Optimizing DOM Programs on XML Views
over Existing Relational Databases

Atsuyuki Morishima! and Akira Kojima?

! Research Center for Knowledge Communities, University of Tsukuba
amorishima®@acm.org
2 (Graduate School of Engineering, Shibaura Institute of Technology
m103197@sic.shibaura-it.ac.jp

Abstract. Since XML has become the de-facto standard for data in-
terchange through the Internet, more and more application programs
to process XML data are being developed. On the other hand, a huge
amount of existing data is stored in relational databases. We developed
a system that allows XML application programs using DOM APIs to
take as input relational data through their XML views. A key issue is
optimization. We developed an optimization technique having a training
mechanism for efficient execution of the programs. This paper presents
the system’s architecture, the optimization technique, and preliminary
experimental results showing that the proposed technique can achieve
dramatic performance improvements.

1 Introduction

Since XML has become the de-facto standard for data interchange through the
Internet, more and more application programs to process XML data are being
developed. On the other hand, a huge amount of existing data is stored in re-
lational databases. One possible reason is that XML is a data format while the
relational database provides a data model and facilities for efficient data manage-
ment. In order to connect the two different worlds, how to process XML views
of databases has been a crucial research topic.

An XML view is virtual, if the system materializes a part of the XML view
only when an application consumes the part. In other words, it materializes only
a required part of the data on demand. The virtual XML view approach has
the following two advantages compared to full materialization of XML views:
First, it is scalable. It does not require a huge amount of additional memory or
storage to keep the entire XML data at a time. In general, the data stored in the
underlying databases can be huge in size, and full materialization of XML views
are impractical in such cases. Moreover, application programs may not need the
entire XML data but only a small portion of it. Second, we do not have to worry
about the freshness of data and can assume that the obtained data are always
up-to-date. The approach is especially effective in situations where the target
databases are autonomously managed and actively updated.

A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 248-262, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Optimizing DOM Programs on XML Views 249

Technically, the (virtual) XML view approach has to translate operations of
XML data into that of underlying databases. Previous works [2][5] developed
techniques to translate declarative XML queries, such as XQuery queries, into
SQL queries.

We focus on the problems of how to allow XML application programs using
DOM (8] API (shortly, DOM Programs) to take as input relational data through
their XML views and how to optimize them. Since both XQuery-like declarative
queries and DOM-style operations are major ways for XML processing, frame-
works to allow DOM programs to process XML views have huge benefits. In
particular, if we got such a framework, any existing application program to pro-
cess XML data through DOM API could process any data stored in relational
databases without the source code changed. We do not have to redevelop nor
rewrite such application programs in order to process the data in databases. This
is a significant advantage, especially when one of the important concerns is the
software development cost.

An important technical problem of XML view approaches is optimization,
since naive translation of XML operations into SQL queries can lead to inef-
ficient executions. Efficient evaluation of XML views of relational data have
been discussed in situations where XML operations are written in XQuery-style
declarative query languages [2][5].

However, it is a non-trivial task to develop optimization techniques to work
with DOM programs; A typical DOM program contains a large number of DOM
operations scattered over the code. A naive execution framework, in which one
SQL query is generated and executed for each DOM operation, is obviously
inefficient, since it requires a large number of SQL query submissions. One might
consider methods to compose more than one DOM operations into one SQL
query. The DOM operations, however, are interleaved with other code written
in ordinary, procedural programming languages, such as java, and the control of
executions does not depend on the DOM operations only. This makes it difficult
to apply normal optimization techniques for declarative queries to the problem.

This paper proposes an optimization framework for DOM operations, inter-
leaved with procedural programming language codes, to deal with XML views of
relational data. The underlying idea is to observe executions of DOM programs
in order to find efficient SQL generation rules for later executions of the pro-
grams. The SQL generation rules are used to construct a fewer number of SQL
queries having the same effects with less execution costs compared to the naive
SQL generation method.

