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Abstract. Goal models have been used in Computer Science in order to repre-
sent software requirements, business objectives and design qualities. In previous
work we have presented a formal framework for reasoning with goal models, in a
qualitative or quantitative way, and we have introduced an algorithm for forward
propagating values through goal models. In this paper we focus on the qualitative
framework and we propose a technique and an implemented tool for addressing
two much more challenging problems: (1) find an initial assignment of labels
to leaf goals which satisfies a desired final status of root goals by upward value
propagation, while respecting some given constraints; and (2) find an minimum
cost assignment of labels to leaf goals which satisfies root goals. The paper also
presents preliminary experimental results on the performance of the tool using the
goal graph generated by a case study involving the Public Transportation Service
of Trentino (Italy).

1 Introduction

The concept of goal has been used in different areas of Computer Science since the early
days of the discipline. In AI, problem solving and planning systems have used the notion
of goal to describe desirable states of the world [9]. For example, a planning system might
be given the goal on(A,B) and on(B,C), which describes states where blocks A,
B,C form a stack. The planning system can then analyze the goal (e.g., by decomposing it
into two subgoals) and find suitable actions that will satisfy it. More recently, goals have
been used in Software Engineering to model early requirements [2] and non-functional
requirements [8] for a software system. For instance, an early requirement for a library
information system might be “Every book request will eventually be fulfilled”, while
“The new system will be highly reliable” is an example of a non-functional require-
ment. Goals are also useful for knowledge management systems which focus on strategic
knowledge, e.g., “Increase profits”, or “Become the largest auto manufacturer in
North America” [5]. Goal-oriented requirements engineering has received consider-
able attention recently, and is nicely motivated and surveyed in [12] and [11]. Given the
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criticality of requirements engineering for information system development, the formal
representation and analysis of goals has become an important research problem to be
addressed by the CAiSE research community.

Traditional goal analysis consists of decomposing goals into subgoals through
an AND- or OR-decomposition. If goal G is AND-decomposed (respectively, OR-
decomposed) into subgoals G1, G2, . . . , Gn, then all (at least one) of the subgoals must
be satisfied for the goal G to be satisfied. Given a goal model consisting of goals and
AND/OR relationships among them, and a set of initial labels for some nodes of the
graph (S for “satisfied”, D for “denied”) there is a simple label propagation algorithm
that will generate labels for other nodes of the graph [10]. The propagation is carried
out from subgoals towards an And/OR-decomposed. This algorithm can be used to de-
termine if the root goals of a goal model are satisfied, given an assignment of labels for
some of the leaf goals.

Unfortunately, this simple framework for modeling and analyzing goals won’t work
for many domains where goals can’t be formally defined, and the relationships among
them can’t be captured by semantically well-defined relations such as AND/OR ones.
For example, goals such as “Highly reliable system” have no formally defined predicate
which prescribes their meaning, though one may want to define necessary conditions
for such a goal to be satisfied. Moreover, such a goal may be related to other goals,
such as “Thoroughly debugged system”, “Thoroughly tested system” in the sense
that the latter obviously contribute to the satisfaction of the former, but this contribution
is partial and qualitative. In other words, if the latter goals are satisfied, they certainly
contribute towards the satisfaction of the former goal, but certainly don’t guarantee it. The
framework will also not work in situations where there are contradictory contributions
to a goal. For instance, we may want to allow for multiple decompositions of a goal G
into sets of subgoals, where some decompositions suggest satisfaction of G while others
suggest denial.

The objective of this paper is to present further results on a formal model for goals
that can cope with qualitative relationships and inconsistencies among goals. In [4]
we presented an axiomatization of a qualitative and a quantitative model for goals and
proposed sound and complete algorithms for forward reasoning with such models. In
particular, given a goal model and labels for some of the goals, our algorithms propagate
these labels forward, towards root goals. (If the graph contain loops, this is done until
a fixpoint is reached.) Figure 1 illustrates a simple example of a goal graph. The figure
shows a single root goal “Protect users” that might associated with a public transit
system, AND/OR decomposed several times. The figure also includes some positive
qualitative contributions, e.g., “Protect driver health” contributes positively (“+” label)
to the goal “Ensure driver capabilities”. The algorithm proposed in [4] takes as input
labels for some of the lower goals of the model and infers other labels higher up. This
is accomplished through propagations from the AND/OR subgoals of a goal to the
goal itself, also propagations in the forward direction for qualitative relationships. It is
important to note that this algorithm supports forward reasoning only and requires no
search.

