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Abstract. Monadic Second-Order Unification (MSOU) is Second-Order
Unification where all function constants occurring in the equations are
unary. Here we prove that the problem of deciding whether a set of
monadic equations has a unifier is NP-complete. We also prove that
Monadic Second-Order Matching is also NP-complete.

1 Introduction

Monadic Second-Order Unification (MSOU) is Second-Order Unification (SOU)
where all function constants occurring in the problem are at most unary. It
is well-known that the problem of deciding if a SOU problem has a solution
is undecidable [Gol81,Far91,Lev98,LV00], whereas, in the case of MSOU, the
problem is decidable [Hue75,Zhe79,Far88|. It is not a restriction to assume for
this discussion that second order variables are also unary. In [SSS98], it is proved
that the problem is NP-hard. In this paper, we prove that it is in NP.

MSOU can be decided by first making a guess for every variable, whether
it uses its argument or not, and then calling string unification. This shows
again that MSOU is decidable since string unification is decidable [Mak77], and
also that MSOU is in PSPACE by using the result that string unification is
in PSPACE [Pla99]. Since this is the currently known upper bound for string
unification, our result that MSOU is NP-complete gives a sharp bound that
(currently) cannot be obtained from results on string unification.

MSOU is a specialization of bounded second order unification (BSOU).4
BSOU is decidable [SS04], which provides another proof of decidability of MSOU,
but no tight upper complexity bound. On the other hand, our proof and results
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4 Accordingly to Property 2 we can restrict variables to be unary, as constants. Then
in instantiations Ax.t for variables X of the problem, the variable x can occur at
most once in t, as in BSOU.



suggest an application to BSOU, which may result in proving a precise upper
complexity bound for BSOU.

To prove that MSOU is in NP, first, we show how, for any solvable set of
equations, we can represent (at least) one of the solution (unifiers) in polyno-
mial space. Then, we prove that we can check if a substitution (written in such
representation) is a solution in polynomial time.

There are two key results to obtain this sharp bound: One is the result on
the exponential upper bound on the exponent of periodicity of size-minimal
unifiers[Mak77,KP96,5S5S98] (see Lemma 3). This upper bound allows us to
represent exponents in linear space. The other key is a result of Plandowski
[P1lag4,Pla95] (see Theorem 1) where he proves that, given two context-free
grammars with just one rule for every non-terminal symbol, we can check if
they define the same (singleton) language in polynomial time (on the size of the
grammars).

This paper proceeds as follows. After some preliminary definitions, in Sec-
tion 3, we define lazy unifiers and prove that size-minimal unifiers are lazy uni-
fiers. We prove some properties of singleton CFG in Section 4. We use a graph in
order to describe the instance of some variable (Section 5). Sometimes, we need
to rewrite such graph (Section 6). Based in this graph, we prove that, for any
size-minimal lazy unifier, we can represent the value of some variable instance
using a polynomial singleton grammar (Theorem 2). In Section 7, we extend this
result to the whole unifier, and conclude the NP-ness of the MSOU problem.

2 Preliminary Definitions

Like in general second-order unification, we deal with a signature X' = (J,~, 2,
where constants of Y; are i-ary, and a set of variables X = (J;,5, Ai, where
variables of X; are also i-ary. Variables of X{y are therefore first-order typed and
those of AX;, with ¢ > 1 are second-order typed. Well-typed terms are built as
usual. We notate free variables with capital letters X, Y,...and bound variables
and constants with lower-case letters x, y,...and a, b,...Terms are written in
On-normal form, thus arities can be inferred from the context. As far as we do
not consider third or higher-order constants, first-order typed terms (in normal
form) do not contain A-abstractions, and second-order typed terms only contain
A-abstractions in topmost positions. The size of a term ¢ is noted |¢| and defined
as its number of symbols. A term is said to be monadic if it is built without
using constants of arity greater than one, i.e. on a signature with X; = (), for
any 4 > 2. Notice that there is no restriction on the arity of variables.
Second-order substitutions are functions from terms to terms, defined as
usual. For any substitution o, the set of variables X, such that o(X) # X, is finite
and is called the domain of the substitution, and noted Dom(c). A substitution
o can be presented as [X1 — t1,...,X, — t,], where X; € Dom(o), t; has the
same type as X;, and satisfies t; = o(X;). Given two substitutions o and p,
their composition is defined by (o 0 p)(t) = o(p(t)), for any term ¢, and is also a
substitution, i.e. Dom(o o p) is finite. We say that a substitution o is more general