Figure 1 shows the architecture of our system. First, the user has to give
to the system a view query to define an XML view of relational data stored in
the relational database. Then, ordinary DOM programs whose inputs are XML
data can be applied to the relational data. Note that the XML view is not
materialized. Instead, results of DOM operations are computed by SQL queries
on demand. The rule repository stores SQL generation rules, which describe when
and what SQL queries to generate and execute. In the first execution, every DOM
operation is translated into one SQL query, as explained in Section 2. During

250 Atsuyuki Morishima and Akira Kojima

DOM Program DOM API RDB
oM Operatlom -

Result

View Definition
(View Query)

SQL Generation Rules

Fig. 1. Architecture

the execution, the rule generator tries to find SQL generation rules for efficient
evaluation and stores them in the rule repository. The SQL generation rules are
used in later executions.

An interesting issue in the approach is how to find SQL generation rules.
A feature of our proposed method is that it provides a simple and efficient
algorithm to find SQL generation rules. It is efficient both in time and required
spaces.

The contributions of the paper are as follows: (1) We propose a general
framework for applying XML application programs using DOM API to existing
relational databases. (2) We explain an efficient algorithm to find SQL generation
rules that are used for efficient executions of the DOM programs. (3) We give
the results of our preliminary experiments, which show that the SQL generation
rules can dramatically reduce execution costs.

Related Work. SilkRoute [2] and Xperanto [5] are well-known systems that
publish XML data from relational databases. They provide mechanisms to con-
struct XML wviews over relations and allow declarative XQuery-style queries
against the views. Our system adopts the same mechanism as the SilkRoute’s to
define XML views, but allows any procedural program using DOM operations to
access the XML views. The difference is essential and requires new optimization
techniques.

To the best of our knowledge, ROLEX [1] is the only system that realizes
DOM operations of XML views of relational data. ROLEX is different from
our system in that it is designed to use a main-memory database system. The
focus is mainly on utilization of data management facilities, such as concur-
rency control and recovery features, of the main-memory database system. In
contrast, our system is designed to give an easy way to apply latest programs
using XML-technologies to ubiquitous, possibly legacy data stored in relational
databases. For optimization, ROLEX introduces a navigational profile to repre-
sent the probability of the application navigating along edges in the DOM tree.
Our SQL generation rules provide a finer granularity control of SQL generation,
which is driven by the status of running DOM programs.

Optimizing DOM Programs on XML Views 251

DBDOM [7] is a persistent DOM implementation that uses RDBMs to store
XML data. DBDOM defines a fixed database schema and cannot work as a
bridge between DOM programs and existing relational data. So our system and
DBDOM have completely different purposes.

2 DMotivating Example

We motivate the problem of generating efficient SQL queries for DOM opera-
tions with an example. We use TPC-H benchmark database [6], which contains
information on parts, the suppliers of those parts, customers, and their orders.
Figure 2 shows a part of its database schema.

Supplier(suppkey, name, addr, nationkey)
Nation(nationkey, name, regionkey)
Region(regionkey, name)
PartSupp(partkey, suppkey, availqty)
Part(partkey, name, brand, size)

Fig. 2. Part of TPC-H database schema

XML Views of Relational Data. We assume that the information in the
relational database is exported in the XML format determined by the schema in
Figure 3. Each supplier element contains a suppinfo and a list of the supplier’s
parts. Each suppinfo contains the supplier’s name, its nation, and the region
to which it belongs. Each part element contains its name.

<supplier>

1
<suppinfo> |
1
1
<name> <nation> <region>

<part>
1

<name>

Fig. 3. Schema of XML view over the database

We use RXL [2] to define the XML view. Figure 4 shows the RXL view
query mapping the relational data to XML data conforming to the schema in
Figure 3. RXL’s semantics is simple: As in SQL, tuple variables specified in
the from clauses iterate over tuples of tables. For example, tuple variable $s
iterates over the Supplier table. The where clause has conditions over these
variables. For example, $s.nationkey = $n.nationkey is a join condition. The
construct clause specifies an XML fragment to output. If a binding to the tuple
variables specified in the for clause satisfies the condition in the where clause,
the fragment in the construct clause is generated. The construct clause can

252 Atsuyuki Morishima and Akira Kojima

from Supplier $s
construct
<supplier> <suppinfo><name>$s.name</name>
{ from Nation $n
where $s.nationkey = $n.nationkey
construct
<nation>$n.name</nation>
{ from Region $r
where $n.regionkey = $r.regionkey
construct <region>$r.name</region> }
}</suppinfo>
{ from PartSupp $ps, Part $p
where $s.suppkey = $§s.suppkey,

$ps.partkey p.partkey
construct
<part> <name>$p.name</name> </part> }
</supplier>

Fig. 4. RXL view of TPC-H database

contain nested sub-queries surrounded by block boundaries “{” and “}”. For
example, there are three sub-queries in Figure 4.