This paper uses the same formal setting as [4], but addresses a different set of prob-
lems. In particular, now we want to know if there is a label assignment for leaf nodes of a
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Fig. 1. A sample goal graph.

goal graph that satisfies/denies all root goals. Assuming that the satisfaction/deniability
of every leaf goal may require some unit cost, we have also addressed the problem of
finding a minimum cost label assignment to leaf goals that satisfies/denies all root goals
of a goal graph. Both problems are solved by reducing them to the satisfiability (SAT)
and minimum-cost satisfiability (minimum-cost SAT) problems for Boolean formulas.

The rest of the paper is structured as follows. Section 2 introduces the formal frame-
work of [4], including a definition of goal graphs and the axiomatization proposed for
qualitative goal models. The section also reviews SAT and minimum-cost SAT. Sec-
tionì 3 defines the problem of (simple or minimum-cost) goal satisfiability for a goal
graph, and shows how it can be reduced to a (simple and minimum-cost) SAT prob-
lem. Section 4 presents two tools named respectively GOALSOLVE and GOALMINSOLVE

that solve either goal satisfiability problem. In section 5 we present experimental re-
sults on the performance of these tools using the goal graph generated by a case study
involving the Public Transportation Service of Trentino (Italy).

2 Preliminaries

In this section we recall some preliminary notions which are necessary for a full com-
prehension of the paper. In Sections 2.1 and 2.2 we recall from [4] and extend a little the
notions of goal graphs and the axiomatic representation of goal relations. In Section 2.3
we recall some basic notions about boolean satisfiability and minimum-weight boolean
satisfiability.

2.1 Goal Graphs

As in [4], we consider sets of goal nodes Gi and of relations (G1, ..., Gn) r�−→ G over
them, including the (n + 1)-ary relations and, or and the binary relations +S , −S , +D,
−D, ++S, −−S, ++D, −−D, +, −, ++, −−. We briefly recall the intuitive meaning

of these relations: G2
+S�−→ G1 [resp. G2

++S�−→ G1] means that if G2 is satisfied, then there
is some [resp. a full] evidence that G1 is satisfied, but if G2 is denied, then nothing is said

about the denial of G1; G2
−S�−→ G1 [resp. G2

−−S�−→ G1] means that if G2 is satisfied, then
there is some [resp. a full] evidence that G1 is denied, but if G2 is denied, then nothing
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is said about the satisfaction of G1. The meaning of +D, −D, ++D, −−D is dual w.r.t.
+S , −S , ++S, −−S respectively. (By “dual” we mean that we invert satisfiability with
deniability.) The relations +, −, ++, −− are such that each G2

r�−→ G1 is a shorthand
for the combination of the two corresponding relationships G2

rS�−→ G1 and G2
rD�−→ G1.

(We call the first kind of relations symmetric and the latter two asymmetric.)
If (G1, ..., Gn) r�−→ G is a goal relation we call G1...Gn the source goals and G the

target goal of r, and we say that r is an incoming relation for G and an outcoming relation
for G1,...,Gn. We call boolean relations the and and or relations, partial contribution
relations the + and− relations and their asymmetric versions, full contribution relations
++ and −− relations and their asymmetric versions. We call a root goal any goal with
an incoming boolean relation and no outcoming ones, we call a leaf goal any goal with
no incoming boolean relations.

We call a goal graph a pair 〈G,R〉 where G is a set of goal nodes and R is a set of
goal relations, subject to the following restrictions:

– each goal has at most one incoming boolean relation;
– every loop contains at least one non-boolean relation arc.

In practice, a goal graph can be seen as a set of and/or trees whose nodes are connected
by contribution relations arcs. Root goals are roots of and/or trees, whilst leaf goals
either are leaves or nodes which are not part of them.

2.2 Axiomatization of Goal Relationships

Let G1, G2, ... denote goal labels. We introduce four distinct predicates over goals,
FS(G), FD(G) and PS(G), PD(G), meaning respectively that there is (at least) full
evidence that goal G is satisfied and that G is denied, and that there is at least partial
evidence that G is satisfied and that G is denied. We also use the proposition � to
represent the (trivially true) statement that there is at least null evidence that the goal
G is satisfied (or denied). Notice that the predicates state that there is at least a given
level of evidence, because in a goal graph there may be multiple sources of evidence for
the satisfaction/denial of a goal. We introduce a total order FS(G) ≥ PS(G) ≥ � and
FD(G) ≥ PD(G) ≥ �, with the intended meaning that x ≥ y if and only if x → y.
We call FS, PS, FD and PD the possible values for a goal.

