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Abstract. We show that, unlike the case in finitary term rewriting,
confluence is not a modular property of infinitary term rewriting systems,
even when these are non-collapsing. We also give a positive result: two
sufficient conditions for the modularity of confluence in the infinitary
setting.

1 Introduction

Modularity is the study of properties of rewriting systems that are, or are not,
preserved when combining different systems. In finitary term rewriting, a number
of properties, e.g., confluence [9, 14], are known to be modular whereas others,
e.g. termination [13], are known not to be; see Ch. 8 of [11] for an overview.
Modularity has, however, been left completely uninvestigated in the setting of
infinitary term rewriting, a formalism developed in a series of landmark papers
[3, 4, 6, 7]. In this paper, we take the first steps to investigate modularity in the
setting of strongly convergent infinitary rewriting.

1.1 Contributions

We show that:

– Confluence is not a modular property of infinitary term rewriting systems,
even for non-collapsing systems.

– Confluence is preserved under disjoint union of a set of left-linear iTRSs iff
the set has the property of being essentially non-collapsing, i.e. at most one
system contains collapsing rules.

– Confluence is preserved under disjoint union of a set of arbitrary (i.e. not
necessarily left-linear), non-collapsing iTRSs if only terms of finite rank are
considered.

1.2 Organization of the Paper

Section 2 introduces basic concepts from infinitary rewriting and defines what
it means for a property to be modular in this setting. Section 3 contains the



counterexample to modularity of confluence. Sections 4 and 5 presents the two
sufficient conditions for confluence to be modular, whereas Section 6 briefly dis-
cusses the difficulties in extending the results to the setting of weakly convergent
rewriting.

2 Preliminaries

We assume familiarity with finitary term rewriting (ample introductions are [2,
8, 1] and Chapter 2 of [12]) and basic ordinal theory (see e.g. [10]). The successor
of an ordinal α is denoted by α + 1, and the least infinite ordinal by ω. If α is
a limit ordinal, we indicate this by writing Lim(α). We assume a countable set
of variables and a “Hilbert-hotel” style renaming for all terms considered so
that fresh variables are always available. Positions in (finite) terms are elements
of {1, 2, . . .}∗ defined in the usual way. The subterm of term s at position p is
denoted s|p. The root symbol of a term is the symbol at position ε. If f is a unary
function symbol and k ∈ ω, we denote by fk(s) k successive applications of f
to the term s; we extend the notation to include fω with the obvious meaning.
Let � /∈ Σ ∪ X . A term with holes is a term over Σ with variable set X ∪ {�}.
A term with a hole at position p will be written as s[]p, a term where the holes
are at positions i ∈ I where I is some (possibly infinite) set is written as s[]i∈I

and is called a (many-hole) context. Observe that a context may have no holes.
Substituting terms from an I-indexed sequence of terms (si)i∈I into a many-
hole context is defined in the obvious way. In the following, we recall a number
of concepts from infinitary rewriting; our definitions are as in [5], with a few
differences in nomenclature.

Definition 1. Let Ter(Σ) be the set of finite terms over the (not necessarily
finite) signature Σ with alphabet X . Define the metric d : Ter(Σ)×Ter(Σ) −→
[0; 1] by d(t, t′) , 0 if t = t′ and d(t,′ t) = 2−k otherwise, where k is the length of
the shortest position at which t and t′ differ. The completion of the metric space
(Ter(Σ), d), denoted Ter∞(Σ) is called the set of finite and infinite terms (or
simply terms) over Σ. The depth of a position, u, in a term is the length, |u|,
of u.

Definition 2. An infinitary rewrite rule is a pair l −→ r where l ∈ Ter(Σ)
and r ∈ Ter∞(Σ) such that l is not a variable and every variable in r occurs
in l. An infinitary term rewriting system, denoted iTRS, is a pair R , (Σ, R),
consisting of a signature Σ and a set of infinitary rewrite rules R.

Definition 3. A term s is linear if every variable of X occurs at most once in
s. A rule l −→ r is left-linear if l is linear. l −→ r is collapsing if r ∈ X .

Definition 4. Let α be any ordinal. A derivation of length α is a sequence of
rewrite steps (sβ −→ sβ+1)β<α. In the step sβ −→ sβ+1, assume that the redex
contracted is at position uβ of sβ; the depth, denoted dβ, of the redex is the depth
of uβ. The derivation is called weakly convergent (aka. Cauchy convergent) if,



for every limit ordinal λ ≤ α, the distance d(sβ , sλ) tends to 0 as β approaches
λ from below. It is called strongly convergent if it is Cauchy convergent and, in
addition, dβ tends to infinity as β approaches λ from below. If (sβ −→ sβ+1)β<α

is convergent with limit t and s0 = s, we write s −→α t, and say that t is a
derivative of s. When the length of the derivation is bounded above by γ, we
shall occasionally write s −→≤γ t. When the length of a strongly convergent
derivation is unimportant, we write s -- t.