than another substitution p, noted o < p, if there exists a substitution 7 such
that p(X) = 7(c(X)), for any variable X € Dom(c). This defines a preorder
relation on substitutions. An equivalence relation can also be defined as o = p if
o = pand p <X 0. A substitution o is said to be ground if ¢(X) is a closed term,
i.e. it does not contains free occurrences of variables, for any X & Dom(o).

An instance of the MSOU problem is a set of equations {t; = u1,...,tn = un}
where t;’s and w;’s are monadic terms with the same first-order type, i.e. not
containing A-abstractions. A solution or unifier is a second-order substitution
o solving all equations: o(t;) = o(u;) modulo fBn-equality. A unifier o of E is
said to be ground if o(t;) does not contain free occurrences of variables, for
any t; = u; € E. (Notice that not all ground substitutions that are unifiers are
ground unifiers, because ¢; may contain variables not instantiated by the unifier).
A ground unifier is said to be size-minimal if it minimizes Y., [o(¢;)| among
all ground unifiers. (Notice that w.l.o.g. size-minimal unifiers are required to be
ground, because if a problem has a non-ground unifier, then it has also a ground
unifier of equal or smaller size). Most general unifiers are defined as usual.

Notice that instances of the problem are required to be build from monadic
terms, but there are not restrictions on the solutions. However, the following
property ensures that most general unifiers instantiate variables by monadic
terms.

Property 1. For any set of second-order unification equations F, and most gen-
eral unifier o, all constants occurring in ¢ also occur in E.

This property does not hold for variables. Even if the set of equations is built
from unary second-order variables, most general unifiers can introduce fresh n-
ary variables with n > 2. For instance, the set of equations {X(a) = Y (b)} has
only a most general unifier [X +— Az.Z(z,b),Y — Ax.Z(a,z)], that introduces
a binary second-order variable Z. Fortunately, non-unary variables do not give
rise to undecidability, we need non-unary constants. In fact, one single binary
constant is enough to generate a class of undecidable second-order unification
problems [Far88,LV02].

3 Lazy Unifiers

We can restrict instances of second-order variables to ones that do not use their
arguments, whenever this is possible. In this way we obtain what we call lazy
unifiers.

Definition 1. A substitution o is said to be a lazy unifier if

1. it is a ground unifier, and,

2. it can be decomposed as ¢ = p o T, where T is a most general unifier and p
has the form [X1 — Axq1. - A&p,.a1,..., Xm — Ax1. - ATy, .Gm], where
a1,...,am € Xy are first-order constants.



Lemma 1. For any solvable set of MSOU equations E containing at least a 0-
ary constant, there exists a lazy unifier o that does not introduce constants not
occurring in E.

Lemma 2. Any size-minimal unifier is a lazy unifier.

From now on, when we say a solution of a set of equations, we mean a lazy
unifier. We also assume that any set of equations contains, at least, a 0-ary
constant. The following property allows us to go a step further and assume that
all variables are unary.

Property 2. Monadic SOU is NP-reducible to monadic SOU where all variable
are second-order typed and unary.

From now on, since all symbols are unary or zero-ary, we can avoid paren-
thesis, and represent the term a(X (b)) as the word a X b, and Az.a(z) as Az.ax.

