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Abstract. We propose a new method for face recognition under arbi-
trary pose and illumination conditions, which requires only one training
image per subject. Furthermore, no limitation on the pose and illumina-
tion conditions for the training image is necessary. Our method combines
the strengths of Morphable models to capture the variability of 3D face
shape and a spherical harmonic representation for the illumination. Mor-
phable models are successful in 3D face reconstructions from one single
image. Recent research demonstrates that the set of images of a convex
Lambertian object obtained under a wide variety of lighting conditions
can be approximated accurately by a low-dimensional linear subspace us-
ing spherical harmonics representation. In this paper, we show that we
can recover the 3D faces with texture information from one single train-
ing image under arbitrary illumination conditions and perform robust
pose and illumination invariant face recognition by using the recovered
3D faces. During training, given an image under arbitrary illumination,
we first compute the shape parameters from a shape error estimated
by the displacements of a set of feature points. Then we estimate the
illumination coefficients and texture information using the spherical har-
monics illumination representation. The reconstructed 3D models serve
as generative models to render sets of basis images of each subject for
different poses. During testing, we recognize the face for which there ex-
ists a weighted combination of basis images that is the closest to the
test face image. We provide a series of experiments on approximately
5000 images from the CMU-PIE database. We achieve high recognition
rates for images under a wide range of illumination conditions, including
multiple sources of illumination.



1 Introduction

Face recognition has recently received extensive attention as one of the most sig-
nificant applications of image understanding. Although rapid progress has been
made in this area during the last few years [29][21][16][3][35][5][19][18][8][28][24]
[9][20][31][33], the general task of recognition remains unsolved. In general, face
appearance does not depend solely on identity. It is also influenced by illumina-
tion and viewpoint. Changes in pose and illumination will cause large changes
in the appearance of a face. In this paper we demonstrate a new method to rec-
ognize face images under a wide range of pose and illumination conditions using
spherical harmonic images of the face and a morphable model. Our method
requires only a single training image per subject. To our knowledge no other
face recognition method can achieve such a high level of pose and illumination
invariance when only one training image is available.

In the past few years, there have been attempts to address image variation
produced by changing in illumination and pose [10][35]. Georghiades et al. [11]
present a new method using the illumination cone which requires at least three
images per subject to build the illumination cone. Romdhani et al. [23] recover
the shape and texture parameters of a 3D Morphable Model in an analysis-by-
synthesis fashion. In [23], the shape parameters are computed from a shape error
estimated by optical flow and the texture parameters are obtained from a tex-
ture error. The algorithm uses linear equations to recover the shape and texture
parameters irrespective of pose and lighting conditions of the face image. How-
ever, this method is bound to images taken under single directional illumination
and requires the knowledge of light direction which is difficult to know in most
cases.

In general, appearance-based methods like Eigenfaces [29] and SLAM [21]
need a number of training images for each subject, in order to cope with pose and
illumination variability. Previous research suggests that illumination variability
in face images is low-dimensional e.g. [2][22][12][4][1][25][26][17]. Using spherical
harmonics and signal-processing techniques, Basri et al. [2] and Ramamoorthi
[22] have independently shown that the set of images of a convex Lambertian
object obtained under a wide variety of lighting conditions can be approximated
accurately by a 9 dimensional linear subspace. Furthermore, a simple scheme for
face recognition with excellent results was described in [2]. However, to use this
recognition scheme, the basis images spanning the illumination space for each
face are required. These images can be rendered from a 3D scan of the face or can
be estimated by applying PCA to a number of images of the same subject under
different illuminations [22]. An effective approximation of this basis by 9 single
light source images of a face was reported in [15] and Wang et al. [30] proposed
a illumination modeling and normalization method for face recognition. The
above mentioned methods need a number of training images and/or 3D scans
of the subjects in the database, requiring specialized equipment and procedures
for the capture of the training set, thus limiting their applicability. A promising
earlier attempt by [36] used symmetric shape from shading but suffered from the
drawbacks of SFS. A new approach is proposed in [34] for face recognition under



arbitrary illumination conditions, for fixed pose, which requires only one training
image per subject and no 3D shape information. In [34] the statistical model is
based on a collection of 2D basis images, rendered from known 3D shapes. Thus
3D shape is only implicitly included in the statistical model. Here we will base
our statistical model directly on 3D shapes, perform statistical analysis in 3D in
order to estimate the most appropriate 3D shape and then create the 2D basis
images. The ability to manipulate the 3D shape explicitly allows the generation
of basis images for poses that do not exist in the training data.