We want to allow the deduction of positive ground assertions of typeFS(G), FD(G),
PS(G) and PD(G) over the goal constants of a goal graph. We refer to externally
provided assertions as initial conditions. To formalize the propagation of satisfiability
and deniability evidence through a goal graph 〈G,R〉, we introduce the axioms described
in Figure 2.

(1) state that full satisfiability and deniability imply partial satisfiability and denia-
bility respectively. For an AND relation, (2) show that the full and partial satisfiability
of the target node require respectively the full and partial satisfiability of all the source
nodes; for a “+S” relation, (4) show that only the partial satisfiability (but not the full
satisfiability) propagates through a “+S” relation. Thus, an AND relation propagates the
minimum satisfiability value (and the maximum deniability one), while a “+S” relation
propagates at most a partial satisfiability value.
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Goal Invariant Axioms

G : FS(G) → PS(G), FD(G) → PD(G) (1)

Goal relation Relation Axioms

(G1, ..., Gi, ...Gn)
and�−→ G : (

∧

i

FS(Gi)) → FS(G), (
∧

i

PS(Gi)) → PS(G) (2)

∧

i

(FD(Gi) → FD(G)),
∧

i

(PD(Gi) → PD(G)) (3)

G2
+S�−→ G1 : PS(G2) → PS(G1) (4)

G2
−S�−→ G1 : PS(G2) → PD(G1) (5)

G2
++S�−→ G1 : FS(G2) → FS(G1), PS(G2) → PS(G1) (6)

G2
−−S�−→ G1 : FS(G2) → FD(G1), PS(G2) → PD(G1) (7)

Fig. 2. Ground axioms for the invariants and the propagation rules in the qualitative reasoning
framework. The (or), (+D), (−D), (++D), (−−D) cases are dual w.r.t. (and), (+S), (−S),
(++S), (−−S) respectively.

Let A : (
∧n

i=1 vi) → v be a generic relation axiom for the relation r. We call the
values vi the prerequisites values and v the consequence value of axiom A, and we say
that the values vi are the prerequisites for v through r and that v is the consequence of
the values vi through r.

We say that an atomic proposition of the form FS(G), FD(G), PS(G) and PD(G)
holds if either it is an initial condition or it can be deduced via modus ponens from the
initial conditions and the ground axioms of Figure 2. We assume conventionally that
� always holds. Notice that all the formulas in our framework are propositional Horn
clauses, so that deciding if a ground assertion holds not only is decidable, but also it can
be decided in polynomial time.

We say that there is a weak conflict if (PS(G) ∧ PD(G)) holds, a medium conflict
if either (FS(G)∧PD(G)) or (PS(G)∧FD(G)) hold, a strong conflict if (FS(G)∧
FD(G)) holds, for some goal G.

2.3 SAT and Minimum-Cost SAT

Propositional satisfiability (SAT) is the problem of determining whether a boolean for-
mula Φ admits at least one satisfying truth assignment µ to its variables Ai. In a broad
sense, a SAT solver is any procedure that is able to decide such a problem. SAT is an
NP-complete problem [1], so that we can reasonably assume that there does not exist
any polynomial algorithm able to solve it.

In the last years we have witnessed an impressive advance in the efficiency of SAT
techniques, which has brought large previously intractable problems at the reach of
state-of-the-art solvers (see [13] for an overview).

The most popular SAT algorithm is DPLL [3], in its many variants, and CHAFF [7] is
probably the most efficient DPLL implementation available. In its basic version, DPLL
tries to find a satisfying assignment recursively by assigning, at each step, a value to a
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proposition. The input formula must be previously reduced in conjunctive normal form
(CNF)1. At each step, if there exists a unit clause, DPLL assigns it to true; otherwise,
it chooses a literal l and it tries to find an assignment with l set to true; if it doesn’t
success, it tries with l set to false. In this way, DPLL performs the deterministic choices
first while postponing, as far as possible the branching step, which is the main source
of exponential blow up. There are several techniques to improve the efficiency of DPLL
such as, e.g., backjumping, learning, random restart (again, see [13] for an overview).