Given an XML element specified in a construct clause, it is easy to construct
an SQL query that computes instances of the given element; An XML element in
a construct clause is generated for each tuple of the result of joins of relations
in its from clause and that of superqueries. For example, instances of <name>
and <nation> elements are generated for each tuple of the following queries’
results:

select $s.suppkey, $s.name
from Supplier $s

select $s.suppkey, $n.nationkey, $n.name
from Supplier $s, Nation $n
where $s.nationkey=$n.nationkey

This is best summarized by a tree structure called viewtree [2] (Figure 5).
In the viewtree, we associate to each node a unique identifier based on Dewey
Decimal Encoding[3]. For example, nodes with identifiers N1.z are children of
the node N1. Each viewtree node is also associated with a query to compute
instances of the XML element represented by the viewtree node. For example,
q(N1.1.2) specifies how to compute instances of <nation> element represented
by N1.1.2; For each tuple in the result of Supplier $s X Nation $n', one
<nation> instance is generated. Key attributes to identify each such tuple (e.g.
$s.suppkey) is annotated to each viewtree node. Some of nodes have additional
attributes for element values (e.g. $s.name). In the following, we call an XML
element instance an XML node.

Formally, each (computed) XML node is represented by pair (n, k), where n
is a viewtree node identifier and k is a sequence of values of the key attributes as-

! We omit join conditions for simplicity.

Optimizing DOM Programs on XML Views 253

<supplier> N1($s.suppkey)
N1.1($s.suppkey) / Nl .2($s.suppkey,$p.partkey)
<suppinfo> <part>
<region>$r.name
<name>$s.name N1.1.3($s.suppkey, $n.nationkey, <name>$p.name
$r.regionkey)

N1.1.1($s.suppkey) N1.2.1($s.suppkey, $p.partkey)
<nafion>$n.name

N1.1.2($s.suppkey,$n.nationkey)

q(N1) = Supplier $s

q(N1.1) = Supplier $s

q(N1.1.1) = Supplier $s

q(N1.1.2) = Supplier $s X Nation $n

q(N1.1.3) = Supplier $s X Nation $n X Region $n

q(N1.2) = Supplier $s X PartSupp $ps X Part $p
q(N1.2.1) = Supplier $s X PartSupp $ps X Part $p

Fig. 5. Viewtree 7; (Bold lines represent 77)

sociated with viewtree node n. The tag associated to XML node (n, k) is the tag
associated to n in the viewtree. The parent-child relationship among XML nodes
are defined as follows: (ny,k;) is a child of (ng, ko) if ny is a child of ng in the
viewtree, and the values in k; has the same values for the same attributes in kg.
For example, XML node (N1.1.2, [$s.suppkey=#sl, $n.nationkey=#UK]) is
a child of (N1.1, [$s.suppkey=#s1]).

DOM Operations on XML Views. The DOM (Document Object Model) is a
programming API for documents [8]. Intuitively, it models a document instance
as an object (node) tree that reflects the structure of the document. We use the
program in Figure 6 (Ignore superscripts for a while) as a running example. The
program takes as input an XML document, which is given by file name v (Line
2), traverses the document’s element hierarchy in the depth-first order (Line
4, Lines 7-14), and outputs each element’s tag name and content (Line 10-11).
Typically, a DOM operation takes an XML node and returns one or more XML
nodes. In the program, getFirstChild method (Line 8) returns the first child
of the given XML node. Assume that the method is applied to an XML node
(N1.1, [suppkey=#s2]). Then, the SQL query to compute the result can be
obtained by adding selection condition $s.suppkey=#s2 to the query for the
viewtree node N1.1.1:

select $s.suppkey, $s.name
from Supplier $s
where $s.suppkey=#s2

Another example is the getNextSibling method (Line 9), which returns
the next sibling in the tree structure of XML instance nodes. Assume that the
result of the previous getFirstChild method is (N1.1.1, [suppkey=#s2]) and
we apply the getNextSibling method to the result. Since the viewtree node
identifier of the current XML node is N1.1.1, we need the query of N1.1.2:

254 Atsuyuki Morishima and Akira Kojima

1. void main() {

2 Document doc= new Document (v) (2d1) H

3 Node root=doc.getDocumentElement () (?4?);

4 show(root)

5.}

6.