Observe that concatenating any finite number of strongly convergent deriva-
tions yields a strongly convergent derivation. The following lemma concerning
strongly convergent rewriting is due to Kennaway et al. [5, 6]:

Lemma 1 (Compression). In every left-linear iTRS, if s -- t, then
s −→≤ω t.

Definition 5. A peak of an iTRS R is a triple t �� s -- t′ of terms such
that s -- t and s -- t′. A valley of an iTRS R is a triple t -- s′ �� t′

of terms such that t -- s′ and t′ -- s′. If there exists a valley
t -- s′ �� t′, then t and t′ are said to be joinable, written t ∼ t′, and
s′ is said to be their join. A term s of R is said to be confluent (aka. trans-
finitely Church-Rosser) if every peak t �� s -- t′ has a corresponding val-
ley t -- s′ �� t′. The iTRS R is said to be confluent if all of its terms are
confluent.

The next auxiliary lemma, the Dovetailing Lemma, will prove to be useful in
Sections 4 and 5.

Lemma 2 (Dovetailing). If {si}i∈I is a set of parallel subterms of some term
s = C[si]i∈I such that there are terms ti with si

-- ti for all i ∈ I, then
s -- C[ti]i∈I.

Proof. Since function symbols have finite arity, there are finitely many of si

with root symbol at any given depth k. Since concatenation of a finite number
of strongly convergent derivations yields a strongly convergent derivation, there
exists, for every k ∈ ω, a strongly convergent derivation Sk turning all si with
root symbol at depth k into the respective ti. Clearly, the derivation S0 ·S1 ·S2 · · ·
is strongly convergent with limit C[ti]i∈I . ut

Definition 6. The direct sum of a set R = {Rk}k∈K of iTRSs over signatures
{Σk}k∈K, denoted by ⊕R, is the iTRS

⋃

k∈K Rk over signature
⊎

k∈K Σk, where
⊎

is disjoint union of sets. If {Rk}k∈K = {R0, R1}, we write R0 ⊕ R1. A term
over

⊎

k∈K Σk is called monochrome if all of its function symbols are elements
of a single Σk.

When the involved signatures are disjoint, we refer to the iTRSs of R as being
disjoint. Observe that, unlike the finitary case, we allow sums of any (finite or
infinite) number of iTRSs. As we shall see, this has no impact on the modularity
of confluence.



Definition 7. The rank of a term s over {Σk}k∈K, denoted by rank(s), is the
maximal number of signature changes in maximal paths starting from the root,
if such a number exists, and ∞ otherwise. If rank(s) 6= ∞, we say that s is of
finite rank.

Note that rank(s) = ∞ does not imply the existence of a maximal path encoun-
tering infinitely many signature changes. All maximal paths could encounter
only finitely many signature changes, but an upper bound on the number of
such changes may not exist.

Definition 8. A predicate P on the class of iTRSs is said to be modular if, given
an arbitrary set {Rk}k∈K, the direct sum ⊕R has property P iff all elements of
{Rk}k∈K have property P .

In (finitary) TRSs, the number of elements of {Σk}k∈K contributing function
symbols to any term s is finite. Hence, it is sufficient to consider finite sets K in
this setting, showing that our definition reduces to the usual one in the finitary
case.

Definition 9. Let the root symbol of the term s over
⊎

k∈K Σk belong to the
signature Σr. The cap of s, denoted cap(s), is the maximal monochrome, linear
term C[xi]i∈I containing the root symbol of s such that there is a sequence (si)i∈I

of terms with root symbols in
⊎

k∈K\{r} Σk and s = C[si]i∈I , in which case we

write C[[si]]i∈I for clarity. The si are called the principal subterms of s.

Observe that a term s may have an infinite number of principal subterms.

Definition 10. The set of blocks of a term s, denoted Bl(s) over
⊎

k∈K Σk is
defined by the following coinduction:

1. cap(s) ∈ Bl(s).
2. If s = C[[si]]i∈I , then, for all i ∈ I, Bl(si) ⊆ Bl(s).

A block, b, is collapsing if b -- x for some x ∈ X , and we say that b
collapses to x. If the underlying iTRS is confluent, each collapsing block b can
collapse to at most one x and we call that x the collapsing variable of that block.