A noteworthy variant of SAT is Minimum-Weight Propositional Satisfiability (MW-
SAT from now on) [6]. The boolean variables Ai occurring in Φ are given a positive
integer weight wi, and MW-SAT is the problem of determining a truth assignment µ
satisfying Φ which minimizes the value

W (µ) :=
∑

i

{wi | Ai is assigned � by µ}, (8)

or stating there is none. In the general case MW-SAT is ∆p
2-complete problem2 [6],

that is, it is much harder than simple SAT. The state-of-the-art solver for MW-SAT is
MINWEIGHT [6], which is based on a variant of the DPLL procedure.

3 Goal Satisfiability for Goal Graphs

In [4] we focused on the problem of the forward propagation of goal values and of the
detection of conflicts. Given a goal graph, the user assigns some initial values to some
goals, input goals from now on (typically leaf goals), then these values are forward
propagated to all other goals according to the rules described in Section 2. As the goal
graph may be cyclic, the process stops when a fixpoint is reached. The user then can
look the final values of the goals of interest, target goals from now on (typically root
goals), and reveal possible conflicts. The whole algorithm is linear in time as it requires
no form of search.

In this paper instead we focus on the backward search of the possible input values
leading to some desired final value, under desired constraints. The user sets the desired
final values of the target goals, and the system looks for possible initial assignments
to the input goals which would cause the desired final values of the target goals by
forward propagation. The user may also add some desired constraints, and decide to
avoid strong/medium/weak conflicts.

3.1 Input and Target Goals

The notions of “input goal” and “target goal” deserve some more comment. Goal graphs
may contain cycles, so that, in principle, it is not obvious a priori which goals are target
goals and which are input ones. Although in our experience the boolean relations tend to

1 A boolean formula is in CNF if and only if it is in the form
∧

i

∨
ji

lji , lji being literals. A

disjunction
∨

ji
lji is called clause. A one-literal clause is called unit clause.

2 Broadly speaking, ∆p
2 is the class of problems requiring a polynomial amounts of calls to a

procedure solving an NP problem.
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Fig. 3. The simple goal graph of Example 1.

Fig. 4. Axioms for backward propagation (G are non-input goals).

have a dominant role, so that target goals are typically roots and input goals are typically
leaves, the choice is typically left to the user. Nevertheless, the choice is not completely
free, as we impose that every path incoming in a target goal must be originated in an
input node, that is:

for every target goal G there exists a direct acyclic subgraph (9)

(DAG) rooted in G whose leaves Gi1 , ..., Gik
are input nodes,

so that the value of G derives by forward propagation from those of Gi1 , ..., Gik
. An

easy-to-verify sufficient condition for (9) is that

all leaf goals are input goals3. (10)

Example 1. Consider the simple goal graph of Figure 3, and suppose that G0 is the target
goal and G2 and G3 are the input goals. (Notice that G0 and G1 form a loop without
input goals.) If we assigned a final value FS(G0), then by backward search we could
have FS(G1) and then FS(G0) again. Thus, FS(G0) could be derived by forward
propagation from itself without any input value, which is a nonsense. If instead G1 is
an input goal, then by backward search we obtain FS(G1) or FS(G2) and FS(G3),
which are suitable initial assignments to the input goals. Notice that (G2, G3)

and�−→ G0

and G1
++S�−→ G0 form a DAG rooted in G0 whose leaves are input nodes. �

3.2 Basic Formalization

We want to reduce the problem of backward search for input values to that of the
satisfiability (SAT) of a boolean formula Φ. The boolean variables of Φ are all the

3 Recall that, by definition of goal graph, every loop contains at least one leaf goal.
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values FS(G), PS(G), FD(G), PD(G) for every goal G ∈ G, and Φ is written in the
form:

Φ := Φgraph ∧ Φoutval ∧ Φbackward [ ∧ Φconstraints ∧ Φconflict ], (13)

where the conjuncts Φgraph, Φoutval, Φbackward are explained below and the optional
components Φconstraints, and Φconflict will be described in Section 3.4.

Encoding the Goal Graph: Φgraph. The first component Φgraph is the representation
of the goal graph 〈G,R〉, given in the form:

Φgraph :=
∧

G∈G Invar Ax(G) ∧ ∧
r∈R Rel Ax(r), (14)

Invar Ax(G) being the conjunction of the invariant axioms (1) for the goalG in Figure 2
and Rel Ax(r) being the conjunction of the relation axioms in (2)-(7) and their dual
ones corresponding to the relation r. These axioms encode the forward propagation of
values through the relation arcs in the goal graph.

