
Rewriting for Fitch style natural deductions

Herman Geuvers, Rob Nederpelt

Nijmegen University, The Netherlands
Eindhoven University of Technology, The Netherlands

Abstract. Logical systems in natural deduction style are usually presented in the Gentzen
style. A different definition of natural deduction, that corresponds more closely to proofs
in ordinary mathematical practice, is given in [Fitch 1952]. We define precisely a Curry-
Howard interpretation that maps Fitch style deductions to simply typed terms, and we
analyze why it is not an isomorphism. We then describe three reduction relations on Fitch
style natural deductions: one that removes garbage (subproofs that are not needed for the
conclusion), one that removes repeats and one that unshares shared subproofs. We also
define an equivalence relation that allows to interchange independent steps. We prove that
two Fitch deductions are mapped to the same λ-term if and only if they are equal via
the congruence closure of the aforementioned relations (the reduction relations plus the
equivalence relation). This gives a Curry-Howard isomorphism between equivalence classes
of Fitch deductions and simply typed λ-terms. Then we define the notion of cut-elimination
on Fitch deductions, which is only possible for deductions that are completely unshared
(normal forms of the unsharing reduction). For conciseness, we restrict in this paper to the
implicational fragment of propositional logic, but we believe that our results extend to full
first order predicate logic.

1 Introduction

For Gentzen style natural deduction, ([Gentzen 1969]) there is a well-known notion of rewrit-
ing: cut-elimination. This is a procedure for eliminating ‘detours’ in a logical derivation that
arise from first applying an introduction rule and then an elimination rule for a connec-
tive. This notion of reduction can be defined more concisely by associating typed λ-terms
to natural deductions: there is the Curry-Howard isomorphism between natural deductions
and simply typed terms and cut-elimination in the first corresponds to β-reduction in the
latter (see [Howard 1980]). A different definition of natural deduction is flag style natural
deduction defined by [Fitch 1952]. See [Bornat and Sufrin 1999] for a nice implementation
of a proof assistant based on flag deductions. Here, deductions are linear, written vertically
where every line consists of a formula and a motivation for the derivability of that formula
(referring to previous lines). Furthermore, there is a notion of ‘scope’ (of an assumption)
which is indicated by a flag. Apart from the closer correspondence to proofs in mathematical
practice, a positive aspect is that subproofs can be shared. A negative aspect is that, due to
the sharing, the notion of cut-elimination is blurred. Also, the order of the steps in a Fitch
style deduction is somewhat arbitrary: a flag deduction can be seen as a linearization of a
Gentzen style natural deduction tree and this linearization involves some arbitrary (bureau-
cratic) choices. This implies that one Gentzen style tree deduction corresponds to many flag
deductions. We make this precise by using simply typed λ-calculus (see [Barendregt 1992])
and to define a Curry-Howard formulas-as-types (and proofs-as-terms) interpretation from
flag deductions to typed terms. The Curry-Howard interpretation that we define here is not
the only possible one. We will come back to this point briefly in Section 5. The interest of
our interpretation lies in the fact that it ignores those aspects of flag deductions that can be
seen as ‘bureaucracy’. To keep things simple and for space restrictions, we restrict here to
simply typed λ-calculus with just arrow types and for the logic to propositional logic with
just implication.

2 Flag style Natural Deduction

We consider the implicational fragment, so the set of formulas, Form, is built up from a set
of parameters, Par, using the implication →. The rules have the same style as for Gentzen

style tree deduction, fixing the meaning of a connective by saying how to eliminate (an
E-rule) it and how to introduce it (an I-rule).

Flag deduction, a first definition

Definition 2.1. The rules for natural deductions in flag style are the following.

→-Introduction

n A
...

...

m B

m + 1 A→B →I, n, m

→-Elimination

...
...

n A→B
...

...

m A
...

...

l B →E, n, m

Repeat

...
...

n B
...

...

m A
...

...

l B R, n

Hypothesis m A

Remark 2.2. The order in which the lines appear in a flag deduction should be exactly as
suggested by the above diagrams, except for the rule →-E , where A→B and A may be
interchanged. All rules can be applied ‘under a flag’. Furthermore, the repeat rule and the
→-E rule can take their premise (the B, resp. the A and the A→B) from arbitrarily high,
with the proviso that B must be ‘in scope’, i.e. it must not be ‘under a closed flag’.

The repeat rule allows to use one sub-deduction several times. Its use will be discussed later.
Some aspects of the definition are vague: we have not defined what it means for a formula to
be ‘in scope’. The idea is that the →-I rule closes a sub-deduction and that the formulas in
that sub-deduction are not in scope anymore. The definition of flag deductions above lacks
precision, especially if we want to study their structure in detail. We will therefore make
the definition more precise in Definition 2.6, but first we give some examples.

Example 2.3. The following two examples give an impression of flag deductions.

D1 D2

1 A→B

2 A

3 A

4 B →E, 1, 2

5 A→B →I, 3, 4

6 A→A→B →I, 2, 5

7 (A→B)→A→A→B →I, 1, 6

1 A

2 B

3 A R, 1

4 B→A →I, 2, 3

5 A→B→A →I, 1, 4

D3 D4

n A
...

...

m A→A→B

m + 1 A R, n

m + 2 A→B →E, m, m + 1

m + 3 B →E, m + 2, m + 1

1 A→B→C

2 A→B

3 A

4 B →E, 2, 3

5 B→C →E, 1, 3

6 C →E, 5, 4

7 A→C →I, 3, 6

8 (A→B)→A→C →I, 2, 7

9 (A→B→C)→(A→B)→A→C →I, 1, 8

2

In D1, there are two possible ways of deriving B on line 4 →-E, 1, 2 or →-E1, 3. As it is
recorded in the motivation at the end of the line (→-E, 1, 2 in this case), we can distinguish
these two deductions: we will consider these two flag deductions as different. In D2 and D3

we see two possible uses of the repeat rule. D4 is a derivation of a well-known axiom of
Hilbert style deduction.

