Skip to main content

Multigrid Integration for Interactive Deformable Body Simulation

  • Conference paper
Medical Simulation (ISMS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3078))

Included in the following conference series:

Abstract

Simulation of soft tissue behavior for surgical training systems is a particularly demanding application of deformable modeling. Explicit integration methods on single mesh require small time step to maintain stability, but this produces slow convergence spatially through the object. In this paper, we propose a multigrid integration scheme to improve the stability and convergence of explicit integration. Our multigrid method uses multiple unstructured independent meshes on the same object. It is shown that, with the proposed multigrid integration, both stability and convergence can be improved significantly over single level explicit integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fung, Y.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  2. Alterovitz, R., Pouliot, J., Taschereau, R., Hsu, I.C., Goldberg, K.: Simulating needle insertion and radioactive seed implantation for prostate brachytherapy. In: Westwood, J., et al. (eds.) Medicine Meets Virtual Reality 11, pp. 19–25. IOS Press, Amsterdam (2003)

    Google Scholar 

  3. Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–502 (1998)

    Article  Google Scholar 

  4. Cotin, S., Delingette, H., Bro-Nielsen, M., Ayache, N., et al.: Geometric and physical representations for a simulator of hepatic surgery. In: Weghorst, S., et al. (eds.) Medicine Meets Virtual Reality: 4, pp. 139–151. IOS Press, Amsterdam (1996)

    Google Scholar 

  5. James, D., Pai, D.: ARTDEFO: Accurate real time deformable objects. In: Proceedings of SIGGRAPH 1999. Computer Graphics Proceedings, Annual Conference Series, Lecture Notes in Computer Science, vol. 13, pp. 65–72. ACM, ACM Press/ACM SIGGRAPH (1999)

    Google Scholar 

  6. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics 5, 62–73 (1999)

    Article  Google Scholar 

  7. Picinbono, G., Delingette, H., Ayache, N.: Non-linear and anisotropic elastic soft tissue models for medical simulation. In: Proc. IEEE Intl. Conf. Robotics and Automation, Seoul, Korea, pp. 1371–1376 (2001)

    Google Scholar 

  8. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real time deformations. In: Proc. ACM SIGGRAPH symposium on Computer Animation, San Antonio, TX, pp. 49–54 (2002)

    Google Scholar 

  9. Székely, G., Brechbühler, C., Hutter, R., Rhomberg, A., Ironmonger, N., Schmid, P.: Modelling of soft tissue deformation for laparoscopic surgery simulation. Medical Image Analysis 4, 57–66 (2000)

    Article  Google Scholar 

  10. Zhuang, Y., Canny, J.: Real-time simulation of physically realistic global deformation. In: SIGGRAPH 1999 Sketches and Applications. SIGGRAPH, Los Angeles, California (1999)

    Google Scholar 

  11. Wu, X., Downes, M., Goktekin, T., Tendick, F.: Adaptive nonlinear.nite elements for deformable body simulation using dynamic progressive meshes. In: Chalmers, A., Rhyne, T.M. (eds.) Eurographics 2001, Manchester, UK, September 2001. Appearing in Computer Graphics Forum, vol. 20(3), pp. 349–358 (2001)

    Google Scholar 

  12. Bara., D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of SIGGRAPH 1998. Computer Graphics Proceedings, Annual Conference Series, pp. 43–54. ACM, ACM Press/ACM SIGGRAPH (1998)

    Google Scholar 

  13. Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.: A multiresolution framework for dynamic deformations. In: Proc. ACM SIGGRAPH symposium on Computer Animation, San Antonio, TX, pp. 41–47 (2002)

    Google Scholar 

  14. Zienkiewicz, O., Taylor, R.: The Finite Element Method. McGraw-Hill, London (1994)

    Google Scholar 

  15. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.: Dynamic real-time deformations using space and time adaptive sampling. In: Proceedings of SIGGRAPH 2001. Computer Graphics Proceedings, Annual Conference Series, pp. 31–36. ACM, ACM Press/ACM SIGGRAPH (2001)

    Google Scholar 

  16. Grinspun, E., Krysl, P., Schröder, P.: CHARMS: a simple framework for adaptive simulation. In: Proceedings of SIGGRAPH 2002. Computer Graphics Proceedings, Annual Conference Series, pp. 281–290. ACM, ACM Press/ACM SIGGRAPH (2002)

    Google Scholar 

  17. Wesseling, P.: An Introduction to Multigrid Methods. John Wiley, New York (1992)

    MATH  Google Scholar 

  18. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  19. Wu, X.: Design of an Interactive Nonlinear Finite Element Based Deformable Object Simulator. PhD thesis, Department of Mechanical Engineering, University of California, Berkeley (2002)

    Google Scholar 

  20. Shewchuk, J.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional .nite element mesh generator with pre- and post-processing facilities (2002), http://www.geuz.org/gmsh/

  22. Bathe, K.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, X., Tendick, F. (2004). Multigrid Integration for Interactive Deformable Body Simulation. In: Cotin, S., Metaxas, D. (eds) Medical Simulation. ISMS 2004. Lecture Notes in Computer Science, vol 3078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25968-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25968-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22186-9

  • Online ISBN: 978-3-540-25968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics