04 0,15 0,12 0,29 0,13 0,44
16 0,02 0,02 0,15 0,24 0,28 0,49 0,40 0,75
17 0,01 0,01 0,03 0,10 0,07 0,19 0,08 0,31
18 0,85 1,17 8,93 16,90 19,41 33,56 40,00 51,31
19 0,02 0,02 0,15 0,28 0,28 0,55 0,40 0,85
20 1,13 0,69 9,84 9,53 20,59 18,95 31,99 28,54
21 0,03 0,06 0,28 0,74 0,72 1,43 0,78 2,35
22 0,04 0,03 0,27 0,44 0,52 0,88 0,74 1,33
Geomean 0.04 0.05 0.34 0.73 0.72 1.44 1.03 2.19
Average 0.16 0.15 1.41 2.30 2.98 4.57 5.51 6.90

tree structure. This structure allows trees to share the common parts. Therefore,
the more structurally similar the trees are the better the improvement of the
computational resources made by the multi-tree. Additionally, the multi-tree also
makes it possible to enhance a key parameter in ensemble techniques: diversity.
Note that by applying Bagging over c.4.5, the set of decision trees obtained
presents many structural similarities (low diversity), so that misclassification
errors can be easily correlated. But if these decision trees are organised into
a multi-tree the redundancy is reduced and theoretically the accuracy should
be better. In fact, Bagging multi-tree reaches the saturation point earlier than
classical Bagging. However, a collateral effect arises when multi-tree is used,
because this structure does not take into account how many times a branch
tree appears. Therefore, the frequent branches and unusual ones have the same
weight in the classification stage. The experimental evaluation makes clear that

it would be feasible to get a trade-off between the redundancy and the diversity,
by using the multi-tree structure.

Summing up, the multi-tree structure can be viewed as a feasible and elegant
way to overcome the main inherent drawbacks (huge amount of the computa-
tional resources and redundancy) of Bagging.

As future work, it would be interesting to investigate how we can improve
accuracy by an adequate adjustment of the diversity and redundancy parameters
in Bagging multi-trees. Additionally, we also plan to study whether the multi-tree
is able to enhance other well-known ensemble methods, such as boosting.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

2. L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

3. T. G Dietterich. Ensemble methods in machine learning. In First International
Workshop on Multiple Classifier Systems, pages 1-15, 2000.

4. T. G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, Boosting, and Randomization. Machine
Learning, 40(2):139-157, 2000.

5. V. Estruch, C. Ferri, J. Herndndez, and M. J. Ramirez. SMILES: A multi-purpose
learning system. In Logics in Artificial Intelligence, European Conference, JELIA,
volume 2424 of Lecture Notes in Computer Science, pages 529-532, 2002.

6. V. Estruch, C. Ferri, J. Herndndez, and M.J. Ramirez. Shared Ensembles us-
ing Multi-trees. In the 8th Iberoamerican Conference on Artificial. Intelligence,
Iberamia’02, volume 2527 of LNCS, pages 204—213, 2002.

7. V. Estruch, C. Ferri, J. Herndndez-Orallo, and M.J. Ramirez. Beam Search Extrac-
tion and Forgetting Strategies on Shared Ensembles. In 4th Workshop on Multiple
Classifier Systems, MCS2003, LNCS, 2003.

8. Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In
Proc. 18th International Conference on Machine Learning, pages 148—146. Morgan
Kaufmann, 1996.

9. Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-12(10):993-1001, Oc-
tober 1990.

10. Ron Kohavi and Clayton Kunz. Option decision trees with majority votes. In
Proc. 14th International Conference on Machine Learning, pages 161-169. Morgan
Kaufmann, 1997.

11. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

12. N.J. Nilsson. Artificial Intelligence: a new synthesis. Morgan Kaufmann, 1998.

13. Bambang Parmanto, Paul W. Munro, and Howard R. Doyle. Improving com-
mittee diagnosis with resampling techniques. In Advances in Neural Information
Processing Systems, volume 8, pages 882-888. The MIT Press, 1996.

14. J. Pearl. Heuristics: Intelligence search strategies for computer problem solving.
Addison Wesley, 1985.

15. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

16. J. R. Quinlan. Bagging, Boosting, and C4.5. In Proc. of the 30th Nat. Conf. on
A.L and the 8th Innovative Applications of A.I. Conf., pages 725-730. AAAI Press
/ MIT Press, 1996.