In D3 we can avoid the use of (repeat), because we can take premises for the →-E rule from
arbitrary high; the use of an explicit (repeat) is for readability only. In D2, we can only avoid
the use of (repeat) if we allow →-introduction without explicitly writing the conclusion as
the last formula. It’s a matter of taste (and choice) whether one wants to allow this. If one
does, we can omit the use of (repeat) completely from our deductions. We choose for this
option, so we can change D2 into the following correct deduction.

D2

1 A

2 B

3 B→A →I, 2, 1

4 A→B→A →I, 1, 3

Flag deduction, an improved definition We have already pointed out that Definition 2.1
is a bit informal, especially as to which formulas are ‘in scope’ (and may henceforth be
repeated or used in the →-E rule). To define mappings between flag deductions and typed
λ-terms, we give a more precise definition of flag deductions. In this definition, a flag de-
duction consists of a sequence of tuples 〈l0, A0, m0〉, 〈l1, A1, m1〉, . . . , 〈ln, An, mn〉. Here each
tuple is of the form 〈l, A, m〉, where l ∈ I is the label, taken from a countable set I (usu-
ally IN) A is a formula (the formula derived at that line) and m is the motivation for the
derivation. This motivation contains the following information: which rule has been applied
to derive the formula and on which lines the derivation is based. The motivations m will be
of the following forms. (We write − to mean ‘nothing’, to be used for hypotheses.)

m meaning

- hypothesis (“raising” a flag)
→-E, l1, l2 →-elimination on the formulas on the lines with labels l1, l2
→-I, l1, l2 →-introduction on the formulas on the lines with labels l1, l2

R, l repeat the formula on the line with label l

Definition 2.4. 1. If Σ is a sequence of tuples 〈l, A, m〉 as above where each label occurs
at most once as a line number, we call it a pre-deduction.

2. Given a pre-deduction Σ and an l′ ∈ I, we say that l′ is Σ-fresh if l′ does not yet occur
in any of the tuples 〈l, A, m〉 of Σ.

3. We say that the formula A is on line l in Σ (or just A is on line l, if Σ is clear from
the context), if the tuple 〈l, A, . . .〉 occurs in Σ.

We will write a pre-deduction in the shape of a flag deduction, like the ones in Example 2.3.
So a line 〈m, A,−〉 is depicted as

m A

This raises a flag, whose “flagpole” we extend to the last line with and →-I, m, l motivation.
Crucial notions in the definition of flag deductions are the scope of a deduction and the flag
of a deduction. Given a deduction Σ, Scope(Σ) will be the set of lines in Σ from which we
can ‘use’ formulas (at the end of Σ). Flag(Σ) is the line l of the ‘last open flag’.

Definition 2.5. For a pre-deduction Σ, we define the scope of Σ, Scope(Σ), as follows1

Scope


... Σ1

m A
... Σ2

l B →-I, m,n

 = Scope(Σ1) ∪ {(l, B)}

1 For clarity, we give this definition by writing the deductions graphically. We could equivalently give it
on the basis of the pre-deductions of Definition 2.4, but that just blurs the presentation.

3

Scope

(... Σ

l A m

)
= Scope(Σ) ∪ {(l, A)} if m 6= [→-I, . . . , . . .]

In the first clause, we have [→-I, m, n] on the last line and we “search” upward for the line
m containing a hypothesis (flag); if there is no line m or if line m contains no hypothesis,
the scope is ∅.
For Σ a pre-deduction, we define Flag(Σ) as follows.

Flag

(... Σ

l A

)
= (l, A)

Flag


... Σ1

m A
... Σ2

l B →-I, m,n

 = Flag(Σ1)

Flag

(... Σ

l A

)
= Flag(Σ) otherwise

Note that Scope may yield an empty set and that Flag may be undefined.

Definition 2.6. We inductively define the notion of flag deduction.

1. (Flag raising) If Σ is a flag deduction or Σ = ∅ and l is a fresh label, then

... Σ

l A

is a flag deduction.
2. (→-E) If Σ is a flag deduction with (l1, A→B), (l2, A) ∈ Scope(Σ) and l is fresh, then

... Σ

l B →-E, l1, l2

is a flag deduction.
3. (→-I) If Σ is a flag deduction with Flag(Σ) = (l1, A), (l2, B) ∈ Scope(Σ) and l is a

fresh label, then ... Σ

l A→B →-I, l1, l2

is a flag deduction.
4. (Repeat) If Σ is a flag deduction with (l′, A) ∈ Scope(Σ) and l is a fresh label, then

... Σ

l A R, l′

is a flag deduction.

Definition 2.7. Let Σ be a flag deduction.

1. The conclusion of Σ is the formula on the last line of Σ.
2. The assumptions of Σ are the formulas in the flags in Σ that are open (i.e. that have

not been closed by an →-I rule). More formally, the assumptions of Σ are the formulas
A for which

∃l ∈ I(〈l, A,−〉 ∈ Σ ∧ (l, A) ∈ Scope(Σ)).

3. For ∆ a set of formulas and A a formula, ∆ `f A if there is a flag-deduction Σ with
conclusion A and assumptions in ∆.

