Skip to main content

A Cartesian Closed Category of Approximable Concept Structures

  • Conference paper
Conceptual Structures at Work (ICCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3127))

Included in the following conference series:

Abstract

Infinite contexts and their corresponding lattices are of theoretical and practical interest since they may offer connections with and insights from other mathematical structures which are normally not restricted to the finite cases. In this paper we establish a systematic connection between formal concept analysis and domain theory as a categorical equivalence, enriching the link between the two areas as outlined in [25]. Building on a new notion of approximable concept introduced by Zhang and Shen [26], this paper provides an appropriate notion of morphisms on formal contexts and shows that the resulting category is equivalent to (a) the category of complete algebraic lattices and Scott continuous functions, and (b) a category of information systems and approximable mappings. Since the latter categories are cartesian closed, we obtain a cartesian closed category of formal contexts that respects both the context structures as well as the intrinsic notion of approximable concepts at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations. Springer, Berlin (1999)

    MATH  Google Scholar 

  2. Barr, M.: *-Autonomous categories and linear logic. Mathematical Structures in Computer Science 1(2) (1991)

    Google Scholar 

  3. Barwise, J., Seligman, J.: Information Flow: the logic of distributed systems. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Birkhoff, G.: Lattice Theory, vol. 25. AMS Colloquium Publications (1940)

    Google Scholar 

  5. Borceux, F.: Handbook of Categorical Algebra 1: Basic Category Theory. In: Encyclopedia of Mathematics and its Applictions, vol. 53, Cambridge University Press, Cambridge (1994)

    Google Scholar 

  6. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for nonmonotonic reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. Lecture Notes in Computer Science (LNAI), vol. 1265, Springer, Heidelberg (1997)

    Google Scholar 

  7. Guarino, N., Poli, R. (eds.): Formal Ontology in Conceptual Analysis and Knowledge Representation. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  8. Hitzler, P., Wendt, M.: Formal concept analysis and resolution in algebraic domains. In: de Moor, A., Ganter, B. (eds.) Using Conceptual Structures — Contributions to ICCS 2003, pp. 157–170. Shaker Verlag, Aachen (2003)

    Google Scholar 

  9. Hitzler, P.: Default reasoning over domains and concept hierarchies. Technical Report WV–03–14, Knowledge Representation and Reasoning Group, Department of Computer Science, Dresden University of Technology (2003)

    Google Scholar 

  10. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  11. Lamarche, F.: From Chu spaces to cpos. In: Theory and Formal Methods of Computing 1994, pp. 283–305. Imperial College Press (1994)

    Google Scholar 

  12. Larsen, K., Winskel, G.: Using information systems to solve recursive domain equations. Information and Computation 91(2), 232–258 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)

    Google Scholar 

  14. Plotkin, G.: Notes on the Chu construction and recursion, (manuscript) (1993)

    Google Scholar 

  15. Pratt, V.: Chu spaces from the representational viewpoint. Ann. Pure Appl. Logic 96(1-3), 319–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rounds, W.C., Zhang, G.-Q.: Clausal logic and logic programming in algebraic domains. Information and Computation 171, 156–182 (2001)

    Article  MathSciNet  Google Scholar 

  17. Saraswat, V.: The category of constraint systems is Cartesian-closed. In: Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California, June 1992, pp. 341–345. IEEE Computer Society Press, Los Alamitos (1992)

    Chapter  Google Scholar 

  18. Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 577–613. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  19. Shen, G., Ye, T., Sun, J., Zhang, G.-Q.: Concept lattices, clustering, and visualization using LATEX (manuscript) (2004)

    Google Scholar 

  20. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence (200x) (to appear)

    Google Scholar 

  21. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co. (2000)

    Google Scholar 

  22. Spreen, D.: A note on strongly finite sequent structures. In: Zhang, Lawson, Liu, Luo (eds.) Domain Theory, Logic and Computation. Semantic Structures in Computation, vol. 3, Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  23. Vickers, S.: Topology via Logic. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  24. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, Reidel, Dordrecht-Boston, pp. 445–470 (1982)

    Google Scholar 

  25. Zhang, G.-Q.: Chu spaces, formal concepts, and domains. In: Proceedings of the 19th Conference on the Mathematical Foundations of Programming Semantics, Montreal, Canada, March 19-23, 2003, Electronic Notes in Computer Science, vol. 83, 16 (2003)

    Google Scholar 

  26. Zhang, G.-Q., Shen, G.: Approximable concepts, Chu spaces, and information systems. In: de Paiva, Pratt (Guest Editors), Special Issue on Chu Spaces and Applications, Theory and Applications of Categories (accepted)

    Google Scholar 

  27. Zhang, G.-Q., Shen, G., Staiger, J., Troy, A., Sun, J.: FcAWN – concept analysis as a formal method for automated web-menu design (Submitted)

    Google Scholar 

  28. Zhang, G.-Q.: Logic of Domains, Birkhauser, Boston (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hitzler, P., Zhang, GQ. (2004). A Cartesian Closed Category of Approximable Concept Structures. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds) Conceptual Structures at Work. ICCS 2004. Lecture Notes in Computer Science(), vol 3127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27769-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27769-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22392-4

  • Online ISBN: 978-3-540-27769-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics