
ar
X

iv
:c

s/
04

06
02

6v
1

 [c
s.

S
E

]
16

 J
un

 2
00

4

Improving Prolog Programs: Refactoring for Prolog

Tom Schrijvers⋆1 and Alexander Serebrenik⋆⋆2

1 Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001, Heverlee, Belgium

E-mail: Tom.Schrijvers@cs.kuleuven.ac.be
2 Laboratory of Quality of Software (LaQuSo), T.U. Eindhoven

HG 5.91, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-Mail: a.serebrenik@laquso.com

Abstract. Refactoringis an established technique from the OO-community to
restructure code: it aims at improving software readability, maintainability and
extensibility. Although refactoring is not tied to the OO-paradigm in particular,
its ideas have not been applied to Logic Programming until now.
This paper applies the ideas of refactoring to Prolog programs. A catalogue is pre-
sented listing refactorings classified according to scope.Some of the refactorings
have been adapted from the OO-paradigm, while others have been specifically
designed for Prolog. Also the discrepancy between intendedand operational se-
mantics in Prolog is addressed by some of the refactorings.
In addition,ViPReSS, a semi-automatic refactoring browser, is discussed and the
experience with applyingViPReSS to a large Prolog legacy system is reported.
Our main conclusion is that refactoring is not only a viable technique in Prolog
but also a rather desirable one.

1 Introduction

Program changes take up a substantial part of the entire programming effort.
Often changes are required to incorporate additional functionality or to improve
efficiency. In both cases, a preliminary step of improving the design without al-
tering the external behaviour is recommended. This methodology, calledrefac-
toring, emerged from a number of pioneer results in the OO-community [6,
13, 15] and recently came to prominence for functional languages [11]. More
formally, refactoring is a source-to-source program transformation that changes
program structure and organisation, but not program functionality. The major
aim of refactoring is to improve readability, maintainability and extensibility
of the existing software. While performance improvement isnot considered as
a crucial issue for refactoring, it can be noted that well-structured software is
more amenable to performance tuning. We also observe that certain techniques

⋆ Research Assistant of the Fund for Scientific Research-Flanders (Belgium)(F.W.O.-
Vlaanderen)

⋆⋆ The research presented has been carried out during the second author’s stay at Department of
Computer Science, K.U. Leuven, Belgium and STIX,École Polytechnique, France

http://arxiv.org/abs/cs/0406026v1

that were developed in the context of program optimisation,such as dead-code
elimination and redundant argument filtering, can improve program organisation
and, hence, can be considered refactoring techniques. In this paper we discuss
additional refactoring techniques for Prolog programs.

To achieve the above goals two questions need to be answered:whereand
how transformations need to be performed. Unlike automated program trans-
formations, neither of the steps aims at transforming the program fully auto-
matically. The decision whether to transform is left to the program developer.
However, providing automated support for refactoring is useful and an impor-
tant challenge.

Deciding automaticallywhereto apply a transformation can be a difficult
task on its own. Several ways to resolve this may be considered. First, program
analysis approaches can be used. For example, it is common practice while or-
dering predicate arguments to start with the input arguments and end with the
output arguments. Mode information can be used to detect when this rule is vio-
lated and to suggest the user to reorder the arguments. Second, machine learning
techniques can be used to predict further refactorings based on those already ap-
plied. Useful sequences of refactoring steps can be learnedanalogously to auto-
mated macro construction [9]. Following these approaches,automatic refactor-
ing tools, so calledrefactoring browsers, can be expected to make suggestions
on where refactoring transformations should be applied. These suggestions can
then be either confirmed or rejected by the program developer.

Answeringhow the program should be transformed might also require the
user’s input. Consider for example a refactoring that renames a predicate: while
automatic tools can hardly be expected to guess the new predicate name, they
should be able to detect all program points affected by the change. Other refac-
torings require certain properties, like as absence of user-defined meta-predicates,
that cannot be easily inferred. It is then up to the user to evaluate whether the
properties hold.