Definition 11. A rewrite step s −→ t is outer if the redex contracted is in the
cap of s, otherwise it is inner. An outer step is indicated by

o
−→, an inner step

by
i

−→.

In the remainder of the paper, we make essential use of the descendant rela-
tion well-known from strongly convergent rewriting [5, Def. 12.5.1], that tracks
positions across derivations. Observe that since we do not in general track resid-
uals (i.e. what “happens” to redexes), we do not require the iTRS involved to
be left-linear (certain residuals will be tracked in Section 4 where all systems
are assumed to be left-linear).



Definition 12 (The Descendant Relation). Let R be an iTRS, let s be a
term of R, and let s -- t. The set of descendants of any position u ∈ Pos(s)
across s -- t, denoted u/(s -- t), is defined by induction on the length α
of s -- t:

– α = 0. Then, u/(s -- t) = {u}.
– α = β +1. Let q be any position of sβ and assume that the redex r contracted

in sβ −→ sβ+1 is of the rule l −→ r and situated at position u. If q � u, then
q/(sβ −→ sβ+1) = {q}. If u ≺ q, then there is exactly one variable occurrence
x in l at position px such that u ·px ·p′ = q for some position p′. Let {pk

x}k∈K

be the set of positions of occurrences of x in r. Then, q/(s -- sβ+1) = {u ·
pk

x ·p
′} We then define u/(s −→ sβ+1) to be

⋃

q∈u/(s−→sβ)(u/(sβ −→ sβ+1)).

– Lim(α). Here, a position q of sα is a descendant of a position u of s iff q is
a descendant of u in sβ for all sufficiently large β < α.

We shall speak of descendants of variable occurrences and principal subterms,
meaning “the position of a variable occurrence” and “position of the root symbol
of a principal subterm”. Note that the definition of descendant entails that if
C[[si]]i∈I

-- C ′[[tj ]]j∈J and some tj is a descendant of si, then si
-- tj .

Strong convergence is crucial in this respect (cf. Section 6).

3 A General Counterexample to Modularity of

Confluence

We now turn to the modularity of confluence. As in the case of orthogonal
systems, there is a trivial counterexample based on the presence of two collapsing
rules: If R0 = {f(x) −→ x} and R1 = {g(x) −→ x}, then both R0 and R1 are
confluent, but in R0⊕R1 there is a peak fω �� f(g(f(g(· · · )))) -- gω, and
fω and gω are obviously not joinable. We will therefore restrict our attention to
non-collapsing systems.

In infinitary rewriting, we may need “balancing” rules to make non-left-
linear rules applicable if we desire confluence. To appreciate this, consider S ,

{f(x, x) −→ a} which is (finitarily) confluent by Newman’s Lemma; but when
considering S as an iTRS, we lose (infinitary) confluence:

Example 1. Consider S. From the term h , f(h, h) we get the following two
derivatives k , f(a, k) and p , f(p, a), both of which are normal forms of S, i.e.
S cannot be confluent. ut

Suitably extending S yields a confluent iTRS; consider the following right-
ground system:

R ,























f(x, x) −→ a
f(a, x) −→ a
f(x, a) −→ a
f(f(x, y), z) −→ a
f(x, f(y, z)) −→ a



We have the following:

Proposition 1. R is confluent.

Proof. We claim that if f(s, s′) is a term and if f(s, s′) -- t is a strongly
convergent derivation of length at least 1, then t −→ a (observe that t /∈ X ). We
reason as follows: If t = a, we are done. Otherwise, write t = f(w, w′) and split
on cases according to w and w′:

1. w = a or w′ = a. Here, t −→ a by an application of either the rule f(a, x) −→
a or f(x, a) −→ a.

2. w = f(r, r′) or w′ = f(r, r′). In this case, t −→ a by an application of either
the rule f(f(x, y), z) −→ a or the rule f(x, f(y, z)) −→ a.

3. w = x and w′ = y for x, y ∈ X . Since there are no collapsing rules, this
is only possible if s = x and s′ = y. If x 6= y, f(x, y) is a normal form,
which contradicts the assumption that f(s, s′) -- t has length at least 1.
Thus, we must have x = y, i.e. w = w′ and the rule f(x, x) −→ a yields
f(w, w′) −→ a. ut

Make a “copy”, R′, of R, renaming f to g and a to b, and copying the rules
mutatis mutandis. The resulting system is clearly confluent, but R ⊕ R′ is not
confluent:

Proposition 2. The term s , f(g(s, s),g(s, s)) is not confluent (in R ⊕ R′).