7. void show(Node node) {

8 for (Node n=node.getFirstChild()(ids); n!=null;

9. n=n.getNextSibling() 14%)) {
10. System.out.println(n.getNodeName () (19%));
11. System.out.println(n.getNodevalue () (id6))
12. show(n) ;
13.
14. }

Fig. 6. Fragment of DOM program P;

select $s.suppkey, $n.nationkey, $n.name
from Supplier $s, Nation $n
where $s.nationkey=$n.nationkey

and $s.suppkey=#s2

Assume that we apply the getNextSibling method to (N1.2, [suppkey=#s2,
partkey=#p3]). In this case, the siblings are computed by the same query, since
one <supplier> may have more <part>s (See Figure 3). The system submits
the following query:

select $s.suppkey, $s.partkey,

from Supplier $s, $PartSupp $ps, Part $p

where $s.suppkey=3$ps.suppkey,
$ps.partkey=$p.partkey,
$s.suppkey=#s2

order by $suppkey, $s.partkey

and retrieves the next tuple of the tuple satisfying the condition $s.partkey=#p3.
Note that the order by clause is used to enforce a fixed order among siblings;
The siblings are sorted by key attributes.

Generating SQL queries in this way is simple but inefficient, since the system
has to submit the same number of SQL queries as DOM operations. We call the
SQL generation schema above the naive SQL generation.

2.1 Sorted Outer Union Plans and Introduction of ADO Labels

But what if the execution of DOM operations follows a particular order? A
simple example is a program that traverses XML nodes in the depth-first order.
In this case, sorted outer-union plans [5] are effective. A sorted outer-union plan
is a particular form of SQL query to compute XML query results on XML views
of relational databases. Intuitively, the query result is a relation that corresponds
to an unnested form of the result XML document, where each tuple corresponds
to one instance of XML element or path. We use a variation of sorted outer-union
plans here.

Optimizing DOM Programs on XML Views 255

. select * from (

. select 1 as L1, $s.suppkey, N as L2, N, N as L3, N, N // N1

. from Supplier $s

. union

. select 1 as L1, $s.suppkey, 1 as L2, N, N as L3, N, N // N1.1
. from Supplier $s

. union

. select 1 as L1, $s.suppkey, 1 as L2, N, 2 as L3, $n.nationkey, $n.name // N1.1.2
9. from Supplier $s, Nation $n

10. where $s.nationkey=$n.nationkey

11. union

12. select 1 as L1, $s.suppkey, 2 as L2, $p.partkey, N as L3, N, N // N1.2
13. from Supplier $s, $PartSupp $ps, Part $p

14. where $s.suppkey=$ps.suppkey, $ps.partkey=$p.partkey,

15.)

16. order by L1, $suppkey, L2, $p.partkey, L3, $n.nationkey

00 N U WN -

Fig. 7. Sorted outer union plan for 77

To explain our sorted outer-union plans, we use XML view 7{ that is a
subtree of XML view 7;. In Figure 5, 7{ is represented by the bold lines. Figure
7 is an outer-union plan SQL query for a depth-first traversal of the XML view.
Here, N means a null value. The query is a naive implementation of the outer-
union plan. More sophisticated implementations are given in [5] [2]. In the result
of the SQL query, each tuple corresponds to one instance of an XML element.
In each tuple, XML element instance (n, k) is encoded as follows: (1) Viewtree
node identifier n = N ly.l5. ..., is decomposed and stored in the attributes L1,
L2, ..., and Ln. (2) key values in k are stored in their corresponding attributes.