The outline of this paper is as follows. We first illustrate the use of several
refactoring techniques on a small example in Section 2. Thena more compre-
hensive catalogue of Prolog refactorings is given in Section 3. In Section 4 we
introduceViPReSS , our refactoring browser, currently implementing most of
the refactorings of the catalogue.ViPReSS has been successfully applied for
refactoring a 50,000 lines-long legacy system. Finally, inSection 5 we conclude.

2 Detailed Prolog Refactoring Example

We illustrate some of the techniques proposed by a detailed refactoring example.
Consider the following code fragment borrowed from O’Keefe’s “The Craft of
Prolog” [12], p. 195. It describes three operations on areaderdata structure used

2

to sequentially read terms from a file. The three operations aremake reader/3
to initialise the data structure,reader done/1 to check whether no more terms
can be read andreader next/3 to get the next term and advance the reader.

O’Keefe’s original version
make_reader(File,Stream,State) :-

open(File,read,Stream),
read(Stream,Term),
reader_code(Term,Stream,State).

reader_code(end_of_file,_,end_of_file) :- ! .
reader_code(Term,Stream,read(Term,Stream,Position)) :-

stream_position(Stream,Position).

reader_done(end_of_file).

reader_next(Term,read(Term,Stream,Pos),State)) :-
stream_position(Stream,_,Pos),
read(Stream,Next),
reader_code(Next,Stream,State).

We will now apply several refactorings to the above program to improve its
readability.

First of all, we use if-then-else introduction to get rid of the ugly red cut in
thereader code/3 predicate:

Replace cut by if-then-else
reader_code(Term,Stream,State) :-

(Term = end_of_file,
State = end_of_file ->

true
;

State = read(Term,Stream,Position),
stream_position(Stream,Position)

).

This automatic transformation reveals two malpractices, the first of which
is producing output before the commit, something O’Keefe himself disapproves
of (p. 97). This is fixed manually to:

Output after commit
reader_code(Term,Stream,State) :-

(Term = end_of_file ->
State = end_of_file

;
State = read(Term,Stream,Position),
stream_position(Stream,Position)

).

The second malpractice is a unification in the condition of the if-then-else
where actually an equality test is meant. Consider that theTerm argument is
a variable. Then the binding is certainly unwanted behaviour. Manual change
generates the following code:

3

Equality test
reader_code(Term,Stream,State) :-

(Term == end_of_file ->
State = end_of_file

;
State = read(Term,Stream,Position),
stream_position(Stream,Position)

).

Next, we notice that the sequenceread/2, reader code/3 occurs twice,
either by simple observation or by computing common body subsequences. By
applying predicate extraction of this common sequence, we get:

Predicate extraction
make_reader(File,Stream,State) :-

open(File,read,Stream),
read_next_state(Stream,State).

reader_next(Term,read(Term,Stream,Pos),State)) :-
stream_position(Stream,_,Pos),
read_next_state(Stream,State).

read_next_state(Stream,State) :-
read(Stream,Term),
reader_code(Term,Stream,State).

Next we apply O’Keefe’s own principle of putting the input argument first
and the output arguments last (p. 14–15):

Argument reordering
reader_next(read(Term,Stream,Pos),Term,State) :-

stream_position(Stream,_,Pos),
read_next_code(Stream,State).

Finally, we introduce less confusing and overlapping namesfor theread/3
functor, thestream position/[2,3] built-ins and a more consistent naming
for make reader, more in line with the other two predicates in the interface.
O’Keefe stresses the importance of consistent naming conventions (p. 213).

Note that direct renaming of built-ins such asstream position is not pos-
sible, but a similar effect can be achieved by extracting thebuilt-in into a new
predicate with the desired name.

Renaming
reader_init(File,Stream,State) :-

open(File,read,Stream),
reader_next_state(Stream,State).

reader_next(reader(Term,Stream,Pos),Term,State)) :-
set_stream_position(Stream,Pos),
reader_next_state(Stream,State).

reader_done(end_of_file).