We know that the size-minimal ground unifiers of a monadic second-order
unification problem satisfies the exponent of periodicity lemma [Mak77,KP96,SSS98,5S04].
Therefore, from Lemma 2, we can conclude that it also holds for lazy unifiers:

Lemma 3 ([SS04]). There exists a constant oo € R such that, for any solvable
monadic second-order unification problem E, there exists a lazy unifier o such
that, for any variable X, and words wy, wy and ws,

o(X) = Az.wy wh ws x and way not empty implies n < 20l Bl

4 Singleton Context Free Grammars

A context-free grammar (CFG) is a 4-tuple (X, N, P, s), where X is an alphabet
of terminal symbols, N is an alphabet of non-terminal symbols (contrarily to
the standard conventions, and in order to avoid confusion between free variables
and non-terminal symbols, all terminal and non-terminal symbols are denoted
by lower-case letters), P is a finite set of rules, and s € N is the start symbol. We
will not distinguish a particular start symbol, and we will represent a context
free grammars as a 3-tuple (X, N, P). Moreover, we will use Chomsky grammars
with at most two symbols on the right hand side of the rules.

Definition 2. We say that a context free grammar G = (X, N, P) generates a
word w € X* if there exists a non-terminal symbol a € N such that w belongs to
the language defined by (X, N, P,a). In such case, we also say that a generates
w.

We say that a context free grammar is a singleton CFG if it is not recursive
and every non-terminal symbol occurs in the left-hand side of exactly one rule.
Then, every non-terminal symbol a € N generates just one word, denoted wg,
and we say that a defines wy. In general, for any sequence o € (YUN)*, w, € X*
denotes the word generated by «.

Plandowski [Pla94,Pla95] defines singleton grammars, but he calls them gram-
mars defining set of words. He proves the following result.



Theorem 1 ([Pla95], Theorem 33). The word equivalence problem for sin-
gleton context-free grammars is defined as follows: Given a grammar and two
non-terminal symbols a and b, to decide whether w, = wy. This problem can be
solved in polynomial worst-case time on the size of the grammar.

Definition 3. Let G = (X, N, P) be a singleton CFG.
For any terminal symbol a € X, we define depth(a) = 0, and for any non-
terminal symbol a € N we define

depth(a) = max{depth(b;) +1 | a—bibas € P A i=1,2}

We define the depth of G as depth(G) = max{depth(a) | a € N}.
We define the size of G as its number of rules. (Notice that this definition is for
Chomsky grammars).

We can enlarge a grammar in order to define concatenation, exponentiation
and prefixes of words already defined by the grammar. We use these operation
in the next sections to build the grammar defining some lazy unifier of the
unification problem. The following three lemmas state how the size and the
depth of the grammar are increased with these transformations.

Lemma 4. Let G be a singleton grammar defining the words w1, ..., w,. There
exists a singleton grammar G’ D G that defines the word w = wy ... w, and
satisfies

IG'| < |G]+n-1

depth(G’) < depth(G) + [logn]

Lemma 5. Let G be a singleton grammar defining the word w. For any n, there
exists a singleton grammar G' O G that defines the word w™ and satisfies

|G'| < |G| +2|logn|
depth(G’) < depth(G) + [logn]

Lemma 6. Let G be a singleton grammar defining the word w. For any prefix
or suffix w' of w, there exists a singleton grammar G' D G that defines w' and
satisfies

|G| < |G|+ depth(G)

depth(G’) = depth(G)

Definition 4. Consider a signature composed by a nonempty set Xg of first-oder
constants, a set 31 of second-order and unary constants, a set N of non-terminal
symbols, and a set X1 of second-order and unary variables.

A generalized set of equations is a pair (E,G), where E is a set of equations
of the form {t1 = u1,...,t, = u,} where terms t; and u;, fori =1,...,n, are
sequences of (X1 U Xy UN)* Xy, and G = (X1, N, P) is a singleton context free
grammar with just one production for every non-terminal symbol of N occurring
m E.



A generalized unifier of (E,G) is a pair {(o,G'), where o is a mapping that
assigns either [X — Azr.az] or [X — Azx.ab] or [X — Az.z] or [X — Ax.b] to
each variable X, for some a € N U X1 and b € Xy, and G' D G is a singleton
grammar that contains a production for every non-terminal symbol of E or o,
such that, replacing every variable X by its instance in E, Bn-normalizing both
sides of each equation, and then replacing every monterminal symbol a by the
word w, that it defines, all the equations of E are satisfied as equalities.