The order by clause sorts the tuples by L1, key attributes for the root
node in the viewtree (i.e., $s.suppkey. We use k(; ;) to denote the attributes),
L2, key attributes that appear for the first time in the viewtree nodes at level
2 (ie., $p.partkey. k(2), etc. The tuple order is compatible with the the
depth-first traversal of the XML view of the relational data (Figure 8), and
traversal in the depth-first order is achieved by executing the query and reading
the tuples in a sequential way. In other words, if we assign to each node la-
bel “ll, k(l,l)v ey k(l,nl)v ZQ, k(271), ey k(27n2)7 13, k(3,1)7 cen ,”, and define the lexi-
cographic order on the labels, the labels encodes structural relationship among
XML nodes. We call the framework the Augmented Dewey Order Encoding here
and name each such label an ADO label. Note that given an ADO label for
an XML node, we can easily extract the viewtree node identifier [;. I, whose
query computed the XML node. As explained later, our proposed method utilizes
the characteristic of the encoding framework.

The sorted outer-union plan is much more efficient compared to the naive
SQL generation for the program P;: The query is executed only once, and the
tuples in the query result all contribute to the DOM operations’ results. In con-
trast, as explained in Section 2, these are not true in the naive SQL generation.
In general, sorted outer union plans are effective when the program is something
like the depth-first traversal (details are explained in Section 3).

2.2 Problem and Our Approach

It is not a trivial task, however, to extract such “effective” patterns from the
program source code. There are so many different ways to implement the same

256 Atsuyuki Morishima and Akira Kojima

[1.#s1,N,N, N,N,N] <suppinfox—— <nation> [1,#s1, 1,N, 2, #us, "us"]

<suppliers — TT#sl, LN, N.N.NJ
x<part>[l,#sl, 2#pl, 1,N,N]
<part> [1#s1, 2, #p2, 1,N,N]

uppinfo——— <nation> [1,#s2, 1N, 2, #uk, "uk"]
supplier> [1,#s2, 1,N, N,N,N]
[1, #s2, N,N, N,N,N] <part> [1#s2, 2#p3, 1,NN]

<part> [1#s2, 2, #p4, 1,N,N]

<part> [1,#s2, 2#p5, 1, N,N]
Fig. 8. Structure of an XML instance and ADO labels

. void show(Node node) {
if (node'!=null) {
System.out.println(node.getNodeName()) ;
System.out.println(node.getNodevalue());

show(nl);
Node n2 node=nl.getNextSibling();

1
2
3
4
5
6. Node ni=node.getFirstChild();
7
8
9 show(n2) ;

0

1

10.
11.
Fig. 9. Another DOM program

functions in programs. For example, the program in Figure 6 and the one in
Figure 9 output the same results if their input XML data is a binary tree. In the
extreme case, a program may hard-wire the complete structure of XML instance.
In addition, it is not always true that a program has a perfect pattern like the
depth-first-order example above. For example, a program that traverses XML
data in the depth-first order but skips over a small number of XML nodes,
should be efficiently supported by the same outer-union plan query. Considering
these, we choose not to analyze the program source code, nor to match pre-
defined patterns with the code. Instead, we developed a technique that observes
program executions to find better SQL generation rules. The rules found are
used for later executions of the program with different data. This is explained
in detail in the following section.

3 Optimization Technique

3.1 How the Rule Finder Works

The rule finder (Figure 1) takes as input a stream of DOM operation results.
Formally, it takes pairs ((id, a),l) where id is an operation identifier associated
with each DOM operation in the program (See Figure 6) and a is a collection of
parameter values of the operation. [is an ADO label (i.e., a tuple representing an
XML node instance) that is the result of the operation’s execution. To make it
possible for the system to take ADO labels even in the first execution, attributes
for viewtree node identifiers, such as L1 and L2, are incorporated into SQL
queries for the naive SQL generation.

Optimizing DOM Programs on XML Views 257

Each such pair is given to the rule finder every time when an operation having
id with parameter values a is executed and the returned answer is an XML node
whose ADO label is [. The stream is used to find SQL generation rules.

In later executions of the program, the SQL generator uses the stored rules
to make more efficient SQL queries having the same effects with the program
and the XML view definition. The rule finder keeps trying to find other new
rules because one execution of a program does not necessarily go through every
possible execution patterns of the program. A key issue in the architecture is
how to find SQL generation rule quickly so that the system can take advantages
of the latest findings as soon as possible.

3.2 SQL Generation Rules

Let T be a given viewtree and P be a prgram. An SQL Generation Rule (shortly,
a rule) over T and P has the form of p — ¢. Here, p is a sequence of pairs (id;, a;)
where id; is an operation identifier and a; is a collection of parameter values of
the operation. In a;, 0bj is used as a special parameter whose value is the object
to which a method is applied.