4

2.1 The problem with cut-elimination

In natural deduction, we speak of a cut if we first introduce a connective (via an intro rule)
and then immediately eliminate it (via an elim rule for that same connective). In our case,
that means: doing an →-I to introduce, say A→B and then doing an →-E to derive B. (In
full proposition logic there are more notions of cut: “commuting cuts”, see [Prawitz 1965])
that allow deduction rules to be interchanged, but that’s not of interest here.) In Fitch style,
this would amount to the following, where we denote the process of cut-elimination by =⇒c.

1 A
... Σ

n B

n + 1 A→B →I, 1, n
... Θ

m A
... Π

l B →E, n + 1, m

=⇒c

... Θ

m A
... Σ[m/1]

n B
... Π

The problem here is that the right derivation may not be well-formed: if in the sub-
derivations Θ or Π the formula A→B on line n + 1 is used, the right hand side derivation
has invalid line references (referring to non-existent lines). The problem with cut-elimination
is due to sharing of sub-derivations. To give a precise definition of cut-elimination we first
define the formulas-as-types interpretation from flag deductions to simply typed λ-calculus.

3 Formulas-as-types for Fitch style Natural Deduction

For flag deductions, we define an interpretation into the set of simply typed λ-terms. For the
mapping back, we will need labeled simply typed λ-terms (to be able to restore all the labels
in the flag deduction). Labeled terms are terms where all sub-terms (except the variables)
are labeled with a label from I:

LTerm ::= VarTyp
I | (LTerm LTerm)I | (λVarTyp

I .LTerm)I

The typing rules are the usual: we allow any l ∈ I to be used as a label. So we have
– xA

i : A,
– (MN)l : B if M : A→B, N : A and l ∈ I,
– (λxA

i .M)l : A→B if M : B and l ∈ I.
If we want to denote the label of a sub-term explicitly (in an application or an abstraction)
we write (M l1N l2)l or (λxA

i .M l1)l.

Definition 3.1. The set of labels and variable indices of a labeled λ-term M will be denoted
by lab(M). So,
– lab(xA

i) = {i},
– lab((MN)l) = {l} ∪ lab(M) ∪ lab(N),
– lab((λxA

i .M)l) = {l, i} ∪ lab(M).
Similarly, we will denote the set of lines of a flag deduction Σ by lab(Σ). (These are the
‘line numbers’ that occur in Σ, which are taken from the same index set I of the labels and
indices of λ-terms.)

There is a straightforward mapping from the labeled to the unlabeled terms, by just erasing
labels. We denote it by | |, so if M ∈ LTerm, then |M | ∈ Term. We view a labeled term as a
specific representation of an unlabeled term. Stated otherwise, we consider the terms modulo
relabeling. However, we do not just allow any kind of relabeling, but only injective ones,
because we want to be able to distinguish, e.g. λfA→A→B .λgB→A.λxB .((f(gx)4)6(gx)5)7

and λfA→A→B .λgB→A.λxB .((f(gx)4)6(gx)4)7.

Definition 3.2. A relabeling is an injective map r : I → I. By adding a labeling to a
simply typed λ-term N , we mean to construct a labeled simply typed term M such that
|M | = N and all labels and variable-indices in M are unique (i.e. distinct sub-terms of M
have different labels and similar for variables).

5

A relabeling r : I → I extends immediately to a map on labeled simply typed terms and to
a map on flag deductions. If the labeled term M arises from P as a result of some relabeling
r, we say that M is a relabeling of P .
For mapping simply typed λ-terms to flag deductions, we first add a labeling and then we
define the associated flag deduction. The mapping of flag deductions to simply typed λ-
terms can be defined directly (without using labeled terms). As we will be using the labeled
terms later, we define the map from flag deductions to labeled terms.

Definition 3.3. The interpretation of a flag deduction Σ as a labeled simply typed λ-term,
[[Σ]]L, is defined as follows. (We use the cases of Definition 2.6.)

1. (Flag raising) If the last rule in Σ is a flag, then [[Σ]]L = xA
l .

2. (→-E) If the last rule in Σ is →-E, then then [[Σ]]L = ([[Σ≤l1]]
L[[Σ≤l2]]

L)l.
3. (→-I) If the last rule in Σ is →-I then [[Σ]]L = (λxA

l1
.[[Σ≤l2]]

L)l.

4. (Repeat) If the last rule in Σ is R, then [[Σ]]L = [[Σ≤l′]]L.

Here Σ≤l denotes the pre-deduction Σ up to and including l. The interpretation of a flag
deduction as a simply typed term is defined by just erasing the labels, so

[[Σ]] := |[[Σ]]L|.

When treating examples, we will be using the usual notation for flag deductions, with real
flags and flag poles to indicate the scope of a flag. It should be clear how we can transform
the formal notation of flag deductions (as used above) into a deduction with ‘real’ flags and
flag poles.

Example 3.4. We show the interpretation of two flag deductions as typed λ-terms. For read-
ability, we write the type labels of the variables only in the λ-abstraction.

1 A→A→B

2 A

3 A→B →E, 1, 2

4 B →E, 3, 2

5 A→B →I, 2, 4

6 (A→A→B)→(A→B) →I, 1, 5

1 A

2 B

3 A R, 1

4 B→A →I, 2, 3

5 A→B→A →I, 1, 4

The typed λ-term associated to these terms are λxA→A→B
1 .λxA

2 .(x1x2)x2 and λxA
1 .λxB

2 .x1.

Theorem 3.5 (Soundness of [[−]]). If Σ is a flag deduction with conclusion A, then
[[Σ]] : A. Moreover, if the assumptions of Σ are B1, . . . , Bn, with labels i1, . . . , in, respectively,
then FV([[Σ]]) = {xB1

i1
, . . . , xBn

in
}.