Notice that non-terminal symbols derive into sequences of second-order con-
stants, and that we do not consider first-order variables.

Ezample 1. Consider the generalized set of equations (F, G), defined by

E=(XXfa2YYYa)
G={b—cc,c— ff}

Then, the pairs (o, G’), defined by

o=[Xr Ar.a, YV — Az.bd]
G ={b—cc, c— ff}

o=[Xr Ar.cz, Y — Ar.da]

G ={b—cc,c—ff d—cf} and

are generalized unifiers. In fact, these would be the only two lazy unifiers found
by our algorithm. Notice that the second one is a lazy unifier corresponding to
the most general unifier [X +— Az.Z, Y — Ax.f f f f Z].

From now on, an instance of a MSOU problem will be a generalized set of
equations. Let o assign [X — Az.az]. We will use (X) to denote indistinctly
the functions Azx.ax or A\x.w, z, or the word w,, being its meaning clear from
the context.

Notice that any monadic set of equations E is equivalent to the general-
ized set of equations (E,0), and vice versa, any generalized set of equations
is equivalent to the monadic set of equations that we obtain by replacing ev-
ery non-terminal symbol by the word that it defines. Therefore, solvability of
monadic set of equations and of generalized set of equations are, with respect
to decidability, equivalent problems. With respect to their complexity, we will
prove that solvability of generalized sets of equations can be decided in NP-time.
This implies that solvability MSOU is also in NP.

5 The Graph of Surface Dependencies

In this Section we define the graph of surface dependencies. The purpose of
this graph is to describe, for a given lazy unifier o, the instance o(X) of some
variable X of the problem. In some cases, the ones not covered by Lemmas 8, 9
and 10, the graph is not able to describe such instances, and it becomes necessary
to rewrite it to obtain a new graph with this capability. This graph rewriting
process will be described in Section 6.



The graph of surface dependencies is defined only for simplified equations
(not containing rigid-rigid pairs, i.e. pairs with constants in the head of both
sides of the equation). In case we have such kind of equations we can simplify
them. This can increase the size of the associated grammar as the following
Lemma states. After this Lemma, if nothing is said, we will assume that all sets
of equations are simplified.

Lemma 7. Given a generalized set of equations (E,G), where E = {t; =
Uy .. sty = Uy}, we can get an equivalent simplified problem (E’, G'), where
E = {th Zuy,....t,, =}, i.e. a problem with exactly the same set of so-

lutions, where, for every equation t, = u’, either t. or ) has a variable in the
head (all rigid-rigid pairs have been removed), and

B < |E] |G’ < |G|+ ndepth(G)
m<n depth(G’) = depth(G)

Definition 5. Let (E,G) be a simplified generalized set of equations, the graph
of surface dependencies of (E,G) is defined as follows.

Let = be the minimal equivalence relation defined by: if E contains an equa-
tion of the form X w; = Y wq, then X ~ Y. This defines a partition on the
variables of E.

Every node of the graph is labeled by an ~-equivalence class of variables, the
empty set, or a first-order constant, and every edge is labeled by either a terminal
or a second-order constant. Then:

— We add just one node for every =-equivalence class of variables.

— For every equation of the form X wi = ay---a, Y we, where aj---a, €
(N U X1)*, we add a sequence of nodes with the empty set as labels, and a
sequence of labeled edges of the form

L->0-">0 - OO

where X € L1 and Y € L.

— For every equation of the form X w1 = a1 ---a, b, whereay - - - ay € (NUXy)*
and b € Xy, we add a sequence of nodes with the empty set as label, and a
sequence of labeled edges of the form

O—>0O—>®» - OO0

where X € L.

Notice that, for every variable X, there is just one node with label L satisfying
X € L. This is called its corresponding node.