Proof. It is clear that s −→ a and that g(s, s) −→ b. There is a strongly con-
vergent derivation of the “right” subterm g(s, s) with limit s′′ , g(a, f(b, s′′)).
Since the “left” subterm g(s, s) rewrites in one step to b, s can in ω steps be
rewritten to s′ , f(b,g(a, s′)), which is a normal form. Thus, there is a peak
a �� s -- s′ for which no corresponding valley exists. ut

Corollary 1. R ⊕ R′ is not confluent.

Corollary 2. Confluence is not a modular property of iTRSs.

The counterexample to confluence crucially employs two facts:

1. One of the considered systems has a rule that is not left-linear.
2. The specific term considered does not have finite rank.

The further main results of this paper are that if restrictions are imposed on
one of the two facts above, modularity of confluence may be recovered.

4 Modularity of Confluence for Left-Linear Systems

In this section we consider combinations of confluent, left-linear, pairwise dis-
joint systems, and subsequently derive necessary and sufficient conditions for
modularity of confluence. We begin by proving our results for non-collapsing
iTRSs and later extend them to sets of iTRSs R such that ⊕R is essentially
non-collapsing.



Definition 13. The term s is said to be insulated if it contains no collapsing
blocks.

Proposition 3. If R is a left-linear iTRS, s is insulated and s -- t, then t
is insulated.

Proof. By left-linearity and insulation of s. ut

Thus, for left-linear terms, insulation of s corresponds to the notion of preser-
vation well known from the study of modularity in finitary rewriting [9].

Proposition 4 (Outer and Inner Derivations Commute). Let R be a set
of left-linear, pairwise disjoint iTRSs and let s be an insulated term with a peak

t i�� s o-- t′. Then, there exists a term s′ and a valley t′ i-- s′ o�� t.

Proof. Straightforward induction on the length of the longest of the two deriva-
tions in the peak (in case of equal length, pick any of them). ut

Proposition 5 (Postponement of Inner Derivation). Let R be a set of
left-linear, pairwise disjoint iTRSs and let s be an insulated term with s -- t

(in ⊕R). Then, there is a term t′ such that s o-- t′ i-- t.

Proof. By left-linearity and insulation, inner rewrite steps can neither destroy
nor create outer redexes, and there is thus a term t′ and a strongly convergent
outer derivation s -- t′ such that cap(t′) = cap(t), and such that the set of
descendants of any position of a variable occurrence in cap(s) is identical under
s -- t and s -- t′. Every principal subterm tj of t is a descendant of some
subterm si of s, and by disjointness of the iTRSs and strong convergence, we have
si

-- tj . By strong convergence of s -- t and the definition of descendant,
tj is eventually “fixed” at a single position pj . The principal subterm of t′ at
pj is a descendant of si, and since there were no inner steps in s -- t′ must
be identical to si. Hence, si

-- tj . Since tj was arbitrary, the same argument
holds for all principal subterms of t, and an application of the Dovetailing Lemma
concludes the proof. ut

Proposition 6. Let R be a set of left-linear, pairwise disjoint, confluent iTRSs,
and let s be an insulated term. Then the following diagram commutes for any
peak t �� s -- t′:

s
o
-- t0

i
-- t

t′0

o
?
? o

-- s1

o
?
? i

-- t1

o
?
?

t′

i
?
? o

-- t′1

i
?
?

where all rewrite steps in the peak t1
i�� s1

i-- t′1 take place at depth ≥ 1.



Proof. Use Proposition 5 twice to erect the leftmost and uppermost sides of the
diagram. Since the systems were assumed to be confluent and left-linear, outer
derivation is confluent, whence we get commutativity of the upper-left square.
Two applications of Proposition 4 furnish commutativity of the two remaining
squares. All rewrite steps in the peak t′1 �� s1

-- t1 are inner, and so by
insulation take place at depth ≥ 1. ut

Lemma 3. Let R be a set of left-linear, confluent, pairwise disjoint iTRSs.
Then every insulated term is confluent (in ⊕R).

Proof. Let t �� s -- t′ be a peak of ⊕R with s insulated. By Propo-
sition 6, we can erect a diagram as in that proposition. Consider the peak
t1 �� s1

-- t′1 and observe that cap(s1) = cap(t1) = cap(t′1), since s was
insulated. Write s1 = C[[s′i]]i∈I . Then the inner derivations in t1 �� s1

-- t′1
occur in the si. Applying the proposition coinductively (viz. the below diagram)
to the inner derivations in the si – using the Dovetailing Lemma to order ar-
range derivations in parallel subterms – yields strongly convergent derivations
t -- s′ �� t′ for some term s′, as all redex contractions at the “kth appli-
cation” of Proposition 6 take place at depth ≥ k.

s
o

-- t0
i

-- t

t′0

o

?
? o

-- s1

o

?
? i

-- t1

o

?
?

s1
(o)
--

....................
t10

(i)
-- t1

..................

t′

i

?
? o

-- t′1

i

?
?

t′10

(o)
?
? (o)

-- s2

(o)
?
? (i)

-- t2

(o)
?
?

t′1

(i)
?
?