Proof. By induction on the flag deduction Σ. ut

In the definition of the opposite embedding, we assume that the terms are uniquely labeled,
that is, distinct sub-terms of M have different labels and all the indices of the bound variables
are distinct and distinct from the labels. To define the embedding, we first ignore the free
variables (i.e. we don’t raise flags), defining ([−])p. Then we raise flags for all free variables,
defining ([−]). There are basically two versions of the embedding: a simple minded one that
just creates a sub-derivation for every sub-term and uses a lot of instances of the repeat
rule, and a more sophisticated one that does not create any repeat rule. We only treat the
second one.

Definition 3.6 (Simply typed terms → Flag deductions). The interpretation of a
labeled simply typed λ-term M as a pre-deduction, ([M])p, is defined as follows.

1. For ([(M l1N l2)l])p distinguish cases according to the shape of M and N . Let B be the
type of (M l1N l2)l.

(a) M and N are variables:

([(xA→B
i xA

j)l])p = l B →-E,i,j

6

(b) M is a variable, N is not:

([(xA→B
i N l2)l])p =

... ([N l2])p

l B →-E,i,l2

(c) N is a variable, M is not:

([(M l1xA
j)l])p =

... ([M l1])p

l B →-E,l1,j

(d) Neither M nor N is a variable:

([(M l1N l2)l])p =

... ([M l1])p

... ([N l2])p

l B →-E,l1,l2

2. For ([(λxA
i .M)l])p distinguish cases according to whether M is a variable or not. Let B

be the type of M .
(a)

([(λxA
i .xB

j)l])p =
i A

l A→B →-I,i,j

(b)

([(λxA
i .M l1)l])p =

i A
... ([M l1])p

l A→B →-I,i,l1

The interpretation of a labeled simply typed λ-term M as a full flag deduction, ([M]), is
defined by adding flags for the free variables:
If FV(M) = {xB1

i1
, . . . , xBn

in
}, then ([M]) is

i1 B1
...

...

in Bn
... ([M])p

Example 3.7. Compare with 3.4. We define the interpretation of two labeled λ-terms as flag
deductions. For readability, we write the type labels only in the λ-abstractions. Consider
the labeled typed λ-terms (λxA→A→B

1 .(λxA
2 .((x1 x2)

3 x2)
4)5)6 and (λxA

1 .(λxB
2 .x1)

3)4. Their
interpretations are as follows.

1 A→A→B

2 A

3 A→B →E, 1, 2

4 B →E, 3, 2

5 A→B →I, 2, 4

6 (A→A→B)→(A→B) →I, 1, 5

1 A

2 B

3 B→A →I, 2, 1

4 A→B→A →I, 1, 3

Observe that the (repeat) rule does not occur anymore in the resulting deductions. In the
first case, we get the same deduction as the ‘original’ one of 3.4. In the second deduction,
we obtain a different deduction from the one of 3.4: the (repeat) rule has been removed. So
in general, it is not the case that ([−]) ◦ [[−]] is the identity: if we start from a flag deduction,
map it to a λ-term and back, we will sometimes arrive at a different flag deduction then the
one we started from. Apart from the repeat rule, there are more interesting cases sources for
the non-isomorphism. This will be discussed in detail in Section 4. The other way around,
it is the case that [[−]] ◦ ([−]) is the identity on simply typed λ-terms. First we give the
soundness theorem for the second interpretation of flag deductions as typed λ-terms.

7

Theorem 3.8 (Soundness of ([−])). If M is a labeled term of type A, then ([M]) (following
Definition 3.6) is a flag deduction with conclusion A. Moreover, if FV(M) = {xB1

i1
, . . . , xBn

in
}

then the assumptions of ([M]) are B1, . . . , Bn, with labels i1, . . . , in, respectively.

Proof. By induction on M . ut

Theorem 3.9. Given a simply typed λ-term M ,

[[([M])]] ≡ M

Proof. By induction on M . ut

4 The fine structure of flag deductions

We have already pointed out that there is no isomorphism between simply typed terms and
flag deductions, because ([−]) ◦ [[−]], is not the identity. There are various origins for this
non-isomorphism and we categorize them.

Given a term M , we refer to ([M]) as the canonical flag deduction for M . If Σ is a flag
deduction, we will also call ([[[Σ]]]) the canonical form of Σ, because it is the canonical flag
deduction for [[Σ]]. This yields the class of canonical flag deductions. There is an obvious
isomorphism between the typed λ-terms and the canonical flag deductions (modulo relabel-
ing). We want the equivalence relation on flag deductions, that we alluded to before, to be
defined in such a way that the class of canonical flag deductions forms a complete set of
representatives. This characterizes the canonical forms from a different point of view, purely
in terms of flag deductions.

R: Repeat Rule In flag deductions, the (repeat) rule can be applied everywhere. We don’t
want to distinguish two deductions that only differ in the applications of the (repeat) rule.
The interpretation [[−]] maps such deductions to the same λ-term.

G: Garbage (dead ends) In a flag deduction, there may be parts that do not contribute to
the final result. We can call these parts ‘garbage’ or ‘dead ends’. Garbage can be detected
by looking at the set of lines that the conclusion depends on (following the ‘motivations’,
collecting all lines starting from the conclusion); all lines that are not encountered in this
way are garbage. Note that one can not just remove one “garbage line”, because there may
be other (garbage) lines depending on it. (So one has to start removal with the last garbage
line.)

I: Permutation of independent steps The precise order of the deduction steps is somewhat
arbitrary. See the following two examples.