The cycles of this graph describe the base of some exponentiation occurring
in the instance of some variables. For instance, the solutions of the equation
X fa = f X a have the form [X +— Az.f" z], for some n > 0. The base of this
power is described by a cycle in its graph of dependencies:
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We prove that, if one of the following conditions holds:

1. the graph contains a cycle (Lemma 8),

2. there is a node with two exiting edges with distinct and divergent labels
(Lemma 9), or

3. there is at most one exiting edge, for every node (Lemma 10),

then the graph of surface dependencies describes the instance of some variable.
In the rest of cases it may be necessary to rewrite the graph in order to obtain
the desired description.

Lemma 8. Given a generalized set of equations (E,G), let D be its graph of
surface dependencies. If D contains a cycle, then, for every lazy unifier o, whose
exponent of periodicity does not exceed k, there exists a variable X such that its
corresponding node is inside the cycle, and, if a € (N U X1)* is the sequence of
transitions completing the cycle from this node, for some 0 < n < k, and some
prefix w' of we, we have o(X) = Ax.(wy,)" w' x.

Moreover, there exists a singleton context-free grammar G’ 2 G that gener-
ates (wq )™ w' and satisfies

|G’| < |G|+ depth(G) + |D| + [log |D|] + 2 |log k]
depth(G’) < depth(G) + [log |D|| + [logk] + 1

Definition 6. A dependence graph D is said to contain a divergence Lo <&

Ly LA Ls, if it contains a subgraph of the form:
* (L)
D=
O
where neither w, is a prefiz of wy, nor wy a prefix of wq.

Lemma 9. Given a generalized set of equations (E,G), let D be its graph of

surface dependencies. If D contains a divergence Ly & Ly LA L3, then, for any
lazy unifier o of E, there exists a variable X € Ly and some common prefiz w'
of w, and wy, such that o(X) = dz.w' .

Moreover, there exists a singleton context-free grammar G' O G that gener-
ates w', has the same depth as G, and satisfies |G’'| < |G| + depth(G).

Lemma 10. Given a generalized set of equations (E,G), let D be its graph of
surface dependencies. If D contains at most one exiting edge, for every node,
and D does mot contain cycles, then, for any size-minimal lazy unifier o of E,
one of the following properties holds:

1. for some node L without exiting edges, some variable X € L, and some
first-order constant b € Xy, we have o(X) = \x.b, or



2. for some node L, let a be the unique path starting at L and finishing in a
node without exiting edges, then, either
(a) the sequence o ends in a node labeled with a first-order constant b € Xy,
and o(X) = Ar.wa b, or
(b) for some proper prefix w' of ws, we have o(X) = Av.w' x.

Moreover, there exists a singleton context-free grammar G' O G that, in each
case, defines w,, or w', and satisfies

|G| < |G| + depth(G) + |D| + [log |D|] — 1
depth(G’) < depth(G) + [log |D|]

Remark 1. Notice that this Lemma, contrarily to Lemmas 8 and 9, only applies
to size-minimal lazy unifiers. Notice also that in case 1, it forces some variable
to forget its argument, and therefore, applies to lazy unifiers, but not to most
general unifiers. In this point is where the search of a size-minimal lazy unifier
differs from the search of a most-general unifier, and in fact, where our algo-
rithm looses its completeness and soundness when applied to word unification.
(Otherwise this paper would prove NP-completeness of word unification!!).

For instance, in Example 1, the graph of surface dependencies is
O——>@®
Therefore, we are in the conditions of Lemma 10. Applying sub-case 1, we find
o(X) = Az.a (and later, o(Y) = Az.da). Applying sub-case 2b, we find, among
others, o(Y) = Az.f f fx (and later, o(X) = Ax.f fx). The first one is a lazy,
but not a most general unifier, whereas the second one is a ground and most
general (and therefore lazy) unifier. Notice that there are other most general

unifiers of the form [X +— Az.f2t3" 2, Y s Az.f3727 2] that are not found by
our algorithm for n > 1.