In this paper we propose a method that combines a 3D morphable model
and a low-dimensional illumination representation that uses spherical harmon-
ics. Our method requires only one training image for each subject without pose
and illumination limitations. Our method consists of three steps: 3D face recon-
struction, basis image rendering and recognition. Initially, similar to [23], given
a training image, we compute the shape parameters of a morphable model from
a shape error estimated by the displacements of a set of feature points. Then we
estimate the illumination coefficients and texture information using the spheri-
cal harmonics illumination representation. In the basis image rendering step, the
reconstructed face models then serve as generative models that can be used to
synthesize sets of basis images under novel poses and spanning the illumination
field. During the recognition step, we use the recognition scheme proposed by
Basri et al. [2]. We return the face from the training set for which there exists a
weighted combination of basis images that is the closest to the test face image.

We use the morphable model computed from the USF 3D face database [6]
and the CMU-PIE database [27] for training and testing. We provide a series
of experiments that show that the method achieves high recognition accuracy
although our method requires only a single training image without limitation on
pose and illumination conditions. We compare the recognition rate with [23] on
the images taken under single light source. We also give experiment results of
recognition on the set of images under multiple light sources, and compare with
[34] for known pose.

This paper is organized as follows. In the next section, we will briefly intro-
duce the Morphable Model. In Section 3, we explain the Spherical Harmonics
and how to acquire basis images from 3D face models. In Section 4, we describe
the process of 3D face model reconstruction and basis image rendering. In Sec-
tion 5, we describe the recognition process that uses the rendered basis images.
In Section 6, we describe our experiments and their results. The final Section
presents the conclusions and future work directions.

2 Morphable Model

In this section we briefly summarize the morphable model framework described
in detail in [6][7]. The 3D Morphable Face Model is a 3D model of faces with
separate shape and texture models that are learnt from a set of exemplar faces.
Morphing between faces requires complete sets of correspondences between all
of the faces. When building a 3D morphable model, we transform the shape and
texture spaces into vector spaces, so that any convex combination of exemplar



shapes and textures represents a realistic human face. We present the geometry
of a face with a shape-vector S = (X1, Y1, Z1, X2, ....., Yn, Zn)T ∈ <3n, which
contains the X, Y, Z- coordinates of its n vertices. Similarly, the texture of a face
can be represented by a texture-vector T = (R1, G1, B1, R2, ....., Gn, Bn)T ∈ <3n

where the R,G, B texture values are sampled at the same n points. A morphable
model can be constructed using a data set of m exemplar faces; exemplar i is
represented by the shape-vector Si and texture-vector Ti. New shapes s and
textures t can be generated by convex combinations of the shapes and textures of
the m exemplar faces: s =

∑m
i=1 aiSi, t =

∑m
i=1 biTi,

∑m
i=1 ai =

∑m
i=1 bi = 1. To

reduce the dimensionality of the shape and texture spaces, Principal Component
Analysis(PCA) is applied separately on the shape and texture spaces:

s = s +
m−1∑

i=1

αiσs,isi, t = t +
m−1∑

i=1

βiσt,iti (1)

By setting the smallest eigenvalues to zero, Eq. 1 is reformulated as:

s = s + Sα, t = t + Tβ (2)

In Eq. 2 the columns of S and T are the most significant eigenvectors si and
ti re-scaled by their standard deviation and the coefficients α and β constitute
a pose and illumination invariant low-dimensional coding of a face [23]. PCA
also provides an estimate of the probability densities of the shapes and textures,
under a Gaussian assumption: p(s) ∼ e−

1
2‖α‖2 , p(t) ∼ e−

1
2‖β‖2

3 Spherical Harmonics

In this section, we will briefly explain the illumination representation by using
spherical harmonics and how we render basis images from 3D models using the
results of [2]. Let L denote the distant lighting distribution. By neglecting the
cast shadows and near-field illumination, the irradiance E is then a function of
the surface normal n only and is given by an integral over the upper hemisphere
Ωn [22]: E(n) =

∫
L(ω)(n · ω)dω We then scale E by the surface albedo λ to

find the radiosity I, which corresponds to the image intensity directly:

I(p, n) = λ(p)E(n) (3)

Basri et al. [2] and Ramamoorthi [22] have independently shown that E can be
approximated by the combination of the first nine spherical harmonics H(x, y, z)
for Lambertian surfaces:
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where the superscripts e and o denote the even and the odd components of the
harmonics respectively and x, y, z demote the cartesian components. Then the
image intensity of a point p with surface normal n = (nx, ny, nz) and albedo λ
can be computed according to Eq. 3 by replacing x, y, z with nx, ny, nz. Fig. 1
gives an example of the mean shape and texture of the morphable model under
a spherical harmonics representation.