Representing Desired Final Output Values: Φoutval. The second component Φoutval

is a representation of the output values the user want to be assigned to the target goal.
Φoutval is written in the form:

Φoutval :=
∧

G∈Target(G) vs(G) ∧ ∧
G∈Target(G) vd(G) (15)

Target(G) being the set of target goals in G and vs(G) ∈ {�, PS(G), FS(G)},
vd(G) ∈ {�, PD(G), FD(G)} being the maximum satisfiability and deniability val-
ues assigned by the user to the target goal G. Φoutval is a conjunction of unit clauses,
which force the desired output values vs(G) and vd(G) to be assigned to �.

Encoding Backward Reasoning: Φbackward. The third component Φbackward en-
codes the backward search. Φbackward is written in the form:

Φbackward :=
∧

G ∈ G/Input(G)

∧
v(G) Backward Ax(v(G)) (16)

Backward Ax(v(G)) := v(G) → ∨
r∈Incoming(G) Prereqs(v(G), r) (17)

Input(G) being the set of input goals in G, Incoming(G) being the set of relations
incoming in G, v(G) ∈ {PS(G), FS(G), PD(G), FD(G)}, and Prereqs(v(G), r) is
a formula which is true if and only if the prerequisites of v(G) through r hold. The list of
possible backward propagation axioms Backward Ax(v(G)) is reported in Figure 4,
(11)-(12).

Suppose G is not an input goal. If v(G) holds, then this value must derive from
the prerequisite values of some of the incoming relations of G. Prereqs(v(G), r) are
exactly the conditions which must be verified to apply the corresponding relation axioms
(2)-(7) and their dual ones in Figure 2.
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3.3 Correctness and Completeness

The following theorem states the correctness and completeness of the approach.

Theorem 1. Let 〈G,R〉 be a goal graph. Let Gi1, ..., Gik ∈ G be the input goals ver-
ifying condition (9). Let Gf1...Gfn ∈ G be the target goals which are assigned the
values vs(Gf1), vd(Gf1), ... vs(Gfn), vd(Gfn) respectively. Let vs(Gi1), vd(Gi1), ...
vs(Gik),vd(Gik) be a set of values for the input goals.

Then vs(Gf1), vd(Gf1), ... vs(Gfn),vd(Gfn) can be inferred from vs(Gi1),
vd(Gi1), ... vs(Gik),vd(Gik) by means of axioms (1)-(7) if and only if there exists a
truth value assignment µ satisfying (1)-(7), (11)-(12) and the values vs(Gi1), vd(Gi1),
... vs(Gik) and vs(Gf1), vd(Gf1), ..., vs(Gfn), vd(Gfn).

Proof. If: Assume µ satisfies vs(Gi1), vd(Gi1), ... ,vs(Gik) ,vd(Gik) and vs(Gf1),
vd(Gf1), ..., vs(Gfn), vd(Gfn) and all axioms (1)-(7) and (11)-(12). By condition
(9), for every target goal G there exists a DAG rooted in G whose leaves are all
input nodes. We reason on induction of the depth of this DAG. If G is also an input
goal, then G = Gik for some k, so that v(G) is inferred from v(Gik) by a zero-step
inference. If G is not an input goal, then there is one backward propagation axiom
A in (11)-(12) in the form (17) which is satisfied by µ. As µ satisfies v(G), µ
satisfies source(v(G), r) for some r. Thus v(G) can be inferred from source(v(G), r)
by applying axioms (1)-(7). By induction, source(v(G), r) can be inferred from
vs(Gi1), vd(Gi1), ... vs(Gik),vd(Gik) by means of axioms (1)-(7). Therefore v(G)
can be inferred from vs(Gi1), vd(Gi1), ... vs(Gik),vd(Gik) by means of axioms (1)-(7).

Only if: from the hypothesis, vs(Gf1), vd(Gf1), ... vs(Gfn),vd(Gik) are inferred from
vs(Gi1), vd(Gi1), ... vs(Gik), vd(Gik) by means of axioms (1)-(7). Consider the assign-
ment µ which assigns � to all the values which can be inferred from vs(Gi1), vd(Gi1),
... vs(Gik), vd(Gik) by means of axioms (1)-(7) and which assigns ⊥ to all other val-
ues. By construction µ satisfies vs(Gi1), vd(Gi1), ... vs(Gik), vd(Gik) and vs(Gf1),
vd(Gf1), ... vs(Gfn), vd(Gfn), and the axioms (1)-(7). Now let A be a generic instance
of a backward axiom in (11)-(12), and let v(G) be the atom occurring on the left side
of A, before the “→”. G is not an input goal. If µ assigns v(G) to ⊥, then trivially µ
satisfies A. If µ assigns v(G) to �, then, by construction of µ, v(G) is inferred by means
of axioms (1)-(7) from some prerequisite values which are assigned � by µ. Thus, at
least one of the disjuncts on the left part of A are satisfied by µ, so that µ satisfies A.
Therefore, µ satisfies all the backward propagation axioms (11)-(12). Q.E.D.