In each rule, ¢ is either 7 or a contraction of 7. A contraction of a tree
is a result of contracting the tree by removing some of the nodes [4]. Unlike
subtrees, a contraction can contain nodes that are not adjacent to each other
in the original tree. The following (R;) is a rule over 77 in Figure 5 and P; in
Figure 6:

Ry : [(id1, 8), (id2, [obj = N1])] — Ti.

R; says that if operation id2 (Line 3, Figure 6) is applied to an XML node
having viewtree node identifier N1, following an execution of operation id1 (Line
2), an outer-union plan SQL query for 77, similar to the one in Figure 7, should
be generated and executed.

Note that parameter values in a; do not contain XML node instance (n, k)
but contain viewtree node identifier n (e.g., N1) only. This is because a pattern
containing particular XML nodes is too strong in the sense that it cannot match
the data even if values in the relational data are slightly changed.

The rule above is a special case where parameter values for methods contain
no value other than XML node and 7T is the original viewtree itself. Let P4 be a
DOM program? that contains operations with id8 and id9 and the latter oper-
ation is a.getElementsByTagName (x). The following is a more general example
of a rule over 77 and program Pj:

Ry : [(id8, [obj = N1.2]), (id9, [obj = N1, parl = "part”])] = T2

where 73 (Figure 10) is a contraction of 7; and "part" is a value of x observed

when the system executes the operation with id9. The rule says that if the
pattern matches the stream observed in the execution, an outer-union plan SQL
query for 73 should be generated and executed.

2 The entire code of Py is omitted here.

258 Atsuyuki Morishima and Akira Kojima

<supplier> N1($s.suppkey)

<name>$p.name
N1.2.1($s.suppkey, $p.partkey)

q(N1) = Supplier $s
q(N1.2.1) = Supplier $sX PartSupp $psX Part $p

Fig. 10. Contraction 7z of T1

3.3 Using Generation Rules

If the system knows an SQL generation rule p — t where p = [(idy, a1), (ida, as)],
the rule is used in the following way: First, the system watches an execution of
the DOM program and takes as input the stream of pairs ({(id,a),l) from the
execution. If p matches a subsequence of the stream, the system generates an
outer union plan SQL query ¢ for ¢, and adds selection conditions to ¢ to avoid
computing too many unnecessary tuples according to the types of operations.
For example, if the operation idy is getFirstChild, conditions are added as
explained in Section 2.

Then, the query g is submitted to the RDBMS, and subsequent DOM opera-
tions consume the tuples from its result, without submitting other SQL queries.
How to choose necessary tuples from the result depends on types of DOM op-
erations. For example, getFirstChild operation selects the tuples having ADO
Labels compatible with the ADO label of its parent. This is done in a similar
way as explained in Section 2. If the system cannot find necessary tuples in the
result stream, the system returns to its normal job; it submits one SQL query
to the RDBMS for each DOM operation while searching for subsequences of the
stream that matches rules.

3.4 Observing Executions to Find Rules

As mentioned, a point of our method is that it gives a simple and efficient mech-
anism to find rules. The basic idea is to use ADO labels to (1) search the tuple
stream for sequences of XML nodes that can be computed by outer-union plans
and (2) to efficiently construct SQL generation rules. Compatibility with outer-
union plans can be easily decided by checking if ADO labels of successive XML
nodes follow the lexicographic order defined on ADO labels. Efficient construc-
tion of rules is realized by utilizing the fact that we can easily extract from ADO
labels the information on the viewtree nodes who computed XML nodes.

Figure 11 is an algorithm to find rules each of which has a sequence p of
length two. In other words, each rule generated by the algorithm has the form
[(id1, a1), (ida, az)] — ¢, like Ry and Rs. Its input is a stream of pairs ((id, a),)
(Line 4). The output is a set of rules, which is generated in turn (Line 15).