6 Rewriting the Graph of Dependencies

There are graphs not satisfying any of the conditions of Lemmas 8, 9 and 10.
These graphs contain a node with two compatible exiting edges. In other words,
these graphs contain a subgraph, used as redex in our transformation rules, of

the form Lo < L, b, L3, where w, is a prefix of wy, or wy is a prefix of w,. An
example of such kind of graphs is shown in Example 2. In these cases, in order
to obtain a description of some variable instantiation, it can be necessary to
transform the graph of dependencies using the following graph rewriting system.
These rules transform the redexes described above.

Definition 7. We consider a transformation system described by rules that work
on pairs of the form (D, G), where D is a dependence graph and G is a singleton
grammar. The transformation on the dependence graph is interpreted as a graph
rewriting system.

Rule 1:



O G N L
020 . 0T

where ¢ is a fresh non-terminal symbol, and L} = {X' | X € L1} is the set of
labels of L1 where we have added a quote to every variable name.

Rule 2: @
a
= < N a
O

In the first rule, the grammar G is transformed in order to be able to define
the word w, satisfying wy = wq we. According to Lemma 6, we can obtain such
grammar G’ satisfying

|G'| < |G| + depth(G)
depth(G’) = depth(G)
In the second rule, the grammar is not modified.

These rules can only be applied if the graph has no cycles and there are no
divergences.

Ezxample 2. Consider the following set of equations, and their set of unifiers, for
n > 0.

Xier=abXoq X1 Ax.(ab)" 2z
Xico =aXzabey Xo = Ax.(ab)"a
XQ 03?:aX3c3 X3'—>/\;vb(ab)”x

The graph of surface dependencies is
@/a—\
a a
b @

Using the second rule of the graph rewriting system we get

(o)y——
s )
4
Lemma 11. Any graph rewriting sequence D1 =* D,, has length at most n <
|D1|?, where |D1| is the number of edges of Dy .

As we have said, if the graph of surface dependencies does not contain redexes,
then it describes a variable instance. Moreover, depending on the lazy unifier,
even if the graph contains redexes, it can also describe some variable instance. We
distinguish, according to the lazy unifier, between incompatible and compatible
redexes. If the graph contains an incompatible redex, it already describes a
variable instance, and must not be rewritten. Thus, we only rewrite a graph if
all redexes are compatible.

10



Definition 8. Given a generalized set of equations (E,G), its graph of depen-
dencies D, and a lazy unifier o, we say that a graph rewriting step with redex

Ly, & Ly b, L3 is incompatible with o if, for some variable X € Ly, we have
o(X) = Az.w' x, where w' is a proper prefiz of w, and wy. Otherwise, it is said
to be compatible.

Lemma 12. Given a generalized set of equations (E,G), its graph of depen-
dencies D, and a lazy unifier o, if there exists an incompatible with o redex
Ly & 1, LA Ls in D, i.e. there exists a variable X € Ly with o(X) = Mx.w' z,
where w' is a proper prefix of w, and wy, then there ewist a singleton context-
free grammar G' 2 G that defines w' and satisfies |G'| < |G| 4 depth(G) and
depth(G’) = depth(G).

When we rewrite a graph, the new graph does not describe exactly a variable
instance of the lazy unifier, but an instance of a modification of this unifier. This
new unifier is also a solution of a modification of the set of equations. Therefore,
when we rewrite the graph of surface dependencies, apart from the associated
grammar, we have to transform the set of equations and its lazy unifier. The
next Lemma describes how we have to make such modifications.

Lemma 13. Given a generalized set of equations (E,G), its graph of dependen-
cies D, a lazy unifier o, and a compatible rewriting step (D, G) = (D', G'), there
exist a generalized set of equations (E',G') and a substitution o’ such that

1. ¢’ is a lazy unifier of (E',G"),

2. D’ is the graph of dependencies of E', and

3. o' extends o as o' (X) = o(X), for any variable occurring in E, and satisfies
o(X) =0 (X) = Azwg o' (X') x, for any variable X € L1 occurring in the
redex of the rewriting step.