3.4 Optional Components

We describe here the optional componentsΦconstraints and Φconflict in (13). They allow
the user to impose some constraints on the possible values of the goals or to force some
desired value(s).

Adding User’s Constraints and Desiderata. The first optional component Φconstraints

allows the user to express constraint and desiderata on goal values. Φconstraints is gener-
ically written in the form:

Φoutval :=
∧

i

∨
j litij, (18)
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litij ∈ {PS(G), FS(G), PD(G), FD(G),¬PS(G),¬FS(G),¬PD(G),¬FD(G)},
G ∈ G. A positive unit clause value is used to impose a minimum value to a goal. (E.g.,
“PS(G1)” means “G1 is at least partially satisfiable”, but it might be totally satisfiable.)
A negative unit clause value is used to prevent a value to a goal. (E.g., “¬FD(G1)” means
“G1 cannot be fully deniable”, but it might be partially deniable.)A disjunction of positive
values is used to state an alternative desideratum. (E.g., “FS(G1) ∨ FS(G2)” means
“at least one between G1 and G2 must be fully satisfiable”.) A disjunction of negative
values is used to state a mutual exclusion constraint. (E.g., “FD(G1)∨FD(G2)” means
“G1 and G2 cannot be both fully deniable”, but they can be partially deniable.)

Preventing Conflicts. The second optional component Φconflict allows the user for
looking for solutions which do not involve conflicts. Depending whether one wants to
avoid (i) only the strong conflicts, (ii) the strong and medium conflicts or (iii) all conflicts,
Φconflict is encoded respectively as follows:

Φconflict :=
∧

G∈G(¬FS(G) ∨ ¬FD(G)) (19)

Φconflict :=
∧

G∈G((¬FS(G) ∨ ¬PD(G)) ∧ (¬PS(G) ∨ ¬FD(G))) (20)

Φconflict :=
∧

G∈G(¬PS(G) ∨ ¬PD(G)). (21)

(19) states that G cannot be fully satisfiable and fully deniable; (20) states that G cannot
be fully satisfiable and (fully or) partially deniable, and vice versa; (21) states that G
cannot be (fully or) partially satisfiable and (fully or) partially deniable. Notice that, by
Axioms (1), (21) implies (20) and that (20) implies (19).

It is easy to see that Theorem 1 extends straightforwardly to the case when we have
Φconstraint and Φconflict components.

4 Solving Simple and Minimum-Cost Goal Satisfiability

Consider a goal graph 〈G,R〉with input goals Gi1, ..., Gik and target goals Gf1, ..., Gfn,
and a set of desired final values vs(Gf1), vd(Gf1), ... vs(Gfn), vd(Gfn) to the target
goals (plus possibly a set of user constraints and desiderata), and let Φ be the formula
encoding the problem, as in (13).

Theorem 1 states that (i) if Φ is unsatisfiable, then no value exists to the input
goals from which the desired final values derive by forward propagation (verifying the
desiderata and constraints) (ii) if an assignment µ satisfying Φ exists, then the maximum
values vs(Gi1), vd(Gi1), ... vs(Gin), vd(Gik) which µ assigns to � are such that the
desired final values derive from them by forward propagation (verifying the desiderata
and constraints). This allows for reducing the problem of backward search to that of
propositional satisfiability.

4.1 GOALSOLVE

We have implemented a tool, called GOALSOLVE, for the backward search of the possible
input values leading to some desired final value, under desired constraints. The schema
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Fig. 5. Schema of GOALSOLVE (black arrows) and GOALMINSOLVE (gray arrows).

of GOALSOLVE is reported in Figure 5 (black arrows). GOALSOLVE takes as input a
representation the goal graph, a list of desired final values and, optionally, a list of user
desiderata and constraint and a list of goals which have to be considered as input. (The
default choice is that indicated in condition (10), that is, all leaf goals are considered
input goals.) The user may also activate some flags for switching on the various levels
of “avoiding conflicts”.