4

reader_next_state(Stream,State) :-
read(Stream,Term),
build_reader_state(Term,Stream,State).

build_reader_state(Term,Stream,State) :-
(Term == end_of_file ->

State = end_of_file
;

State = reader(Term,Stream,Position),
get_stream_position(Stream,Position)

).

set_stream_position(Stream,Position) :-
stream_position(Stream,_,Position).

get_stream_position(Stream,Position) :-
stream_position(Stream,Position).

While the above changes can be performed manually, a refactoring browser
such asViPReSS (see Section 4) guarantees consistency, correctness and fur-
thermore can automatically single out opportunities for refactoring.

3 Comprehensive Catalogue of Prolog refactorings
In this section we present a number of refactorings that we have found to be
useful when Prolog programs are considered. A more comprehensive discussion
of the presented refactorings can be found in [16].

We stress that the programs are not limited to pure logic programs, but may
contain various built-ins such as those defined in the ISO standard [2]. The only
exception are higher-order constructs that are not dealt with automatically, but
manually. Automating the detection and handling of higher-order predicates is
an important part of future work.

The refactorings in this catalogue are grouped by scope. Thescope expresses
the user-selected target of a particular refactoring. While the particular refactor-
ing may affect code outside the selected scope, it is only because the refactoring
operation detects a dependency outside the scope.

For Prolog programs we distinguish the following four scopes, based on the
code units of Prolog: system scope (Section 3.1), module scope (Section 3.2),
predicate scope (Section 3.3) and clause scope (Section 3.4).

3.1 System Scope Refactorings

The system scope encompasses the entire code base. Hence theuser does not
want to transform a particular subpart, but to affect the system as a whole.

Extract common code into predicates This refactoring looks for common
functionality across the system and extracts it into new predicates. The common

5

functionality consists of subsequences of goals that are called in different pred-
icate bodies. By replacing these common subsequences with calls to new pred-
icates the overall readability of the program improves. Moreover the increased
sharing simplifies maintenance as now only one copy needs to be modified.
User input is required to decide what common sequences form meaningful new
predicates. Finding the common sequences and the actual replacing are handled
automatically byViPReSS.

Hide predicates This refactoring removes export declarations for predicates
that are not imported in any other module. User input is required to confirm that
a particular predicate is not meant for use outside the module in the future. This
refactoring simplifies the program by reducing the number ofentry points into
modules and hence the intermodule dependencies.

Remove dead codeDead code elimination is sometimes performed in compil-
ers for efficiency reasons, but it is also useful for developers: dead code clutters
the program.

We consider a predicate definition in its entirety as a code unit that can be
dead, as opposed to a subset of clauses. While eliminating a subset of clauses
can change the semantics of the predicate and hence lead to anerroneous use,
this is not the case if the entire predicate is removed.

It is well-known that reachability of a certain program point (predicate) is,
in general, undecidable. However, one can safely approximate the dead code
by inspecting thepredicate dependency graph(PDG) of the system. The PDG
connects definitions of predicates to the predicates that use them in their own
definition. This graph is useful for other refactorings, like remove redundant
arguments. In the system one or more predicates should be declared as top-level
predicates that are called in top-level queries and form themain entry points of
the system. Now dead predicates are those predicates not reachable from any of
the top-level predicates in the PDG.

User input is necessary whether a predicate can safely be removed or should
stay because of some intended future use.

In addition to unused predicate definitions, redundant predicate import dec-
larations should also be removed. This may enable thehide predicaterefactoring
to hide more predicates. Dead-code elimination is supported byViPReSS.

Remove duplicate predicatesPredicate duplication or cloning is a well-known
problem. One of the prominent causes is the practice known as“copy and paste”.
Another cause is unawareness of available libraries and exported predicates in
other modules. The main problem with this duplicate code is its bad maintain-
ability. Changes to the code need to be applied to all copies.

Looking for all possible duplications can be quite expensive. In practice in
ViPReSS we limit the number of possibilities by only considering predicates

6

with identical names in different modules as possible duplicates. The search
proceeds stratum per stratum upwards in the stratified PDG. In each stratum the
strongly connected components (SCCs) are compared with each other. If all the
predicate definitions in an SCC are identical to those in the other component and
they depend on duplicate components in lower strata, then they are considered
duplicates as well.