(o)
--

..................
t′2

(i)
?
?

ut

Corollary 3. Modularity is confluent for left-linear, non-collapsing, iTRSs.

4.1 Essentially Non-Collapsing Sets of iTRSs

We now give a simple condition on sets of iTRSs that will turn out to be a
necessary and sufficient condition for the modularity of confluence.



Definition 14. A set, R, of pairwise disjoint iTRSs is said to be essentially
non-collapsing if at most one iTRS of R contains a collapsing rule. If there
exists an R such that R is the unique iTRS among R that contains a collapsing
rule, we call R the collapsing colour of R.

The definition is similar to the notion of almost-non-collapsing iTRS well-
known from the study of orthogonal iTRSs [5]; observe however, that the term
is used here as a property of a set of iTRSs, not the individual iTRSs.

Proposition 7. Let R be a left-linear iTRS. If there is a strongly convergent
derivation s −→α x for some x ∈ X , then s −→k x for some k ∈ ω.

Proof. By the Compression Lemma, we may assume that α ≤ ω. The fact that
s −→≤ω x is convergent now furnishes the desideratum. ut

Lemma 4. If R is a set of left-linear, pairwise disjoint, confluent iTRSs such
that ⊕R is confluent, then R is essentially non-collapsing.

Proof. By contraposition. If R were not essentially non-collapsing, there would
be at least two iTRSs, (Σ1, R1) and (Σ2, R2), each containing a collapsing rule.
We may write as C1[x] −→ x, resp. C2[x] −→ x where the first rule is from R1,
and the second from R2. The term C1[C2[C1[C2[· · · ]]]] has the two derivatives
C1[C1[· · · ]] and C2[C2[· · · ]] which are terms over disjoint alphabets and are hence
joinable only if both terms can be rewritten to a variable, y. By Proposition
7, this can only happen if Ci[Ci[· · · ]] −→∗ y. Since this derivation is finite,
there exists an n such that a stack, Ci[· · · [Ci[x]]] of n copies of Ci[x] rewrites
to y. But, clearly, Ci[· · · [Ci[x]]] −→∗ x, whence confluence of the underlying
iTRS yields x = y. By left-linearity, we may assume that there are no copies
of x in Ci[Ci[· · · ]]. Thus, C1[C1[· · · ]] and C2[C2[· · · ]] have no common join,
contradicting confluence of ⊕R. ut

Thus, essential non-collapsingness is a necessary condition for modularity of
confluence. To see that it is also sufficient, we proceed as follows:

Definition 15. Let R be a set of left-linear, confluent, pairwise disjoint iTRSs.
Let s be a term and write s = C[[si]]i∈I (observe that if s is monochrome, we
have I = ∅). We define the term s̃ as follows:

C[s̃i]i∈I if C[xi]i∈I is not collapsing
s̃m if C[xi]i∈I

-- xm

That is, s̃ is the term obtained from s by collapsing all collapsing blocks
in a top-down fashion; by essential non-collapsingness, only blocks of a single
colour will be collapsed. Observe that by confluence of the elements of R, each
block can collapse in at most one way, whence s̃ is well-defined. Note also that
s -- s̃.

Proposition 8. Let R be an essentially non-collapsing set of left-linear, pair-
wise disjoint, confluent iTRSs. Then s̃ is insulated, and the set of descendants
of any u ∈ Pos(s) is the same for any strongly convergent derivation s -- s̃
and satisfies |u/(s -- s̃)| ≤ 1.



Proof. By left-linearity, contraction of redexes in one block can only create re-
dexes in another if the block collapses. Since the considered systems are left-linear
and there is at most one collapsing colour, s̃ must be insulated. By confluence of
the systems, each collapsing block C[x1, . . . , xm] has a unique collapsing variable
xi, and we hence have |u/(s -- s̃)| ≤ 1 for any such derivation. u/(s -- s̃)
is clearly independent of the choice of derivation. ut

Definition 16. Let R be an essentially non-collapsing set of left-linear, conflu-
ent, pairwise disjoint iTRSs, For any term s, we define Ps(u) as the predicate
on Pos(s) that is true iff u has a descendant across s -- s̃. Furthermore, we
set Us , {u ∈ Pos(s) : Ps(u)}.