The first component of GOALSOLVE is an encoder that generates the boolean CNF
formula Φ as described in Section 3, plus a correspondence table Table between goal
values and their correspondent boolean variable. Φ is given as input to the SAT solver
CHAFF [7], which returns either “UNSAT” if Φ is unsatisfiable, or “SAT” plus a satisfying
assignment µ if Φ is satisfiable. Then a decoder uses Table to decode back the resulting
assignment into the set of goal values.

4.2 GOALMINSOLVE

In general, the satisfaction/deniability value of (input) goals may have different costs.
Thus we have implemented a variant of GOALSOLVE, called GOALMINSOLVE, for the
search of the goal values of minimum cost. The schema of GOALMINSOLVE is reported
in Figure 5 (gray arrows).

Unlike GOALSOLVE, GOALMINSOLVE takes as input also a list of integer weights
W (val(G)) for the goal values. (The default choice is W (FS(G)) = (FD(G)) = 2
and W (PS(G)) = (PD(G)) = 1 if G is an input goal, W (FS(G)) = (FD(G)) =
W (PS(G)) = (PD(G)) = 0 otherwise.) The encoder here encodes also the input
weight list into a list of weights for the corresponding boolean variables of Φ. Both Φ
and the list of weights are given as input to the minimum-weight SAT solver MINWEIGHT

[6], which returns either “UNSAT” if Φ is unsatisfiable, or “SAT’plus a minimum-weight
satisfying assignment µ if Φ is satisfiable. The decoder then works as in GOALSOLVE.

Notice that, in general, there may be plenty many satisfying assignments – up to
exponentially many – corresponding so solutions for the problem. In a typical session
with GOALSOLVE or GOALMINSOLVE, the user may want to work first with the “avoiding
conflicts” flags, starting from the most restrictive (21) down to the least restrictive (19),
until the problem admits solution. (E.g., it often the case that no solution avoiding all
conflicts exists, but if one allows for weak and/or medium conflicts a solution exists.)
Then, once the level of conflict avoidance is fixed, the user may want to work on re-
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fining the solution obtained, by iteratively adding positive and negative values – e.g.
“¬FD(G1)”, “FS(G2)” – in the list of desiderata and constraints, until a satisfactory
solution is found.

5 A Case Study

We consider as a case study the strategic objectives for the Public Transportation Service
of the region of Trentino (Italy), we have recently analyzed for the CitiMan (Citizen
Mobility Modeling and Management) project in collaboration with Centro Ricerche
FIAT. As depicted in Figure 6, the main objective of the Trentino government is supply
public transport service to the citizens, involving satisfy users, minimize costs per
user, improve the quality of life, and protect users4.

The objectives are further analyzed and refined using AND/OR decompositions. For
instance, supply public transport service to Trentino citizen is AND-decomposed in
guarantee transportation, sell tickets and manage financial budget. In turn sell
tickets is AND-decomposed into decide sale strategy, decide sales strategy and
avoid frauds, while the goal manage financial budget is AND-decomposed into ob-
tain founds, manage services’ costs and manage profits. Likewise, improve trans-
portation services is OR-decomposed into improve old services and supply new
services, while protect users is AND-decomposed in guarantee drivers capabili-
ties, guarantee the user behavior, and protect user health.

The graph shows also lateral relationships among goals. For example, the goal pro-
tect user health has positive + contribution from the goal monitor pollution, while the
goal minimize cost per user has two negative− contributions from goals providecom-
fort and improve transportation services. Asymmetric relationships are also showed;
for instance, the goal satisfy users has a ++D contribution from protect user and
guarantee transportation, and a +S contribution from improve quality of life and
again guarantee transportation.

We run a series of experiments with GOALSOLVE and GOALMINSOLVE on the goal
graph in Figure 6. Both GOALSOLVE and GOALMINSOLVE have been implemented in
C++ and the tests were conducted on a Dell Inspiron 8100 laptop with a Pentium III
CPU and 64 MB RAM (OS: GNU/Linux, kernel 2.4.7-10). The tests were intended to
demonstrate the practical effectiveness and benefits our approach, and also to check the
efficiency of the tools. As for the latter aspect, in all our experiments both GOALSOLVE

and GOALMINSOLVE performed in less than one second. (Of course, such performances
depend on the goal model and the desiderata we want to obtain.) To provide examples,
we briefly describe a few of these experiments. (We report here only the results for
GOALMINSOLVE, which are more interesting.)