It is up to the user to decide whether to throw away some of the duplicates
or replace all the duplicate predicates by a shared version in a new module.

Remove redundant argumentsThe basic intuition here is that parameters that
are no longer used by a predicate should be dropped. This problem has been
studied, among others, by Leuschel and Sørensen [10] in the context of pro-
gram specialisation. They established that the redundancyproperty is undecid-
able and suggested two techniques to find safe and effective approximations:
top-down goal-oriented RAF and bottom-up goal-independent FAR. In the con-
text of refactoring FAR is the more useful technique. Firstly, FAR is the only
possibility if exported predicates are considered. Secondly, refactoring-based
software development regards the development process as a sequence of small
“change - refactor - test” steps. These changes most probably will be local.
Hence, FAR is the technique applied inViPReSS.

The argument-removing technique should consist of two steps. First, un-
used argument positions are marked by FAR. Second, depending on user input,
marked argument positions are dropped. Similarly to removing unused pred-
icates (dead code elimination) by removing unused argumentpositions from
predicates we improve readability of the existing code.

Rename functor This refactoring renames a term functor across the system. If
the functor has several different meanings and only one should be renamed, it is
up to the user to identify what use corresponds with what meaning. In a typed
language, a meaning would correspond with a type and the distinction could
be made automatically. Alternatively, type information can be inferred and the
renaming can be based on it.

3.2 Module Scope Refactorings

The module scope considers a particular module. Usually a module is imple-
menting a well-defined functionality and is typically contained in one file.

Merge Modules Merging a number of modules in one can be advantageous in
case of strong interdependency of the modules involved. Refactoring browsers
are expected to discover interrelated modules by taking software metrics such
as the number of mutually imported predicates into account.Upon user confir-
mation the actual transformation can be performed.

7

The inverse refactoring,Split Modules, is useful to split unrelated modules
or make a large module more manageable.

Remove dead code intra-moduleSimilar todead code removalfor an entire
system (see Section 3.1), this refactoring works at the level of a single module.
It is useful for incomplete systems or library modules with an unknown number
of uses. The set of top level predicates is extended with, or replaced by, the
exported predicates of the module.

Rename module This refactoring applies when the name of the module no
longer corresponds to the functionality it implements. It also involves updating
import statements in the modules that depend on the module.

3.3 Predicate Scope Refactorings

The predicate scope targets a single predicate. The code that depends on the
predicate may need updating as well. But this is considered an implication of the
refactoring of which either the user is alerted or the necessary transformations
are performed implicitly.

Add argument This refactoring should be applied when a callee needs more
information from its (direct or indirect) caller. Our experience suggests that the
situation is very common while developing Prolog programs.It can be illus-
trated by the following example:

Original Code
compiler(Program,CompiledCode) :-

translate(Program,Translated),
optimise(Translated,CompiledCode).

optimise([assignment(Var,Expr)|Statements],CompiledCode) :-
optimise_assignment(Expr,OptimisedExpr), ...

...
optimise([if(Test,Then,Else)|Statements],CompiledCode) :-

optimise_test(Test,OptimisedTest), ...

optimise_test(Test,OptimisedTest) :- ...

Assume that a new analysis (analyse) of if-conditions has been implemented.
Since this analysis requires the original program code as aninput, the only place
to plug the call toanalyse is in the body ofcompiler:

Extended Code
compiler(Program,CompiledCode) :-

analyse(Program,AnalysisResults),
translate(Program,Translated),
optimise(Translated,CompiledCode).

8

In order to profit from the results ofanalyse the variableAnalysisResults
should be passed all the way down tooptimise test. In other words, an ex-
tra argument should be added tooptimise andoptimise test and its value
should be initialised toAnalysisResults.

Hence, given a variable in the body of the caller and the name of the callee,
the refactoring browser should propagate this variable along all possible com-
putation paths from the caller to the callee. This refactoring is an important
preliminary step preceding additional functionality integration or efficiency im-
provement.