In the algorithm’s execution, two successive pairs are kept in ((id’,a’),l")
(Line 19) and ((id, a},l). Variable ¢ (Lines 1, 8, 11, and 15) represents a contrac-
tion of 7 for a rule. In ¢, each contraction is encoded as a set of viewtree nodes;

Optimizing DOM Programs on XML Views 259

1. t={};

2. inOrder=false; // true when the input follows the order
3. <id’, a’>=<nil, []>; 1’=infinite;

4. for each (<id, a>, 1) in the Input Stream {

5. if (1’ < 1) {

6. if (!inOrder) {

7. inOrder=true;

8. t.add(1’.getViewTreeNodeID());

9. <id_2, a_2>=<id’, a’>;

10. i

11. t.add(1.getViewTreeNodeID()) ;

12. } else {

13. if (inOrder) {

14. inOrder=false;

15. outputRule([<id_1, a_1>, <id_2,a_2>]->t);
16. t={};

17. } else <id_1, a_1>=<id’, a’>;

18. }

19. <id’, a’>=<id, a>; 1’=1;

20. }

Fig. 11. Algorihtm for finding rules

For example, ¢t = {N1,N1.2.1} represents a contraction with two nodes N1 and
N1.2.1 (Figure 10).

Basically, what the algorithm does is just to compare ADO labels of two
successive XML nodes (DOM operation results) (Line 5), and as long as the
labels follow the lexicographic order, the algorithm adds viewtree nodes to t
(Lines 8 and 11). The initial values of ((id',a’),1") is ((nil,[]),infinite) (Line
3), where infinite is a special label that is greater than any other labels. If the
algorithm finds a label on the stream not following the lexicographical order, it
decides that the remaining DOM operation results should be computed by other
SQL queries, outputs the rule constructed so far (Line 15), and resets ¢ for the
next rule (line 16).

Note that some DOM operations, such as getElementsByTagName (), return
a list of XML nodes. For such operations, we use a special value 0 for [, where
comparison predicates (like <) to compare 0 and any other value always return
true. In other words, the algorithm ignores the nodes in the list at that time.
But the nodes affect the rule generation process anyway, since sooner or later
each such node should be extracted from the list, by using other methods like
item().

The algorithm is quite efficient with time complexity O(S) and space com-
plexity O(V'), where S is the size of the input stream and V is the size of the
viewtree.

4 Preliminary Experiments

This section shows the results of our preliminary experiments. The purpose is
to examine the impact of using outer-union plan queries to process DOM oper-
ations.

The experiments were run using the following configuration: We use the TPC-
H benchmark databases (with different scale factors) managed by the Post-

260 Atsuyuki Morishima and Akira Kojima

greSQL 7.3.2. The XML view query used is the one shown in Figure 5. The
database server has Pentium-4 1.5GHz CPU and 512MB memory. The oper-
ating system is Linux RH 8.0. A DOM-compliant library that implements our
proposed algorithm was run on the same database server.

First, we executed program P; (Figure 6) on the XML view with different
sizes of databases. This is an ideal situation where all the DOM operations
constitute a depth-first traversal of the entire XML data. One outer-union plan
SQL query is generated. The result is shown in Figure 12 (left). The horizontal
axis is the number of XML nodes contained by the XML view of each entire
database. P; generates all of the XML nodes in the depth-first order. The dotted
line represents the execution time after SQL generation rules are found. As we
can seen, the outer-union plan dramatically improves the performance.

Next, we executed a more realistic program P5 that retrieves some XML
nodes from the XML view and traverses subelements of each retrieved XML
nodes in turn (Figure 13). This is a typical fragment of a DOM program we
can see in practical situations. Interestingly, the system generates only one SQL
query, corresponding to viewtree nodes N1.1, N1.1.1, N1.1.2 and N1.1.3 in
Figure 5. This is because the result tuple stream is consistent with the lexico-
graphic order defined on ADO labels. The result is shown in Figure 12 (right). Ps
is faster than P; since it retrieves and traverses a limited number of XML nodes.
The size of database having 1,000,000 (virtual) XML nodes is about 405MB.

Finally, to show that our approach is scalable, we applied the optimized P3 to
larger databases with the TPC-H scale factors 0.5 and 1, which means the sizes of
databases are about 500MB and 1GB, respectively. The result is shown in Figure
14. We found that after SQL generation rules are obtained, both P; and Ps run
in linear time. In addition, as Figure 14 shows, P3 with SQL generation rules
takes only 3.3 sec. for query evaluation even with 1GB database. It is possible
that we can make the total execution time further smaller by considering other
factors than SQL query evaluation, but it is beyond the scope of the paper.