In a first set of experiments we imposed supply public transport services as target
goal and all the leaves nodes except satisfy users and minimize cost per user as
input goals, having as a desideratum the full satisfiability of the target goal. We run
GOALMINSOLVE with the default settings for the weights.

Imposing the strongest conflict avoidance conditions (21) or (20), GOALMINSOLVE

discovered there were no solution, whilst imposing the weakest condition (19) GOALMIN-
4 The goal names are translated from Italian.
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Table 1. Results of the first and the third set of experiments. (We omit the values of non-input
goals and of those input goals which were not assigned any value.).

Exp1 Exp3
Top Goals S D S D

supply public transport service F P P P
satisfy users P P P P

improve quality of life P F
minimize cost per user P P P P

protect users F

Exp1 Exp3
Input Goals S D S D

guarantee transportation F
obtain funds F P

manage profits F
decide sale strategy F
cover services costs F P P P

invest on the services F P P P
use external funds F P

use profits P P P P
increase profits P P P P

estimate services costs F P P P
evaluate alternative resources F

define profits to reach F
verify tickets F

estimate sale places F
add sale point on the path F
facilitate tickets purchasing P P P P

avoid traffic P P
use special instruments P P P P

respect rules F
check driver health F

check drivers attitudes F
check drivers capabilities F

protect drivers health P
force to respect the law P

SOLVE found the results shown in Table 1 (Exp1). We notice the presence of conflicting
values for some top and input goals. In fact, the FS value of supply public transport
service is backward propagated down to all elements of the and tree rooted there, in-
cluding invest on the service. This propagates a PS value to provide comfort and
improve transport services, and hence a PD value to minimize costs per user, sat-
isfy users, and hence to the target goal supply public transport service, generating
thus a medium conflict. When we tried to eliminate only this conflict by imposing a¬PD
constraint on the target goal, GOALMINSOLVE stated there was no solution anyway.

Thus, GOALMINSOLVE highlighted the fact that, with the goal graph of Figure 6, the
full satisfiability of the main target goal cannot be accomplished without generating
conflicts.

A second set of experiments showed that it is not possible to obtain the full satisfaction
for the main goals of the Trentino Public Transportation System, namely supply public
transport service, satisfy users, improve quality of life, and minimize cost per
user, even admitting all kinds of conflicts. This is easily explained with the fact that
both satisfy users and minimize cost per user are non-input and have no boolean,
++S and −−D incoming relations, so that there is no way they can be assigned a FS
by forward propagation.

In a third set of experiments we have expressed as desiderata the full satisfaction for
both goals improve quality of life and protect users, without saying anything about
the other goal (in particular about the top goal supply public transpiration service).
Also in this experiment it was not possible to have an assignment without conflicts,
but we found a solution allowing medium conflicts (option (19)). As shown in Table 1
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Fig. 6. The goal model for Trentino Public Transportation Service.
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(Exp3), the assignment to the input goal produces conflicts to the top goals supplypublic
transport services, satisfy users and minimize cost per user which, again, cannot
be avoided.

A final set of experiments were carried out with graphs with a bigger number of nodes.
The goal of the experiments was to evaluate the performance of our tool with respect to
the growth of the dimension of the graphs. We generated such graphs randomly. Starting
from the model of Figure 6, we generated new graphs adding randomly new goals and
contribution links between goals, and thereby generating new cycles. Of course, since
we were only interested on the structure of the graphs, we have not associated to them
any semantics.

The results showed that also for bigger graphs (from hundred to two thousand nodes)
GOALSOLVE performed in less than one second, whereas GOALMINSOLVE performed
relatively well (less than five seconds) for graphs with a number of nodes less than three
hundred. This suggests us that our approach can be applied in real life applications where
goals models can count more than hundred goals.

6 Conclusions and Future Work

This paper introduces the problem of goal (plain/minimum-cost) satisfiability and pro-
posed a solution by reducing goal satisfiability to the problem of (plain/minimum-cost)
satisfiability for Boolean formulas. The solution has been implemented and evaluated
with a case study. As illustrated by the case study, the solution makes it possible to
answer questions such as “Is there a set of labels for input goals that satisfies all output
(root) goals?”, and if so, “Which solution is minimum cost?”

The proposed solution only works for qualitative goal models, where goals can be
satisfied or denied, possibly partially. We plan to continue this research and extend these
results so that they also apply to quantitative models, where one can also talk about goals
being satisfied/denied with an attached probability/cost or other numerical measures.
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