Move predicate This refactoring corresponds to the “move method” refactor-
ing of Fowler [5]. Moving predicate from one module to another can improve
the overall structure of the program by bringing together interdependent or re-
lated predicates.

Rename predicateThis is the counterpart of the “rename method” refactoring.
It can improve readability and should be applied when the name of a predicate
does not reveal its purpose. Renaming a predicate requires updating the calls to
it as well as the interface between the defining and importingmodules.

Reorder arguments Our experience suggests that while writing predicate def-
initions Prolog programmers tend to begin with the input arguments and to end
with the output arguments. This methodology has been identified as a good prac-
tice and even further refined by O’Keefe [12] to more elaborate rules. Hence, to
improve readability, argument reordering is recommended:given the predicate
name and the intended order of the arguments, the refactoring browser should
produce the code such that the arguments of the predicate have been appropri-
ately reordered.

It should be noted that most Prolog systems use indexing on the first argu-
ment. Argument reordering can improve the efficiency of the program execution
in this way.

Another efficiency improvement is possible. Consider the factf(a out,b in).
For the query?- f(X,c in), first the variableX is bound toa out and then the
unification ofc in with b in fails. It is more efficient to first unify the input
argument and only if that succeeds bind the output argument.This is somewhat
similar toproduce output before commitin the next section.

3.4 Clause Scope Refactorings

The clause scope affects a single clause in a predicate. Usually, this does not
affect any code outside the clause directly.

Extract predicate locally Similarly to the system-scope refactoring with the
same name this technique replaces body subgoals with a call to a new predicate
defined by these subgoals. Unlike for the system-scope here we do not aim to

9

automatically discover useful candidates for replacementor to replace similar
sequences in the entire system. The user is responsible for selecting the subgoal
that should be extracted.

By restructuring a clause this refactoring technique can improve its read-
ability. Suitable candidates for this transformation are clauses with overly large
bodies or clauses performing several distinct subtasks. Bycutting the bodies of
clauses down to size and isolating subtasks, it becomes easier for programmers
to understand their meaning.

Invert if-then-else The idea behind this transformation is that while logically
the order of the “then” and the “else” branches does not matter, it can be im-
portant for code readability. Indeed, an important readability criterion is to have
an intuitive and simple condition. The semantics of the if-then-else construct in
Prolog have been for years a source of controversy [1] until it was finally fixed
in the ISO standard [2]. The main issue is that its semantics differ greatly from
those of other programming languages. Restricting oneselfto only conditions
that do not bind variables but only perform tests1, makes it easier to understand
the meaning of the if-then-else.

To enhance readability it might be worth putting the shorterbranch as “then”
and the longer one as “else”. Alternatively, the negation ofthe condition may be
more readable, for example a double negation can be eliminated. This transfor-
mation might also disclose other transformations that simplify the code.

Hence, we suggest a technique replacing(P -> Q ; R) with (\+ P -> R
; P, Q). Of course, for a built-inP ViPReSS generates the appropriate negated
built-in instead of\+ P. The call toP in the “else” branch is there to keep any
bindings generated inP. If it can be inferred thatP cannot generate any bindings,
thenP can be omitted from the “else” branch.

Replace cut by if-then-elseThis technique aims at improving program read-
ability by replacing cuts (!) by if-then-else (-> ;). Despite the controversy on
the use of cut inside the logic programming community, it is commonly used in
practical applications both for efficiency and for correctness reasons. We sug-
gest a transformation that replaces some uses of cut by the more declarative and
potentially more efficient if-then-else.

Example 1.Figure 1 shows how this refactoring inViPReSS transforms the pro-
gram on the left to the program on the right.

The right-hand side program shows that the refactoring preserves opera-
tional semantics. Moreover, assuming thatN is the input andF the output of

1 This is similar to the guideline in imperative languages notto use assignments or other side
effects in conditions.

10

(a) Before (b) After

Fig. 1.Replace cut by if-then-else inViPReSS.

fac/2, the refactoring reveals hidden malpractices. These malpractices are dis-
cussed in more detail in the next two refactorings.