1 A

2 A→B

3 A→C

4 B→C→D

5 C →E, 3, 1

6 B →E, 2, 1

7 C→D →E, 4, 6

8 D →E, 7, 5

1 A

2 A→C

3 C →E, 2, 1

4 A→B

5 B →E, 4, 1

6 B→C→D

7 C→D →E, 6, 5

8 D →E, 7, 3

The conclusion C, now given in line 5, can be located anywhere between lines 3 and 8.
Two consecutive flags can also be permuted, as long as they are not closed. A flag can also
move over a formula, if the derivability of the formula does not depend on the flag. This is
shown in the second deduction. We view all these changes in a deduction as a permutation
of independent steps.

8

S: Sharing of subproofs Consider the following two flag deductions

1 B

2 (A→B)→(A→B)→C

3 A

4 B R, 1

5 A→B →I, 3, 4

6 (A→B)→C →E, 2, 5

7 C →E, 6, 5

1 B

2 (A→B)→(A→B)→C

3 A

4 A→B →I, 3, 1

5 (A→B)→C →E, 2, 4

6 A

7 A→B →I, 6, 1

8 C →E, 5, 7

In the left deduction, the conclusion A→B is used twice (in lines 6 and 7), to do an →-
elimination. The subproof of A→B (lines 3–5) is ‘shared’ by the two applications of →-
E on lines 6 and 7. Although the example above is obviously quite trivial (for reasons
of exposition), this is clearly a great advantage of flag deductions over ordinary natural
deduction (and simply typed λ-terms): a result that has been derived in a certain context
can be reused (i.e. as a source it can be ‘shared’ by consecutive other rules). In ordinary
natural deduction, the result A→B would have to be derived twice. In terms of simply
typed λ-calculus, this means that one and the same sub-term will occur several times. We
illustrate this by computing the λ-term for this flag deduction, which is

y2(λzA.x1)(λzA.x1) : C,

where xB
1 is the variable associated to line 1 and y

(A→B)→(A→B)→C
2 is the variable associated

to line 2. The flag deduction associated with this λ-term is the deduction to the right above.
Observe that the subproof of A→B has been copied and occurs twice in this flag deduction.
Also the repeat rule has been removed.
We now define an equivalence relation 'i on flag deductions that equates flag deductions
that only differ as a consequence of permutation of independent steps. We also define 3
reduction relations, −→r that removes repeat rules, −→g that removes garbage and −→s

that unshares deductions.

Definition 4.1. Define the equivalence relation 'i on flag deductions as the reflexive, sym-
metric, transitive closure of the following relations.
1. (Interchange of lines) If Σ 6= ∅, then

... Θ

l A m

l′ B m’
... Σ

'i

... Θ

l′ B m’

l A m
... Σ

Note that, as we assume both sides of the 'i to be well-formed flag deductions, it must
be the case that l /∈ m′, and l′ /∈ m.

2. (Interchange of blocks) If Σ 6= ∅, then
... Θ

n A
... Π

m A→C →-I,n,p

l B m’
... Σ

'i

... Θ

l B m’

n A
... Π

m A→C →-I,n,p
... Σ

Note that, as we assume both sides of the 'i to be well-formed flag deductions, it must
be the case that l /∈ m′, and l′ /∈ Π.

Remark 4.2 (to the Definition). Note that the well-formedness of the right hand side is
not automatically implied by the well-formedness of the left hand side. We assume Σ 6= ∅,
because if Σ = ∅, then the deduction on the left of the 'i may have a different conclusion
from the one to the right.

9

Definition 4.3. The reduction relations −→g, −→r and −→s on flag deductions are defined
as follows.
1. If Σ 6= ∅ and l /∈ Σ, then

... Θ

n A
... Π

l A→C →-I,n,p
... Σ

−→g

... Θ

... Σ

2. If Σ 6= ∅, l /∈ Σ and m 6= [I,−,−], then

... Θ

l A m
... Σ

−→g

... Θ

... Σ

3. If Σ 6= ∅, then

... Θ

l A R,m
... Σ

−→r

... Θ

... Σ[l/m]

4.

... Θ

m A

l A R, m

−→r

... Θ

m A

5. If m = [R, k] or m = [→-E, k1, k2], then

... Θ1

l A m
... Θ2

l0 B1 . . . ,l. . .
... Θ3

l1 B2 . . . ,l. . .
... Σ

−→s

... Θ1

l A m

l′ A m
... Θ2

l0 B1 . . . ,l. . .
... Θ3

l1 B2 . . . ,l’. . .
... Σ

6.

... Θ1

n A
... Π

l A→C →-I,n,p
... Θ2

l0 B1 . . . ,l. . .
... Θ3

l1 B2 . . . ,l. . .
... Σ

−→s

... Θ1

n A
... Π

l A→C →-I,n,p

n′ A
... Π ′

l′ A→C →-I,n’,p’
... Θ2

l0 B1 . . . ,l. . .
... Θ3

l1 B2 . . . ,l’. . .
... Σ

where Π ′ is just Π with fresh line numbers.

10

The transitive reflexive symmetric closure of −→g,−→r,−→s and 'i will be denoted by
'gris.

Remark 4.4. In the reduction rules, apart from lines being repeated, garbage or interchange-
able, we also have to take into accounts blocks: parts of a proof that are ’guarded’ by an
→-I-rule.

Theorem 4.5 (Preservation of equality under [[−]]L and [[−]]). Let the two flag de-
ductions Σ and Θ be given. If Σ 'i Θ or Σ −→gr Θ , then [[Σ]]L ≡ [[Θ]]L. If Σ −→s Θ,
then [[Σ]] ≡ [[Θ]].

Proof. For every base step in the definition of −→gr or 'i, we show that [[−]]L maps ' flag
deductions to ≡ λ-terms. Similarly for −→s. ut

Lemma 4.6 (Closure under −→r, −→g, −→s). If Σ is a flag deduction and Σ −→g Σ′

or Σ −→r Σ′ or Σ −→g Σ′, then Σ′ is a flag deduction with the same conclusion.