Note that our approach requires only a small and constant memory space,
even if application programs traverse the entire XML data. Applying DOM op-
erations to (virtual) XML views is effective for large database since the system
materializes only a required part of the data on demand. In contrast, usual DOM
libraries would not work with a huge XML data since it requires the entire XML
data to be materialized at a time.

5 Conclusion and Future Work

This paper proposed a system that allows XML application programs using the
DOM API to take as input existing relational data. The proposed system has
a practical impact because a huge amount of data still remains in relational
databases, while more and more XML application programs are being devel-
oped. The key issue is an optimization framework for DOM operations, inter-
leaved with ordinary programming language codes, to deal with XML views of
relational data. Our proposed optimization framework has a training mechanism

Optimizing DOM Programs on XML Views 261

Seoond Second

5000 1200
4500
4000 1000
_g 3500 £ 800
= 3000 | =
'% 2500 § 600
9 2000 S
i 1500 5 400
1000 200
500
0 — e — — m— = — 0
V7 < % % & & > 7¢ B & % & 6 2 & 9 7¢
00% 0000 %00 000 %00 0%0 0000 00470 00% 00490 47470 lbéba q"bg 00% 0‘74)0 Q74b0 Q)gooa
number of XML nodes number of XML nodes

Fig. 12. Experimental results

1. void main() {

2. Document doc= new Document (v);

3. NodeList a=doc.getElementsByTagName ("suppinfo");

4. Node b=null;

5. for (int i=0; (b=a.item(i))!=null; i++) { show(b); }
6.

Fig. 13. The main program of P3 (show function is given in Figure 6)

[Size [Total Time(sec)|Query Execution Time(sec)]
500MB 7.4 1.7
1GB 154.7 3.3

Fig. 14. Results for large databases

to find SQL generation rules for efficient executions of the programs. We devel-
oped an algorithm to efficiently find such SQL generation rules. Our preliminary
experiments showed that our approach is promising and scalable.

Future work includes development of algorithms to find more sophisticated
SQL generation rules. We believe incremental evolution of rules is possible when
we apply machine learning techniques to our approach. Another interesting issue
is development of a just-in-time optimization mechanism to allow SQL genera-
tion rules to be applied during the same program execution as soon as they are
found. Also, supporting updates is important, although the view update problem
is known to be difficult in general.

Acknowledgments

We would like to thank Prof. Seiichi Komiya of Shibaura Institute of Technology
for discussions, and we thank the reviewers for their detailed comments and
suggestions. This research was partially supported by the Ministry of Education,
Culture, Sports, Science, and Technology, Grant-in-Aid for Young Scientists (B)
(15700108).

262 Atsuyuki Morishima and Akira Kojima
References

1. P. Bohannon, S. Ganguly, H. F. Korth, P. P. S. Narayan, P. Shenoy: Optimizing
View Queries in ROLEX to Support Navigable Result Trees. Proc. VLDB 2002,
119-130, 2002.

2. M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, WC Tan. SilkRoute: A
Framework for Publishing Relational Data in XML. ACM Trans. Database Syst.
27(4): 438-493, 2002.

3. Online Computer Library Center. Introduction to Dewey Decimal Classification.
http://www.oclc.org/oclc/fp/about/about_the_ddc.htm

4. M. Atallah (ed). Algorithms and Theory of Computation Handbook, CRC Press,
1998.

5. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh, B.
Reinwald: Efficiently publishing relational data as XML documents. VLDB Journal
10(2-3): 133-154, 2001.

6. Transaction Processing Performance Council. TPC-H (Decision Support for Ad
Hoc Queries) http://www.tpc.org

7. DBDOM Home Page. http://dbdom.sourceforge.net

8. W3C. Document Object Model (DOM). http://www.w3.org/DOM/

	1 Introduction
	2 Motivating Example
	2.1 Sorted Outer Union Plans and Introduction of ADO Labels
	2.2 Problem and Our Approach

	3 Optimization Technique
	3.1 How the Rule Finder Works
	3.2 SQL Generation Rules
	3.3 Using Generation Rules
	3.4 Observing Executions to Find Rules

	4 Preliminary Experiments
	5 Conclusion and Future Work
	Acknowledgments
	References