Graphically we can represent this Lemma as a category-like commutative

diagram: extended as ,

O ~—mmm e - -0
A
uniﬁer[ ' unifier
(B,G) --- extended as (E', G
graph of : graph of
dependencies y dependencies

rewrites to

(D,G) - (D', G")

Ezample 3. Consider the following set of equations

X1Y1d7=acX3d XlYgdéa,Xngd
XoYsdZbcXsd XoYid=bX,Ysd

The graph of surface dependencies is

11



Now either 0(X;) = Az.x, and we already have the description of a variable
instance, or we can apply a compatible rewriting step, to the redex § <~ {X;} %
{X5}, to obtain the following graph:

ONE
DI ©
G xD>—>0—
Now, we have an inconsistency, and we can apply Lemma 9 to ensure that
either ¢/(X]) = Azx.z or 0/(X2) = Az.z. Applying Lemma 13, in the first case,
we obtain (X1) = Az.ax, and in the second case o(X3) = Az.z. Now, we have

the instance of some variable that can be instantiated in the equations, and we
can repeat the process to obtain instances of other variables.

Theorem 2. Let o be a size-minimal lazy unifier of (E,G) with exponent of
periodicity not exceeding k. Then there exist a variable X in E, and a singleton
grammar G', deriwing o(X) and such that:

|G| < |G|+ O(]E|? depth(G) + log k)
depth(G’) < depth(G) + O(log k + log | E|)

Proof. If the set of equations E is not simplified, we can apply Lemma 7 in
order to obtain an equivalent set of simplified equations. This transformation
implies a worst-case increase of order O(]E|depth(G)) on the size of G, which
is compensated by the increase of order O(|E|? depth(G) + log k) stated on the
Theorem.

Let (E1,G1) = (E,G), 01 = o, and D; be the graph of dependencies of F.
If Lemmas 8, 9 and 10 are not applicable, then there exists a redex in the graph
D1. Then either there exists a redex incompatible with o1, or all redexes are
compatible. In the second case, we can rewrite D1 = D5, and use Lemma 13 to
find a new substitution o2, and set of generalized equations (Fy, G2). Repeating
this argument, we can obtain a diagram of the form:

oL ———————= 02 - On—1

On

. |

(E1,G1) — (E2,Ga)- - (Ep_1,Gn_1) — (Ey,Gy)

| o |

(D1,G1) == (D2,G2)- - (Dy—1,Gn-1) == (Dy,Gr)
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where D,, either satisfies Lemmas 8, 9 or 10, or contains a redex incompatible
with ,. Now, either using Lemmas 8, 9 or 10, if D,, does not contain redexes, or
using Lemma 12, if D,, contains an incompatible redex, we can find the instance
0 (X) of some variable X of E,,. Using the bounds of Lemmas 8, 9, 10 and 12,
there exists a singleton context-free grammar G, that generates o, (X) and

satisfies:
1 |G| < |Gnl| + depth(Gr) + |Dy| + [log [Dy|] + 2 [log k|

depth(G!)) < depth(G,,) + [logk] + [log|D,|] +1

Notice that the worst bounds are given by Lemma 8.
By Lemma 11 we have n < |D;|?, and using Lemma 6 (see Definition 7), we

have
|G| < |Gi| 4 |D1[? depth(Gh)
depth(G,,) = depth(Gh)

Moreover, the size of the dependence graph does not increase during the rewriting
steps, therefore |D,,| < |Di|. Notice that it is possible that X would not be a
variable of F;. In this case, X will be a variable with primes, say X with
m < n. Then it is possible to construct the instance o(X) from o, (X (™))
as 01(X) = Az.wg, - - - Wa,, 0, (X ™) z, where w,, is the word generated by a;,
and this is a non-terminal symbol of G; C G,,. Therefore, if we already have a
grammar generating o, (X (™)), we can construct a grammar generating oy (X)
by simply adding new rules. In the worst case, this increases the depth of the
grammar by [log(m + 1)], and its size by m.

