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ABSTRACT. Using as example an incomplete information system with support
a set of objects X, we discuss a possible algebrization of the concrete algebra
of the power set of X through quasi BZ lattices. This structure enables us
to define two rough approximations based on a similarity and on a preclusive
relation, with the second one always better that the former. Then, we turn our
attention to Pawlak rough sets and consider some of their possible algebraic
structures. Finally, we will see that also Fuzzy Sets are a model of the same
algebras. Particular attention is given to HW algebra which is a strong and
rich structure able to characterize both rough sets and fuzzy sets.

1. INTRODUCTION

Rough structures describe the behavior of concepts, properties, data, abstract
objects in general, that may present some intrinsic vague, ambiguous, unsharp
features. For the sake of simplicity we will simply speak of vague objects. To these
objects it is usually associated some data which characterize them and which can
be used to classify them. Data that are often organized as a table associating to
each object some attributes values. As observed by Pawlak [Paw98]:

Data are often presented as a table, columns of which are labelled
by attributes, rows by objects of interest and entries of the table
are attributes values.

For example, in a table containing information about patients
suffering from a certain disease objects are patients (strictly speak-
ing their ID’s), attributes can be for example blood pressure, body
temperature etc., whereas the entry corresponding to object Smiths
and the attribute blood pressure can be normal.

Such tables are known as information systems, attribute-value
tables or information tables.

A natural abstract definition, that reflects this behavior, is the following one.
Definition 1.1. An Information System is a structure

K(X) = (X, Att(X), val(X), F)
where:

e X (called the universe) is a non empty set of objects (situations, entities,
states);
e Att(X) is a non empty set of attributes, which assume values for the objects
belonging to the set X;
e val(X) is the set of all possible values that can be observed for an attribute
a from Att(X) in the case of an object x from X;
1
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o F' (called the information map) is a mapping F : X x At{(X) — val(X)
which associates to any pair, consisting of an object x € X and of an
attribute a € Att(X), the value F(x,a) € val(X) assumed by a for the
object x.

In general we assume that an information system satisfies the following two
conditions of coherence:

(1) F must be surjective; this means that if there exists a value v € val(X)
which is not the result of the application of the information map F' to any
pair (z,a) € X x Att(X), then this value has no interest with respect to
the knowledge stored in the information system.

(2) For any attribute a € Att(X) there exist at least two objects z1 and xo
such that F(x1,a) # F(x2,a), otherwise this attribute does not supply any
knowledge and can be suppressed.

Example 1.2. Imagine you want to rent a flat, and you start to collect information
about some apartments. The features you are interested in are: the price of the flat;
its location, i.e., if it is down-town or not; the number of rooms and if it has furniture
or not. But you are not interested in, for example, at which floor it is located. So,
when organizing the data in your possession, you will consider just the first four
attributes and omit the floor number attribute. The result is a situation similar to
the one presented in Table 1, where the set of objects is X = {f1, fo, f3, fa, [5, f6 },
the family of attributes is Att(X)={Price, Rooms, Down-Town, Furniture} and the
set of all possible values is val(X)={high, low, medium, 1, 2, yes, no}.

Flat | Price Rooms Down-Town Furniture
f high 2 yes no
fo high 1 yes no
f3 high 2 yes no
fa low 1 no no
fs low 1 no no
f6 | medium 1 yes yes

TABLE 1. Flats information system.

A generalization of such a concept are incomplete information systems, i.e., in-
formation systems in which not all values are available for all objects. Such a
generalization is justified by empirical observations. Quoting [ST99]:

An explicit hypothesis done in the classic rough set theory is that
all available objects are completely described by the set of available
attributes. [...]

Such a hypothesis, although sound, contrasts with several empirical
situations where the information concerning the set A is only partial
either because it has not been possible to obtain the attribute values
or because it is definitely impossible to get a value for some object
on a given attribute.
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So, let K(X) = (X, Att(X),Val(X), F) be an incomplete information system. In
order to denote the fact that the value possessed by an object x; with respect to
the attribute a; is unknown, we introduce a null value and write F(x;,a;) = *.

Example 1.3. As a concrete example, let us consider the information system
described in Table 1. It can happen that given a flat we do not know all its
features, for instance because some information was missing on the advertisement.
The result is some missing values in the information system, as shown in Table 2.

Flat | Price Rooms Down-Town Furniture
f1 | high 2 yes *
f2 | high * yes no
f3 * 2 yes no
fa low * no no
I low 1 * no
fe * 1 yes *

TABLE 2. Flats incomplete information system.

Given an information system, complete or not, if we consider pairs of objects
belonging to the universe X, we can describe their relationship through a binary
relation R. A classification and logical-algebraic characterization of such binary
relations can be found in literature (for an overview see [Orl98b]). Generally, these
relations are divided into two groups: indistinguishability and distinguishability
relations. In our analysis, we are dealing with a tolerance (or similarity) relation,
i.e., a reflexive and symmetric relation, and its opposite, a preclusivity relation,
i.e., an irreflexive and symmetric relation. From the intuitive point of view, two
individuals are similar when they have an “indistinguishable role” with respect to
the intended application, even if they are not equivalent. On the other side, they
are preclusive if they have a “distinguishable role”, even if they are not totally
different.