Proof. For every reduction step of Definition 4.3, we easily verify the statement of the
Lemma. ut

Lemma 4.7. The reductions −→g, −→r and −→gr (the union of −→g and −→r) are
strongly normalizing.

Proof. The −→r and −→g rules return a shorter flag deduction. ut

It can also be proved that −→gr is confluent. We will obtain this property only as a conse-
quence of uniqueness of normal forms, which we will prove by defining the gr-normal form
of a flag deduction directly (without reducing).
The end goal of this section is to prove the reverse of Theorem 4.5. To do that we consider
the −→grs normal forms, so we first have to show that these exist, which we do by proving
that −→s terminates on −→gr-normal forms. We first introduce some useful notions and
state some auxiliary Lemmas.
For l a line in Σ, we want to define Σ d l as the flag deduction that arises from Σ by
restricting to all those lines that are ‘needed’ by l. This is the transitive closure of the ‘refers
to’ relation, where a line l refers to l′ if l′ is used in the motivation (the m) of line l. In
taking this transitive closure we skip the applications of the repeat rule. The set of needed
lines is inductively defined as follows.

Definition 4.8. Given a flag deduction Σ and a line 〈l, A, m〉 in Σ, we define the set of
needed lines for 〈l, A, m〉, linesΣ(〈l, A, m〉), by

linesΣ(〈l, A,−〉) = {l}
linesΣ(〈l, A, [R, l0]〉) = linesΣ(l0)

linesΣ(〈l, A→B, [→-I, l1, l2]〉) = {l, l1} ∪ linesΣ(l2)

linesΣ(〈l, B, [→-E, l1, l2]〉) = {l} ∪ linesΣ(l1) ∪ linesΣ(l2)

We will usually omit the formula A and the motivation m from this notation, writing
linesΣ(l) instead. We write Σ d l for Σ d linesΣ(l), the restriction of Σ to the lines that are
in linesΣ(l).

Lemma 4.9. If Σ is in gr-normal form, then Σ d l = Σ (with l the last line of Σ).

Proof. Obviously, l′ ∈ Σ d l ⇒ l′ ∈ Σ, so we only have to prove that all lines that occur in
Σ also appear in Σ d l. This is an easy consequence of the Definition of needed lines. ut

Lemma 4.10. The set of ‘needed lines’ of a flag deduction is preserved under gr-reduction.
That is, for Σ −→gr Σ′, with last lines l and l′ respectively,

linesΣ(l) = linesΣ′(l′).

Which implies immediately that Σ d l = Σ′ d l′.

11

Proof. By distinguishing cases according to the reduction step Σ −→gr Σ′.

Corollary 4.11. For Σ a flag deduction with last line l,

gr-normal form(Σ) = Σ d l.

Proof. Σ has a gr-normal form, say Σ −→gr Σ1 −→gr . . . −→gr Σn with Σn in gr-normal
form. From Lemma 4.10 it follows that Σ d l = . . . = Σi d li = . . . = Σn d ln where li is the
last line of Σi. From Lemma 4.9, it follows that Σn d ln = Σn, so Σ d l is Σn, the gr-normal
form of Σ.

Lemma 4.12. If Σ in gr-normal form, then lab(Σ) = lab([[Σ]]L).

Proof. For lab(Σ) ⊆ lab([[Σ]]L), we prove that all labels of Σ d l (l the last line of Σ) occur
in [[Σ]]L. (Then we are done, because, by Lemma 4.9, Σ d l = Σ for Σ in gr-normal form.)
Let l′ ∈ Σ d l, i.e. l′ ∈ linesΣ(l). We now prove l′ ∈ lab([[Σ]]L) by an immediate induction
on linesΣ(l). For the reverse, lab([[Σ]]L) ⊆ lab(Σ), we prove lab([[Σ]]L) ⊆ lab(Σ d l) by
induction on [[Σ]]L.

Lemma 4.13. If Σ in gr-normal form, and Σ −→s Σ′, then Σ′ is also in gr-normal form.

Proof. Let Σ be in gr-normal form with last line l, so l′ ∈ linesΣ(l) for all l′ ∈ lab(Σ). In
Σ −→s Σ′ new lines are introduced, but they are also in linesΣ(l), as is easily checked by
analyzing the two possible s-reduction steps. ut

Lemma 4.14. If Σ in gr-normal form and Σ −→s Σ′, then #lab([[Σ]]L) < #lab([[Σ′]]L)

Proof. In an s-reduction step, new labels are added. Now the Lemma follows immediately
from Lemmas 4.12 and 4.13. ut

Corollary 4.15 (Termination of −→s on gr-normal forms). If Σ is in gr-normal
form, then unsharing (−→s) terminates on Σ.

Proof. The number of labels in [[Σ]]L strictly increases under −→s (Lemmas 4.14 and 4.13).
On the other hand, the λ-term [[Σ]] (without labels) does not change under −→s. There is
a maximum to the number of labels that can occur in a labeled version of [[Σ]], so −→s

terminates. ut

We now study the i-equality on grs-normal forms. The main result is that, for Σ and Θ in
grs-normal form, if [[Σ]]L = [[Θ]]L, then Σ 'i Θ. The main technique for establishing this
result is ‘merging’ two flag deductions into one. The main property about merging is that, if
Σ is a grs-normal form containing the two independent lines l1 and l2, then merging Σ d l1
and Σ d l2 yields a well-formed flag-deduction Σ′. This only works for Σ in grs-normal
form.