Fig. 1. The first image is the mean of the morphable model and the following nine im-
ages are the basis images under various view-points, represented by spherical harmon-
ics. Lighter gray (0-127) represents positive values and darker gray (128-255) represents
negative values.

4 Face Model Reconstruction and Basis Image Rendering

In this section, we will explain how we recover the shape and texture information
of a training subject by combining a morphable model and spherical harmonics
lighting representation.

4.1 Forward and Inverse Face Rendering

We can generate photo-realistic face images by using the morphable model we
described in Section 2 [6]. Here we describe how we synthesize a new face image
from the face shape and texture vectors s and t, thus, the inversion process of
the synthesis is how we recover shape and texture information from the image.

Shape: Similar to [23], a realistic face shape can be generated by:

s2d = fPR(s̄ + Sα + t3d) + t2d (5)

where f is a scale parameter, P an orthographic projection matrix and R a
rotation matrix with φ, γ and θ the three rotation angles for the three axes.
t3d and t2d are translation vectors in 3D and 2D respectively. Eq. 5 relates the
vector of 2D image coordinates s2d and the shape parameters α. For rendering,
a visibility test must still be performed by using a z-buffer method.



For a training image, inverting the rendering process, the shape parameters
can be recovered from the shape error: if f , φ, γ and θ are kept constant, the
relation between the shape s2d and α is linear according to Eq. 5: ∂s2d

∂α = fPRS.
Thus, updating α from a shape error δs2d requires only the solution of a linear
system of equations. In our method, the shape error is estimated by the displace-
ments of a set of manually picked feature points sf [14] corresponding to image
coordinates simg

f . The shape reconstruction goes through the following steps:
Model Initialization: All the parameters are initialized in this step. Shape

parameter α is set to 0 and pose parameters f ,φ,γ,θ and t2d are initialized
manually. We do not need to know the illumination conditions of the training
image, unlike [23].

Feature Correspondence: For the set of pre-picked feature points in the mor-
phable model, we find the correspondence simg

f in the training image semi-
automatically. The set of feature points contains major and secondary features,
see Fig. 2. After the correspondences of major features are manually set, the
secondary features are updated automatically.

Rotation, Translation and Scale Parameters Update: the parameters f , φ, γ
and θ can be recovered by using a Levenberg-Marquardt optimization to mini-
mize the error between simg

f and the model feature points [13]:

argminf,φ,γ,θ,t2d
‖simg

f − (fPR(s̄f + Sfα + t3d) + t2d)‖2 = (f̃ , φ̃, γ̃, θ̃, ˜t2d) (6)

where s̄f and Sf is the corresponding shape information of the feature points in
the morphable model in Eq. 2.

Shape Parameter Update: The shape error of the feature points, δs2d
f , is

defined as the difference between simg
f and the new shape information of feature

points in the model that was rendered by recovered parameters f̃ ,φ̃,γ̃,θ̃ and
t̃2d. Thus, the vector of shape parameters α can be updated by solving a linear
system of equations:

δs2d
f = fPRSfδα (7)

Texture: For texture information recovery, most of the previous methods
[11][23] are applicable to images taken under single light source, which limits
their applicability. Here we propose a method which performs texture fitting to
a training image and has no limitation in the image illumination conditions.

According to Eq. 3 and 4, the texture of a face can be generated by:

t = B ∗ l, B = H(nx, ny, nz) · λ (8)

where H is the spherical harmonics representation of the reflectance function
(Eq. 4) and l is the vector of illumination coefficients. Hence, if we know the
illumination coefficients, the texture information is only dependent on image
intensity t and surface normal n, which can be computed from the 3D shape
we recovered during the shape fitting step. The texture recovery is described as
following:

Basis Computation: The initial albedo λ for each vertex is set to t̄. With
the recovered shape information, we first compute the surface normal n for each



Fig. 2. Recovery Results: Images in the first row are the input training images, those
in the second row are the initial fittings, the third row shows images of the recovered
3D face model and the last row gives the illuminated rotated face models. In the
first column, the black points are pre-picked major features, the white points are the
corresponding features and the points lying in the white line are secondary features.



vertex. Then the first nine basis images B and spherical harmonics H(n) for
reflectance function can be computed according to Eq. 8 and 4 respectively.