Replace unification by (in)equality test The previous refactoring may expose
a hidden malpractice: full unifications are used instead of equality or other tests.

O’Keefe in [12] advocates the importance of steadfast code:code that pro-
duces the right answers for all possible modes and inputs. A more moderate
approach is to write code that works for the intended mode only.

Unification succeeds in several modes and so does not convey aparticular
intended mode. Equality (==, =:=) and inequality (\==, =\=) checks usually only
succeed for one particular mode and fail or raise an error forother modes. Hence
their presence makes it easier in the code and at runtime to see the intended
mode. Moreover, if only a comparison was intended, then fullunification may
lead to unwanted behaviour in unforeseen cases.

The two versions offac/2 in Example 1 use unification to compareN to
0. This succeeds ifN is variable by binding it, although this is not the intended
mode of the predicate. By replacingN = 0 with N == 0 we indicate thatN has
to be instantiated to0. This makes it easier for future maintenance to understand
the intended mode of the predicate. A weaker check isN =:= 0 which allows
N to be any expression that evaluates to0. It may be worthwhile to consider
a slightly bigger change of semantics:N =< 0 turns the predicate into a total
function. Another way to avoid an infinite loop for negative input is to addN >
0 to the recursive clause. These checks capture the intended meaning better than
the original unification.

Produce output after commit Another malpractice that may be revealed by the
replace cut by if-then-elserefactoring, is producing output before the commit.
This malpractice is disapproved of by O’Keefe in [12], in line with his advocacy
for steadfast predicates.

11

Now consider what happens with the predicatefac/2 in Example 1 if is
called as?- fac(0,0). It does not fail. On the contrary, it backtracks into the
second clause and goes into an infinite loop. On the other hand, the query?-
fac(0,F), F=0 does fail. Contrary to the intuition which holds for pure Prolog
programs, it is not always valid to further instantiate a query than was intended
by the programmer.

By producing output after the commit, the second clause can no longer be
considered as an alternative for the first query. Hence, the following version of
the first clause has better steadfastness properties:fac(0,F) :- !, F = 1.
This refactoring may have an impact on the efficiency of the code. If the output
is produced before a particular clause or case is committed to and this fails, other
cases may be tried, which incurs an overhead. This is illustrated to the extreme
with the non-terminatingfac(0,0) query.

4 TheViPReSS refactoring browser

The refactoring techniques presented above have been implemented in the refac-
toring browserViPReSS2. To facilitate acceptance of the toolViPReSS by the
developers community it has been implemented on the basis ofVIM, a pop-
ular clone of the well-known VI editor. Techniques likepredicate duplication
provided are easy to implement with the text editing facilities of VIM.

Most of the refactoring tasks have been implemented as SICStus Prolog [7]
programs inspecting source files and/or call graphs. Updates to files have been
implemented either directly in the scripting language of VIM or, in the case
many files had to be updated at once, throughed scripts. VIM functions have
been written to initiate the refactorings and to get user input.

ViPReSS has been successfully applied to a large (more than 53,000 lines)
legacy system used at the Computer Science department of theKatholieke Uni-
versiteit Leuven to manage the educational activities. Thesystem, calledBTW,
has been developed and extended since the early eighties by more than ten dif-
ferent programmers, many of whom are no longer employed by the department.
The implementation has been done in the MasterProLog [8] system that, to the
best of our knowledge, is no longer supported.

By using the refactoring techniques we succeeded in obtaining a better un-
derstanding of this real-world system, in improving its structure and maintain-
ability, and in preparing it for further intended changes such as porting it to a
state-of-the-art Prolog system and adapting it to new educational tasks the de-
partment is facing as a part of the unified Bachelor-Master system in Europe.

2 Vi(m) P(rolog) Re(factoring) (by) S(chrijvers) (and) S(erebrenik)

12

We started by removing some parts of the system that have beenidentified
by the expert as obsolete, including out-of-fashion user interfaces and outdated
versions of program files. The bulk of dead code was eliminated in this way,
reducing the system size to a mere 20,000 lines.