Definition 4.16. Given the flag deduction Σ, with l1l2 ∈ lab(Σ), l1 and l2 are Σ-independent,
notation l1⊥Σl2, if l1 /∈ linesΣ(l2) and l2 /∈ linesΣ(l1). We omit Σ when it is clear from the
context.

An important property of ⊥ is the following.

Lemma 4.17. If Σ is in s-nf and contains the line 〈l, A, [→-E, l1, l2]〉, then l1⊥l2.

In the following we denote by oflag(Σ) the set of open flags of Σ.

Definition 4.18. The flag deduction Σ and Θ are compatible, notation comp(Σ, Θ), if the
following hold.

1. lab(Σ) ∩ lab(Θ) ⊂ oflag(Σ) ∩ oflag(Θ), i.e. a label that occurs in both Σ and Θ must
occur as an open flag in both.

2. If i ∈ oflag(Σ)∩ oflag(Θ) then it occurs as the same flag in both Σ and Θ (i,e. with the
same formula).

12

To define the merging of two flag deductions Σ and Θ, we view them as sequences. The goal
is to prove that if both Σ and Θ are in grs-normal form, then the merging is a well-formed
flag deduction. But this is only the case if we treat a part of a deduction that is ‘under a
flag’ as a ‘block’ (one part of the sequence Σ), thus disallowing lines from Θ to be moved
under a flag of Θ.

Definition 4.19. If comp(Σ, Θ), we define the merging of Σ and Θ, notation Σ||Θ, as the
following flag deduction.
1. First remove oflag(Σ) from Σ and oflag(Θ) from Θ, obtaining Σ′, resp. Θ′.
2. Now interleave the sequences Σ′ and Θ′, starting at the end with an element of Σ′.

In doing so, we consider a part 〈i, A, F 〉, . . . , 〈l, A→B, [I, i, l2]〉 as one element of the
sequence.

3. Finally, put all elements of oflag(Σ)∪ oflag(Θ) on top of the sequence ∆ in a canonical
way (following a fixed ordering of I).

Lemma 4.20. If comp(Σ, Θ) then Σ||Θ is a well-formed flag deduction.

Lemma 4.21. If comp(Σ, Θ) and Σ 'i Σ′, then Σ||Θ 'i Σ′||Θ and Θ||Σ 'i Θ||Σ′.

Proposition 4.22. Given two flag deductions Σ and Θ in grs-normal form, if [[Σ]]L ≡
[[Θ]]L, then Σ 'i Θ.

Proof. By induction on the structure of [[Σ]]L.
var [[Σ]]L = xi. Then Σ and Θ are both 〈i, A, [F]〉.
app [[Σ]]L = (M l1N l2)l. Then Σ and Θ end with an →-E rule. By induction hypothe-

sis, Σ d l1 'i Θ d l1 and Σ d l2 'i Θ d l2 and so Σ 'i Σ 'i ((Σ d l1)||(Σ d
l2))〈l, B, [E, l1, l2]〉 'i ((Θ d l1)||(Θ d l2))〈l, B, [E, l1, l2]〉 'i Θ

abs [[Σ]]L = (λxi:A.M l2)l. Then Σ and Θ end with an →-I rule. They can be of one of the
following shapes.

... . . .

i A
... . . .

l2 B

l A→B →I, i, l2

or

... . . .

l2 B

i A

l A→B →I, i, l2

We distinguish cases according to whether xi ∈ FV(M) (and then i ∈ lines(l2)) or
xi /∈ FV(M) (and then i /∈ lines(l2)). In the first case, Σ and Θ must have the first
shape. By induction hypothesis, Σ d l2 'i Θ d l2. Then also Σ d l2 'i Θ d l2, where the
last open flag is preserved and hence Σ 'i Θ. In the second case, Σ d l2 and Θ d l2 do
not contain i. Hence both Σ and Θ are 'i equal to a deduction of the second shape.
By induction hypothesis, Σ d l2 'i Θ d l2 and we can safely add the line 〈i, A, F 〉 at the
end and also the line 〈l, A→B, [I, i, l2]〉, and hence Σ 'i Θ. ut

To prove the final theorem, we need to more Lemmas. They could have been proved before
already, but were not yet needed. Therefore we state them only now. Both are proved by
induction on the structure of Σ, using the fact that if l is the label of a line that is not a
flag, then l occurs at most once in a motivation of Σ.

Lemma 4.23. If Σ is a flag deduction in s-normal form, then [[Σ]]L is a uniquely labelled
simply typed term. (That is, every label occurs at most once in [[Σ]]L.)

Lemma 4.24. For r a relabelling, Σ a flag deduction and M a labelled simply typed term,
if [[Σ]]L = M , then [[r(Σ)]]L = r(M).

Theorem 4.25. If [[Σ]] ≡ [[Θ]], then Σ 'gris Θ.

Proof. Suppose [[Σ]] ≡ [[Θ]]. Consider the grs-normal forms of Σ and Θ: Σ′ and Θ′. Then
[[Σ]] ≡ [[Σ′]] ≡ [[Θ′]] ≡ [[Θ]]. This implies that [[Σ′]]L ≡ M , [[Θ′]] ≡ N with |M | ≡ |N |.
Moreover (by Lemma 4.23), all labels in M and N are unique, so we can find a relabelling r
such that r(M) is N . By Lemma 4.24, this means that [[r(Σ′)]]L ≡ r(M) ≡ N ≡ [[Θ′]]L. From
Proposition 4.22, it now follows that r(Σ′) 'i Θ′. Hence (as we work modulo relabelling),
Σ 'grs Σ′ 'i Θ′ 'grs Θ. ut
The following follows immediately from the Theorem and Theorem 3.9.

Corollary 4.26. Given a flag deduction Σ, ([[[Σ]]]) 'gris Σ.