By the previous proposition, we see that Ps(u), and hence also Us, is well-
defined.

Proposition 9. Let R be an essentially non-collapsing set of left-linear, con-
fluent, pairwise disjoint iTRSs, and s be a term. Then Us is partially ordered by
≺ and the graph of (Us,≺) is a (possibly infinite) directed tree Ts. The number
of children of Ts at any vertex u is the arity of the function symbol at position
u in s.

Proof. Us is partially ordered by ≺ since Pos(s) is. The graph of (Pos(s),≺)
is a directed tree, and clearly Us is connected, hence also a directed tree. If a
block collapses, at least one position below it has a descendant across s -- s̃,
whence a position u ∈ Pos(s) has exactly as many children in (Us,≺) as it has
in (Pos(s),≺). ut

Proposition 10. Let R be an essentially non-collapsing set of left-linear, con-
fluent, pairwise disjoint iTRSs, and let s -- s′ have length at most ω (by the
Compression Lemma, if need be). Let d be any non-negative integer. There is a
non-negative integer d′ such that, for all u ∈ Us′ with |u| ≥ d′, the depth, d′′,
of the single element in u/(s′ -- s̃′) satisfies d′′ ≥ d. Furthermore, there is

a k ∈ ω such that for k′ > k, if the redex, r, contracted in sk′

r
−→ sk′+1 is at

position u, then the unique residual of r by sk′
-- s̃k′ is at depth ≥ d.

Proof. By Proposition 9 and the pigeon hole principle, the number of vertices
at each depth in Ts′ is finite. Write u = pnc

1 · pc
1 · pnc

2 · pc
2 · · · p

nc
m where the pnc

i

and pc
i are the positions of variables in non-collapsing and collapsing blocks of

s′, respectively, and where pnc
1 is possibly the empty position. Clearly, the depth

of the single element in u/(s′ -- s̃′) is cl(u) , |pnc
1 · pnc

2 · · · pnc
m |, and cl(u)

is thus the depth of u in Ts′ . Let {u1, . . . , um} be the set of vertices in Ts′ at
depth d, and set d′ , max{|u1|, . . . , |um|}; then Ps′(u) and |u| ≥ d′ implies
cl(u) ≥ d. Strong convergence of s -- s′ and the fact that the length is at
most ω yield existence of a k ∈ ω such that all redexes contracted in sk

-- s′

are at depths ≥ d′. Hence, for any k′ > k, if sk′

r
−→ sk′+1, the unique residual

of r by sk′
-- s̃k′ will be at depth ≥ d in s̃k′ . ut

Proposition 11. Let R be an essentially non-collapsing set of left-linear, con-
fluent, pairwise disjoint iTRSs, and let s -- t. Then s̃ -- t̃.



Proof. By the Compression Lemma, we may assume that s −→≤ω t, and proceed
by induction on the length, α, of the derivation:

– α = 0. Trivial.

– α = j + 1.

Consider sj
r

−→ sj+1; if the redex r is at position u and u /∈ Usj
, we have

s̃j = s̃j+1, and we are done. If u ∈ Usj
, contracting r/(sj

-- s̃j) clearly
yields s̃j+1 in one step.

– α = ω. By Proposition 10, for each depth d ∈ ω, there is a k ∈ ω such that
all steps in s̃k′ −→ s̃k′+1 are below depth d for k′ > k, showing that the
resulting derivation is strongly convergent with limit t̃. ut

Proposition 12. Let R be the collapsing colour of an essentially non-collapsing
set R of left-linear, confluent iTRSs. If s̃ -- t, then s -- t.

Proof. s -- s̃ -- t. ut

We can now prove the first positive result of the paper:

Theorem 1. Let R be a set of confluent, left-linear, pairwise disjoint iTRS.
Then, ⊕R is confluent iff R is essentially non-collapsing.

Proof. If ⊕R is confluent, it follows from Lemma 4 that R must be essentially
non-collapsing. Conversely, if R is essentially non-collapsing, let t �� s -- t′

be a peak of ⊕R. By Proposition 11, there exists a peak t̃ �� s̃ -- t̃′.
Lemma 3 now yields existence of a term s′ and strongly convergent sequences
t̃ −→ s′ and t̃′ −→ s′. An application of Proposition 12 concludes the proof. ut

4.2 Mutually Orthogonal Systems

Confluence of left-linear systems in finitary rewriting can be ensured by less
strict demands than that of disjointness. In both first- and higher-order finitary
rewriting, mutual orthogonality (and the more lax mutual weak orthogonality)
is sufficient for confluent systems to be confluent under direct sum [15]. The
techniques of [6, 5] for proving confluence results in orthogonal (strongly con-
vergent) transfinite rewriting use reasoning about residuals and the depths of
redexes contracted in valleys as their linchpin; this does not generalize to arbi-
trary confluent iTRSs, hence not to the setting of modularity, since we cannot
necessarily track residuals in non-orthogonal systems. Unlike the case with dis-
joint systems, contraction of a redex in one system can create redexes in others
without being the application of a collapsing rule; as we cannot properly gauge
the effect of such creations without tracking residuals, there appears to be no
easy way of extending our results for left-linear systems to the setting of mutual
orthogonality.