Next, we applied most of the system-scope refactorings described above.
Even after removal of dead code by the expertsViPReSS identified and elimi-
nated 299 dead predicates. This reduced the size by another 1,500 lines. More-
overViPReSS discovered 79 pairwise identical predicates. In most of thecases,
identical predicates were moved to new modules used by the original ones. The
previous steps allowed us to improve the overall structure of the program by
reducing the number of files from 294 to 116 files with a total of18,000 lines.
Very little time was spent to bring the system into this state. The experts were
sufficiently familiar with the system to immediately identify obsolete parts. The
system-scope refactorings took only a few minutes each.

The second step of refactoring consisted of a thorough code inspection
aimed at local improvement. Many malpractices have been identified: exces-
sive use of cut combined with producing the output before commit being the
most notorious one. Additional “bad smells” discovered include bad predicate
names such asq, unused arguments and unifications instead of identity checks
or numerical equalities. Some of these were located byViPReSS , others were
recognised by the users, whileViPReSS performed the corresponding transfor-
mations. This step is more demanding of the user. She has to consider all po-
tential candidates for refactoring separately and decide on what transformations
apply. Hence, the lion’s share of the refactoring time is spent on these local
changes.

In summary, from the case study we learned that automatic support for refac-
toring techniques is essential and thatViPReSS is well-suited for this task. As the
result of applying refactoring toBTW we obtained better-structured lumber-free
code. Now it is not only more readable and understandable butit also simpli-
fies implementing the intended changes. From our experiencewith refactoring
this large legacy system and the relative time investments of the global and the
local refactorings, we recommend to start out with the global ones and then
selectively apply local refactorings as the need occurs.

A version of ViPReSS to refactor SICStus programs can be downloaded
fromhttp://www.cs.kuleuven.ac.be/˜toms/vipress. The current version,
0.2.1, consists of 1,559 lines of code and can also refactor ISO Prolog programs.
Dependencies on the system specific builtins and the module system have been
separated as much as possible from the refactoring logic. This should make it
fairly easy to refactor other Prolog variants as well.

13

5 Conclusions and Future Work

In this paper we have shown that the ideas of refactoring are applicable and
important for logic programming. Refactoring helps bridging the gap between
prototypes and real-world applications. Indeed, extending a prototype to provide
additional functionality often leads to cumbersome code. Refactoring allows
software developers both to clean up code after changes and to prepare code for
future changes.

We have presented a catalogue of refactorings, containing both previously
known refactorings for object-oriented languages now adapted for Prolog and
entirely new Prolog-specific refactorings. Although the presented refactorings
do require human input as it is in the general spirit of refactoring, a large part
of the work can be automated. Our refactoring browserViPReSS integrates the
automatable parts of the presented refactorings in the VIM editor.

Logic programming languages and refactoring have already been put to-
gether at different levels. Tarau [19] has refactored the Prolog language itself.
However, this approach differs significantly from the traditional notion of refac-
toring [6]. We follow the latter definition. Recent relevantwork is [20] in the
context of object oriented languages: a meta-logic very similar to Prolog is used
to detect for instance obsolete parameters.

None of these papers, however, considers applying refactoring techniques
to logic programs. Seipelet al. [17] include refactoring among the analysis and
visualisation techniques that can be easily implemented bymeans of FNQUERY,
a Prolog-inspired query language for XML. However, the discussion stays at the
level of an example and no detailed study has been conducted.

In the logic programming community questions related to refactoring have
been intensively studied in context of program transformation and specialisation
[3, 4, 10, 14]. There are two important differences with thisline of work. Firstly,
refactoring does not aim at optimising performance but at improving readability,
maintainability and extensibility. In the past these features where often sacrified
to achieve efficiency. Secondly, user input is essential in the refactoring pro-
cess while traditionally only automatic approaches were considered. Moreover,
usually program transformations are part of a compiler and hence, they are “in-
visible” to the program developer. However, some of the transformations devel-
oped for program optimisation, e.g.dead code elimination, can be considered
as refactorings and should be implemented in refactoring browsers.