Summarizing, we can find a grammar G’ O G generating o1(X), for some
variable X of F, and satisfying:

|G| < |G| + |DJ? depth(G) + D] + depth(G) + [log| D[] + 2 [log k] + [D|?
depth(C) < depth(G) + [log k] + [log|D|] + [log(|D|? + 1)]
Usi ders:
TRE ORI 1@ < 1) + O(IDP? depth(G) + log k)
depth(G’) < depth(G) + O(logk + log|D|)

Since |D| is the number of edges in the graph of dependencies, and |E| the number
of symbols in the equations, by construction of the graph of dependencies from
the equations, we have |D| < |E]|. O

7 Main Results and Some Remarks

Theorem 2 states that, given a generalized set of equations (F, G), we can build
a new grammar defining the instance of some variable of . Then we can instan-
tiate this variable in the equations in order to obtain a new set of equations with
one variable less. This process does not increase the size of the equations, since
we use just one non-terminal symbol on the grammar to describe the instance
of the variable. We can repeat N times this process, being N the number of
variables, bounded by the original size of the problem |E|. The increase on the
depth of the grammar is N O(logk) (being k = 2°(ED the bound on the expo-
nent of periodicity), thus O(]E|?). The increase on the size of the grammar is
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N O(|E|? depth(G) + log k). Although it depends on the depth of the grammar
(see Remark 2), it has order O(|E|?). This allows us to conclude:

Theorem 3. For any solvable generalized set of equations (E,()), there exists
a lazy unifier (o, G) such that the size of (o, G) is polynomially bounded on the
size of E, in fact |o| = O(|E|), |G| = O(|E|®), and depth(G) = O(|E|?).

Theorem 3 proves the existence of a polynomially bounded solution for every
solvable MSOU problem. Now we have to prove that checking if a substitution
is a solution can be performed in polynomial time. Given a substitution, we
instantiate the equations. This will remove all variable occurrences, and it will
not increase their sizes, because every variable is replaced by just one symbol of
the grammar (in some cases, their argument are removed, but this decreases the
size). With a small increase of |E| (according to Lemma 4) on the size of the
grammar, we can obtain a new grammar defining both sides of every equation,
and use Plandowski’s Theorem 1 to check their syntactic equality.

Corollary 1. Monadic Second-Order Unification is NP-complete.
Theorem 4. Monadic Second-Order Matching is NP-complete.

Note that the proof of NP-hardness of MSOU in [SS04] is not a MSO-
matching problem, so the proof of Theorem 4 requires a different encoding. We
also use the ONE-IN-THREE-SAT problem, which is known to be NP-complete. We
associate a pair of second-order variables X,,, Y, to every propositional variable
p, and use a pair of equations X, Y, b = ab and X, Y, c = ac, to ensure that
their values are Az.a z, interpreted as true, or Az.x, interpreted as false. Then,
we encode every clause pV ¢V r as X, X, X, b = ab.

Remark 2. Theorem 3 clarifies the increase of the size of the grammar represent-
ing the solution of a set of equations, after instantiating IV variables, according
to Theorem 2. This Theorem fixes this increase with respect to the size of the
equations, the logarithm of the upper bound on the exponent of periodicity, and
the depth of the grammar. The question is then: Could we avoid the use of the
depth of the grammar? The answer is no. For instance, Lemma 6 says that, if
we want to define a prefix of some word defined by a grammar G, in the worst
case, we can keep the depth, but we may need to increase the size of G’ as
|G| < |G|+ depth(G). If we only use the size of the grammar to characterize
it, then in the worst case we may be forced to duplicate the size of the grammar
|G| < 2|G|. Each time that we instantiate a variable, it can be necessary to
define a new prefix, therefore, in the worst case, the size of the resulting gram-
mar would be 2%V, being N < |E| the number of variables. This would result in
an exponential upper bound on the size of the grammar.

8 Conclusions

In this paper we prove that Monadic Second-Order Unification (MSOU) is in
NP using a result of Plandowski about context-free grammars [Pla94,Pla95].
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This result, together the NP-hardness of the problem [SS04] proves its NP-
completeness. As we mention in the introduction, MSOU is a specialization of
Bounded Second-Order Unification (BSOU). This suggests us that some of the
ideas contained in this paper could be used to try to prove that BSOU is in NP.
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