5 Confluence of Terms of Finite Rank

In this section, we show that when only terms of finite rank are considered,
confluence is modular for non-collapsing, not necessarily left-linear, systems. The
methods employed are akin to Toyama’s original proof of (finitary) confluence of
TRSs [14] and the initial part of the later, more elegant proof [9]. The parts of
these papers dealing with collapsing rules do not appear to be applicable when
working with strongly convergent derivations.

Proposition 13. If the confluent terms s and s′ satisfy s ∼ s′ (i.e. s and t are
joinable), then any derivative, t, of s is joinable with any derivative, t′, of s′.

Proof. Straightforward. ut

Definition 17. For sequences of terms (sk)k∈K and (tk)k∈K, we write (sk)k∈K ∝
(tk)k∈K when it is the case that tk′ = tk′′ if sk′ ∼ sk′′ for all k′, k′′ ∈ K.

Proposition 14. Let R be a set of non-collapsing, pairwise disjoint iTRSs, let
s = C[[si]]i∈I , and assume that s -- t with t = C ′[[tj ]]j∈J . Choose variables
(xi)i∈I such that (si)i∈I ∝ (xi)i∈I . Then C[xi]i∈I

-- C ′[yj ]j∈J such that yj

is a descendant of xi across C[xi]i∈I
-- C ′[yj ]j∈J iff tj is a descendant of si

across s -- t for all i ∈ I, j ∈ J .

Proof. By induction on the length, α, of s -- t.

– α = 0. Straightforward.
– α = β+1. Write sβ = D[[t′k]]k∈K; by the induction hypothesis we may assume

that there exists a strongly convergent derivation
C[xi]i∈I

-- D[zk]k∈K such that zk is a descendant of xi iff t′k is a descen-
dant of si, for all k ∈ K, i ∈ I Consider the single rewrite step sβ −→ sβ+1.
Assume that the redex contracted is of the rule l −→ r in sβ and at position
u. If the redex is not outer, or the rule is left-linear, the desideratum follows
immediately. Assume, then that the redex is outer and that the rule is not
left-linear. Since the induction hypothesis furnishes that zk is a descendant of
xi iff t′k is a descendant of si, for all k ∈ K, i ∈ I, whence (t′k)k∈K ∝ (zk)k∈K,
and the rule l −→ r is applicable at position u in D[zk]k∈K. The demand on
the descendants is clearly fulfilled.

– Lim(α). Observe that the rewrite steps of C[xi]i∈I
-- C ′[yj ]j∈J corre-

spond exactly to the outer steps of s -- t. If C[xi]i∈I
-- C ′[yj ]j∈J

were not strongly convergent, neither would s -- t be. It is clear by the
definition of the descendant relation that the demand on the descendants is
fulfilled. ut

Proposition 15. Let R be a non-collapsing iTRS, let s = C[[si]]i∈I such that
the si are all confluent, and choose variables (xi)i∈I such that (si)i∈I ∝ (xi)i∈I .
If C[xi]i∈I

-- C ′[zk]k∈K, then C[[si]]i∈I
-- C ′[[tk]]k∈K such that tk is a

descendant of si across C[[si]]i∈I
-- C ′[[tk]]k∈K iff zk is a descendant of xi

across C[xi]i∈I
-- C ′[zk]k∈K.



Proof. By induction on the length, α, of C[xi]i∈I
-- C ′[zk]k∈K.

– α = 0. Straightforward
– α = β + 1. Write sβ = D[rl]l∈L. We have C[xi]i∈I −→β D[zl]l∈L. By the

induction hypothesis, we have C[si]i∈I
-- D[rl]l∈L for suitable (rl)l∈L

such that the demand on the descendant relation is satisfied. Assume that
the redex contracted is of the rule l −→ r in sβ and at position u in D[zl]l∈L.
If the rule is left-linear, the desideratum follows immediately. If the rule is
not left-linear, applicability of the rule in D[zl]l∈L, (si)i∈I ∝ (xi)i∈I and the
descendants part of the induction hypothesis furnishes that if zj = zj′ , rj

and rj′ are joinable. Since l is a finite term, only a finite number of principal
subterms need to be reduced to a common term in order for the rule to
be applicable in D[rl]l∈L. Thus, by Proposition 13, there exists a strongly
convergent derivation D[rl]l∈L

-- D[r′l]l∈L (with all steps performed at
depth ≥ |u|) such that l −→ r is applicable at position u in D[r′l]l∈L and the
demand on the descendant relation is satisfied.