13

4.1 Defining Cut-elimination

We can now define cut-elimination on flag deductions by first taking the −→s normal form
and then eliminating cuts as discussed in Section 2.1.

Definition 4.27. We define cut-elimination on flag deductions as follows.

1 A
... Σ

l A→B →-I 1,n
... Θ

k A
... Π

l′ B →E, l, k

=⇒c

... Θ

k A
... Σ[k/1]
... Π

l′ B R,n

k A
... Π0

k′ A
... Σ

l A→B →-I k’,n
... Π1

l′ B →E, l, k

=⇒c

k A
... Π0
... Σ[k/k′]
... Π1

l′ B R,n

As usual, these reduction rules can also be applied in a context. In the definition, we intro-
duce repeat rules to make sure that B remains on the last line. These can again be removed
via −→r steps.

Remark 4.28. Different from cut-elimination in Gentzen natural deduction, a =⇒c-step does
not involve any duplication of subderivations, which may seem odd. However, a =⇒c step
can introduce sharing of subproofs and the unsharing (via −→s) involves duplication of
subderivations. This also implies that, to apply another cut-elimination step we first have
to take the −→s-normal form of the result.

An example where a =⇒c step creates sharing is the following. (On the right hand side, line
l is shared by lines 4 and 6.)

1 A→(B→C)→D

2 A→C

3 A

4 (B→C)→D →E, 1, 3

5 B

6 C →E, 2, 3

7 B→C →I, 5, 6

8 D →E, 4, 7

9 A→D →I, 3, 8
... Θ

l A

l + 1 D →E, 9, l

=⇒c

1 A→(B→C)→D

2 A→C
... Θ

l A

4 (B→C)→D →E, 1, l

5 B

6 C →E, 2, l

7 B→C →I, 5, 6

8 D →E, 4, 7

l + 1 D R, 8

Lemma 4.29. If Σ is a well-formed flag deduction in −→s-normal form and Σ =⇒c Σ′,
then Σ′ is a well-formed flag deduction with the same conclusion.

Proof. As all the lines (except for the flags) are referred to at most once in a −→s-normal
form,we can safely move around the subparts (and remove some of them) as indicated above.

14

Theorem 4.30. For Σ a well-formed flag deduction in −→gs-normal form and for M a
uniquely labelled simply typed term,

Σ =⇒c Σ1 −→sr Σ2 'i Θ iff [[Σ]] −→β [[Θ]]

M −→β N iff ([M]) =⇒c Σ1 −→sr Σ2 'i ([N])

where the Σ1 and Σ2 are existentially quantified.

5 Future work

In this paper we restrict to the simplest fragment of logic: minimal proposition logic. But
already there important aspects of flag deductions become visible, showing that in some way
their structure (e.g. the order of the steps) is quite arbitrary but that in another way (e.g.
the reusability of proven results, ‘sharing’), their structure is quite useful and interesting.
The Curry-Howard interpretation to simply typed λ calculus that we define here and the
analysis of cut-elimination brings about this structure quite nicely.
We believe that the results of this paper can be extended to full first order predicate logic.
This will be presented in forthcoming work which is a more detailed exposition of the results
in this paper. A more intersting aspect is the definition of a term calculus for flag deductions
directly. Simply typed λ-calculus ignores part of the structure of a flag deduction, extracting
its ‘computational content’ and removing ‘bureaucratic details’. But it also removes sharing
and we don’t consider that to be only a ‘bureaucratic detail’, but sometimes computation-
ally relevant. It was suggested by the referees to use a λ-calculus with let-expressions to
encode flag deductions faithfully. Then the reductions −→grs and the congruence 'i can
be described on these terms directly, giving a more perspicuous presentation. The ‘sharing’
example deduction in Section 4 then is interpreted as

let x5 = (λx3.let x4 = x1 in x4) in (let x6 = x2x5 in (let x7 = x6x5 in x7))

This gives connections with the monadic presentation of λ-calculus, the (operational) CPS-
translation, the (logical) A-translation.
Similarly, one can define a slightly different Curry-Howard embedding to simply typed terms
and then 'i becomes σ-equivalence on λ-terms, as in the work of [Regnier 1994]. This gives
a connection with proof nets. We will exploit these connections further and we thank the
referees for their comments.
We note that the other suggested interpretations do not really follow the inductive structure
of the flag deductions. It might be interesting to find a term-calculus for flag deductions
where the basic constructors for flag deductions are the same as for the term calculus.

Acknowledgments
We greatly acknowledge the very insightful comments and suggestions of the referees on the
first version of this paper. We are sorry that we don’t have the space to discuss all their
comments here.

References

[Barendregt 1992] H.P. Barendregt, Lambda calculi with Types. In Handbook of Logic in
Computer Science, eds. Abramski et al., Oxford Univ. Press, pp. 117 – 309.

[Bornat and Sufrin 1999] R. Bornat and B. Sufrin, Animating Formal Proof at the
Surface: The Jape Proof Calculator; The Computer Journal, Vol. 42, no. 3, pp.
177-192, 1999.

[Regnier 1994] L. Regnier, Une équivalence sur les lambda-termes, TCS 126(2), pp.
281–292, 1994.

[Fitch 1952] F. B. Fitch, Symbolic Logic, the Ronald Press Company, New York, 1952.
[Gentzen 1969] G. Gentzen. Collected Works. Edited by M.E. Szabo. North-Holland,

Amsterdam, 1969.
[Howard 1980] W.H. Howard, The formulas-as-types notion of construction, in To H.B.

Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, eds. J.P.
Seldin and J.R. Hindley, Academic Press 1980, pp. 479–490.

[Prawitz 1965] D. Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

15