To further increase the level of automation of particular refactorings addi-
tional information such as types and modes can be used. To obtain this informa-
tion the refactoring system could be extended with type and mode analyses. On
the other hand, it seems worthwhile to consider the proposedrefactorings in the

14

context of languages with type and mode declarations like Mercury [18], espe-
cially as these languages claim to be of greater relevance for programming in
the large than traditional Prolog. Moreover, dealing with higher order features is
essential for refactoring in a real world context. The abovementioned languages
with explicit declarations for such constructs would facilitate the implementa-
tion of an industrial strength refactoring environment.

References

1. The-> operator.Association for Logic Programming Newsletter, 4(2):10–12, 1991.
2. Information technology—Programming languages—Prolog—Part 1: General core.

ISO/IEC, 1995. ISO/IEC 13211-1:1995.
3. Y. Deville. Logic Programming: Systematic program development. Addison-Wesley, 1990.
4. S. Etalle, M. Gabbrielli, and M. C. Meo. Transformations of CCP programs.ACM Transac-

tions on Programming Languages and Systems, 23(3):304–395, May 2001.
5. M. Fowler. Refactorings in alphabetical order. Available at

http://www.refactoring.com/catalog/, 2003.
6. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.Refactoring: improving the design

of existing code. Object Technology Series. Addison-Wesley, 1999.
7. Intelligent Systems Laboratory.SICStus Prolog User’s Manual. PO Box 1263, SE-164 29

Kista, Sweden, October 2003.
8. IT Masters. MasterProLog Programming Environment.www.itmasters.com, 2000.
9. N. Jacobs and H. Blockeel. The learning shell : Automated macro construction. InUser

Modeling 2001, volume 2109 ofLNAI, pages 34–43. Springer Verlag, 2001.
10. M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs. In J. Gal-

lagher, editor,Proceedings of the6th International Workshop on Logic Program Synthesis
and Transformation, volume 1207 ofLNCS, pages 83–103. Springer Verlag, 1996.

11. H. Li, C. Reinke, and S. Thompson. Tool support for refactoring functional programs. In
J. Jeuring, editor,Haskell Workshop 2003. Association for Computing Machinery, 2003.

12. R. A. O’Keefe.The Craft of Prolog. MIT Press, Cambridge, MA, USA, 1994.
13. W. F. Opdyke.Refactoring object-oriented frameworks. PhD thesis, University of Illinois at

Urbana-Champaign, 1992.
14. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and tech-

niques.Journal of Logic Programming, 19/20:261–320, May/July 1994.
15. D. Roberts, J. Brant, and R. Johnson. A refactoring tool for Smalltalk.Theory and Practice

of ObjectSystems (TAPOS), 3(4):253–263, 1997.
16. T. Schrijvers, A. Serebrenik, and B. Demoen. Refactoring Prolog programs. Technical

Report CW373, Department of Computerscience, K.U.Leuven,December 2003.
17. D. Seipel, M. Hopfner, and B. Heumesser. Analysing and visualizing Prolog programs based

on XML representations. In F. Mesnard and A. Serebrenik, editors,Proceedings of the 13th
International Workshop on Logic Programming Environments, pages 31–45, 2003. Pub-
lished as technical report CW371 of Katholieke Universiteit Leuven.

18. Z. Somogyi, F. Henderson, and T. Conway. Mercury: an efficient purely declarative logic
programming language. InAustralian Computer Science Conference.

19. P. Tarau. Fluents: A refactoring of Prolog for uniform reflection an interoperation with
external objects. InComputational Logic, First International Conference, London, UK, July
2000, Proceedings, volume 1861 ofLNAI, pages 1225–1239. Springer Verlag, 2000.

20. T. Tourwé and T. Mens. Identifying refactoring opportunities using logic meta program-
ming. In7th European Conference on Software Maintenance and Reengineering, Proceed-
ings, pages 91–100. IEEE Computer Society, 2003.

15