Illumination Coefficients Estimation: The set of illumination coefficients l is
updated by solving a linear system of equations:

ttra = Bcurl (9)
Texture Recovery: According to Eq. 8, the texture λ for each visible vertex

is computed by solving: ttra = H(nx, ny, nz)l · λ. Since texture is dependent on
both current texture and illumination coefficients, the new value of λ is:

λ = (1− η)λcur + η(ttra/(H(nx, ny, nz)l)) (10)

We compute l and λ by solving Eq. 9 and 10 iteratively. In our experiments,
weight η is first set to 0.5, then incremented by 0.1 at each step until it reaches
1. Instead of recovering texture parameters [23], we estimate the albedo value
for each vertex, which will be used for basis image rendering and recognition.
For occluded vertices, texture information is estimated through facial symmetry.
Fig. 2 shows the results of our method.

There is human interactivity in our shape fitting part since we manually find
the correspondences for major features. Automatic shape fitting of a morphable
model [23] is beyond the scope of this paper which focuses on the statistics of
interaction of geometry with arbitrary unknown illumination and the feature
based method performed sufficiently well to demonstrate the strength of our
approach.

4.2 Basis Images Rendering

For each training subject, we recover a 3D face model using the algorithm de-
scribed in section 4.2. The recovered face models serve as generative models to
render basis images. In this section, for each subject, a set of basis images across
poses are generated, to be used during recognition. We sample the pose variance
for each 5◦ in both azimuth and altitude axes. In our experiments, the range of
azimuth is [-70,70] and the range of altitude is [-10,10]. Fig. 3 shows a subset of
the basis images for one subject.

5 Face Recognition

In the basis image rendering step, for each subject i, a set of 145 (29*5) basis
Bi

j , j ∈ [1..145] is rendered. During testing, given a new testing image It, we
recognize the face of subject i for which there exists a weighted combination
of basis images that is the closest to the test face image [2]: mini,j‖Bi

j l − It‖
where Bi

j is a set of basis images with size d ∗ r, d is the number of points in
the image and r the number of basis images used (9 is a natural choice, we also
tried 4 in our experiments). Every column of Bi

j contains one spherical harmonic
image, and the columns of Bi

j form a basis for the linear subspace. To solve the
equation, we simply apply QR decomposition to Bi

j to obtain an orthonormal
basis. Thus, we compute the distance from the test image, It, and the space
spanned by Bi

j as ‖QQT It − It‖.



Fig. 3. A subset of the rendered basis images across poses.
Table 1. Recognition results and comparison: The first column lists the light numbers
and the following two columns list the recognition rate for each pose. The recognition
rates of the LiST algorithm are taken from [23].

Light Front Gallery Front Gallery Side Gallery Side Gallery
Using all 9 basis Using first 4 basis Using all 9 basis Using first 4 basis

Front Side Profile Front Side Profile Front Side Profile Front Side Profile
1 95 89 51 89 81 49 91 92 52 79 78 52
2 89 81 34 79 73 31 80 83 34 67 67 33
3 97 88 44 89 79 42 92 96 50 83 86 48
4 98 91 52 89 83 50 94 96 62 85 88 55
5 99 89 57 89 84 52 94 97 64 87 90 59
6 100 92 55 91 86 50 100 100 64 89 89 59
7 99 95 54 88 83 51 92 96 60 86 89 58
8 99 93 62 94 89 54 94 99 70 84 85 62
9 100 96 61 90 88 55 95 100 71 83 92 64
10 100 97 60 92 87 56 98 100 69 89 88 64
11 100 98 58 88 89 50 97 95 63 90 90 63
12 98 99 61 90 88 57 94 98 72 84 86 69
13 99 93 55 89 88 50 98 99 70 87 89 63
14 100 94 53 91 86 49 95 100 62 91 92 58
15 100 93 54 91 87 49 98 99 61 89 89 52
16 99 91 53 91 82 49 95 97 60 87 89 59
17 98 92 55 91 80 50 96 99 65 89 91 61
18 95 88 52 90 78 47 92 94 62 82 87 58
19 98 90 56 89 81 51 92 95 61 82 91 55
20 99 94 58 88 80 51 93 97 63 86 88 57
21 99 96 51 90 81 50 96 96 55 84 89 54
22 99 95 62 89 81 56 94 99 65 79 90 60

mean 98.2 92.4 54.5 89.4 83.4 50.0 94.4 96.7 61.6 84.6 87.4 57.4

LiST mean 97 91 60 93 96 71



6 Experiments and Results

In our experiments, we used the CMU-PIE database which provides images
of both pose and illumination variation. The CMU-PIE database contains 68
individuals, none of which is also in the USF set used to compute the morphable
model. We performed experiments on a set of 4488 images which contains 68
subjects, 3 poses for each subject and 22 different illuminations for each pose.