– Lim(α). There are two kinds of rewrite steps performed in
C[[si]]i∈I

-- C ′[[tk]]k∈K: “outer” steps corresponding to (and of the same
depth as) the steps in s -- C ′[zk]k∈K, and “inner” steps performed to
make non-left-linear rules applicable in the successor case above. The inner
steps are all performed at a depth greater than that of the non-left-linear
outer step that prompted them. Hence, the resulting derivation is strongly
convergent; the demand on the descendant relation is clearly satisfied. ut

Lemma 5. Let R be a set of non-collapsing iTRSs and let s = C[[si]]i∈I.
Assume that outer derivation and the si are confluent for all i ∈ I, and let
D[[tl]]l∈L

�� s -- D′[[tl′ ]]l′∈L′ be a peak. Then there exists a valley
t -- s′ �� t′.

Proof. Apply Propositions 14 and 15 twice:

C[[si]]i∈I
-- D[[tl]]l∈L

Prop. 14

C[xi]i∈I
--

......................................
D[yl]l∈L

.....
.....

.....
.....

.....
.....

.....
..

Prop. 14 Prop. 15

D′[y′
l′ ]l′∈L′

?
?

...........-- C ′[zk]k∈K

?
?

..............

............... C ′[[rk]]k∈K

?
?

.....................................

Prop. 15 rk ∼ r′k

D′[[tl′ ]]l′∈L′

?
?

.....................................................--
.....

.....
.....

.....
.....

.....
.....

...

C ′[[r′k]]k∈K

................
...........-- C ′[[s′k]]k∈K

?
?

..............



For the lower right rectangle, observe that the demand on the descendant re-
lations in Propositions 14 and 15 ensure that rk and r′k are descendants of the
same si for all k ∈ K. Since the si were confluent, we get rk ∼ r′k for all k ∈ K.
An application of the Dovetailing Lemma yields that performing the |K| deriva-
tions needed to obtain C ′[[s′k]] from C ′[rk ] (resp. C ′[r′k]) can be done in a strongly
convergent fashion. ut

We now have the second positive result of this paper:

Theorem 2. Let R be a set of non-collapsing, confluent iTRSs. Then, every
term s over

⊎

i∈I Σi with finite rank is confluent.

Proof. By induction on rank(s). If rank(s) = 0, the result follows immediately,
since monochrome terms were assumed to be confluent. If rank(s) > 0, note that
outer derivation is confluent, as are all principal subterms of s, since they have
rank strictly less than rank(s). The result follows by an application of Lemma
5. ut

Systems containing collapsing rules exhibit severe technical complications
that appear to be solvable neither with the techniques presented herein, nor
with the standard techniques from finitary rewriting [9, 14].

6 Weakly Convergent Rewriting

In the previous sections, we have considered strongly convergent derivations. The
more general setting of weak convergence is not very well understood, and sports
far fewer auxiliary results. A major hurdle in this setting is that it is not clear
how to define a suitable descendant relation. To appreciate the impact of this
on the study of modularity, observe that the techniques of finitary rewriting, as
well as those in this paper, depend crucially on the property of non-collapsing
rewriting that, in a derivation s -- t, we can identify principal subterms of
t with descendants of principal subterms of s. This is lost in weakly convergent
rewriting, to wit the following example:

Example 2. We give an example of a weakly convergent derivation s −→α t
such that, for a principal subterm tj of t, there is no principal subterm si of

s satisfying si
-- tj . Let R0 , {a(x) −→ b(x)} and let R1 by the system

consisting of the following infinite set of rules:

f(x,gk(c),d(y, z)) −→ f(y,gk+1(c), z) for k ∈ ω

Clearly, the two systems are disjoint, and both are orthogonal. Let s , d(aω , s)
and ponder the term:

f(a(c),g(c),d(a(c),d(a(a(c)),d(a(a(a(c))),d(· · · )))))

from which there is a weakly convergent derivation having limit f(aω ,gω, s)
(contract redexes at position ε repeatedly). But there is no principal subterm, si

of the starting term such that a weakly convergent derivation si −→
β aω exists

for any ordinal β. ut
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