6.1 Experiments of Illumination Invariance

Since our recognition method is based on the 3D face models recovered during
training, it is important that the recovered face models and rendered basis images
are robust. Figure 4 shows three sets of rendered basis images recovered from
various face images under different illuminations for one subject. The resulting
basis images rendered from images under different illumination are very close.
For each subject, we calculated 10 sets of basis using 10 training images under
different illumination. The per person mean variance of the 10 resulting sets
of basis images was 3.32. For comparison, per person variance of the original
training images was 20.25. That means the rendered basis images have much
greater invariance to illumination effects than original images.

Fig. 4. Rendered basis images from training images taken under different illumination
conditions. The first column shows the training images.

6.2 Recognition Experiments

In recognition experiments, we used the same set of 4488 images in CMU-PIE.
We used only one image per subject to recover the 3D face model. We used the
front and side galleries for training and all three pose galleries for testing. Notice
that training images can have very different illumination conditions (unlike [23]).
We performed recognition by using both all the 9 basis images and the first 4
basis images. We report our experimental results and comparison to [23] in Table
1. From the experimental results, we find that our method gives good recognition
rates. When the poses of training and testing images are very different, our
method is not as good as [23] because we only used a set of feature points to
recover the shape information and the shape recovery is not accurate enough.



Table 2. Recognition results using various previous methods and our method on Yale
Database B. Except for our method, the data were taken from [34]

Methods Subset1,2 Subset3 Subset4

Eigenfaces 100 74.2 24.3

Linear Subspace 100 100 85

Cones-attached 100 100 91.4

9PL 100 100 97.2

Cones-cast 100 100 100

2D HIE 100 99.7 96.9

Our Method 100 100 97.2

We also performed experiments on the Yale Face Database B [3] and com-
pared our recognition results with other methods for fixed frontal pose. The
Yale Database contains images of 10 people with 9 poses and 64 illuminations
per pose. We used 45*10 frontal face images for 10 subjects with each subject
having 45 face images taken under different directional light sources. The data
set is divided to 4 subsets following [15]. Table 2 compares our recognition rates
with previous methods. As can be seen from Table 2, the results from our method
are comparable with methods that require extensive training data per subject
even though our method requires only one training image per pose. For fixed
pose, the 2D HIE method in [34] performs almost as well as the our method,
however the performance is very sensitive to accurate alignment of the faces.

6.3 Multiple Directional Illumination

As we mentioned, most of the previous methods are only applicable to single
directional lighting. We study the performance of our method on images taken
under multiple directional illumination sources to test our method under arbi-
trary illuminations. We synthesized images by combining face images in our data
set and performed experiments on front and side galleries. For each subject, we
randomly selected 2-6 images from the training data set and combined them to-
gether with random weights to simulate face images under multiple directional
illumination sources(16 images per subject). We did experiments on the syn-
thesized images both during training step and testing step. Table 3 shows the
experimental results and we can see that our method also performed equally well
under multiple sources of arbitrary direction.

Table 3. Experimental results of images under multiple directional illumination. ”s”
denotes images under single directional lighting and ”m” denotes synthesized images
under multiple illumination. ”F” denotes the front gallery and ”D” denotes the side
gallery.

Train:s; Test:s Train:m; Test:s Train:s; Test:m Train:m; Test:m

Train:F; Test:F 98.2 98.3 97.8 98.1

Train:F; Test:D 92.4 92.0 91.5 92.2

Train:D; Test:F 94.4 93.6 94.2 94.8

Train:D; Test:D 96.7 95.9 96.3 96.1



7 Conclusions and Future Work

We have shown that by combining a morphable model and spherical harmonic
lighting representation, we can recover both shape and texture information from
one single image taken under arbitrary illumination conditions. Experimental
results indicate that our method’s recognition rates are comparable to other
methods for pose variant images under single illumination. Moreover our method
performs as well in the case of multiple illuminants, which is not handled by
most previous methods. During the training phase, we only need one image
per subject without illumination and pose limitations to recover the shape and
texture information. Thus, the training set can be expanded easily with new
subjects, which is desirable in a Face Recognition System.

In our experiments, we tested both images under single- and multiple- direc-
tional illuminations. At this time, there exist relatively few publicly available sets
of images of faces under arbitrary illumination conditions, so we plan to continue
validation of our method with a database with more types of light sources, e.g.
area sources. There is human interactivity in the initialization of the model and
the feature correspondences. We plan to integrate head pose estimation methods
[32] for model initialization and optical flow algorithms for shape error estima-
tion. In the face recognition phase, our method needs to search the whole pose
space, we expect great speed-up with a pre-filter process(again using face pose
estimation algorithms) to narrow the search space.
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