These considerations lead to the definition of similarity space.

Definition 1.4. A similarity space is a structure S = (X, R), where X (called the
universe of the space) is a non empty set of objects and R (called the similarity
relation of the space) is a reflexive and symmetric binary relation defined on X. In
other words:

(i) Ve € X : 2Rx  (reflexivity);
(ii) Vo,y € X : Ry implies yRx (symmetry).

Let us stress that, in general, a similarity relation is not required to be transi-
tive. This feature strongly differentiate its behavior with respect to the equivalence
relation, which is at the basis of classical rough sets theory.

In the context of an incomplete information system K(X), for a fixed set of
attributes D C Att(X) a natural similarity relation is that two objects are similar
if they possess the same values with respect to all known attributes inside D. In a
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more formal way:

(1.1) Vz,ye X: zRpy iff Va, € D C Att(X),
either F(z,a;) = F(y,a;) or F(z,a;))=x or F(y,a;) ==

This is the approach introduced by Kryszkiewicz in [Kry98] which has the advantage
that the possibility of null values “corresponds to the idea that such values are just
missing, but they do exist. In other words, it is our imperfect knowledge that
obliges us to work with a partial information table” [ST99)].

Example 1.5. Considering the information system in Table 2, we have, for exam-
ple, that f; is similar to f5 whatever be the chosen subset D of attributes. The
same applies to f5 and fg. On the other hand, the pair of objects f4 and fg are not
similar relatively to any subset of attributes which contains the attribute Down—
Town; indeed F(Down — Town, f1) = no whereas F(Down — Town, fg) = yes.
In this way, it is also verified that the similarity relation induced from any set of
attributes D which contains Down—Town is not transitive since f; is similar to f5
and f5 is similar to fg, but fy is not similar to fg relatively to D. ]

Given a similarity space (X, R), the similarity class generated by the element
x € X is the collection of all objects similar to x, i.e.,

S(x) :={ye X : 2Ry}

Thus, the similarity class generated by x consists of all the elements which are
indistinguishable from x with respect to the similarity relation R. In this way this
class constitute a granule of similarity knowledge about x and is also called the
granule generated by x.

Trivially, being R a reflexive relation, it holds that 2 € S(z) and so no similarity
class is empty. Further, as a consequence of the non—transitivity of the relation,
the similarity classes are not necessarily disjoint, i.e., there may exist z, y such that

S(x) # S(y) and S(z) N S(y) # 0.

Example 1.6. Making reference to example 1.3, if one considers the set of all
attributes (i.e., D = Att(X)) and the induced similarity relation according to (1)

we have that S(f4) = {fs, fs} and S(fs) = {f2, f5, fe}. Thus, S(f1) # S(fs) and
S(fa) N S(fs) = {fs}- u

Using this notion of similarity class, it is possible to define in a natural way
a rough approximation by similarity of any set of objects ([Vak91, SS96, Ste98,
STO01]).

Definition 1.7. Given a similarity space (X,R), and a set of objects A C X,
the rough approximation of A by similarity is defined as the pair (Lg(A), Ur(4)),
where

(1.2a) Lr(Ad)={z€eX:Sx)CA} ={zeX:Vz(aRz=2z€ A)}
(1.2b) Ur(A)={zeX:Sx)NA#0} ={reX:3z (zRzand z € A)}
It is easy to verify that the following chain of inclusions holds:

(1.3) Lr(A) CACUR(A).

Lz (A) is called the similarity lower approximation of A (since it is constituted
by all objects whose granule is contained in A) and Ur(A) the similarity upper
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approximation of A (since it is constituted by all objects whose granule has at least
a point in common with A).

Example 1.8. Consider again the information system in Table 2 with similarity
relation (1) relative to D = At¢(X). Choosing the set of objects A = {f4, f5, f6}, we
have Lr (A) = {f4, f5} and Ugr(A) = {f2, fa, f5, fe} with the obvious satisfaction
of the chain (3). ]

As said before, the opposite of a similarity relation is a preclusive relation: two
objects are in a preclusive relation iff it is possible to distinguish one from the other.
Using such a relation it is possible to define a notion dual to the one of similarity
space.

Definition 1.9. A preclusivity space is a structure S = (X, #), where X (called
the universe of the space) is a non empty set and # (called the preclusivity relation
of the space) is an irreflexive and symmetric relation defined on X. In other words:
(i) Yz € X : not a#x  (irreflexivity);
(ii) Va,y € X : a#y implies y#x (symmetry).

Needless to stress, any similarity space (X, R) determines a corresponding preclu-
sivity space (X, #xr) with z#xzy iff =(zRy), and vice versa any preclusivity space
(X, #) determines a similarity space (X, Rx) with 2Ry iff =(z#y). In this case
we will say that we have a pair of correlated similarity—preclusive relations.

Suppose, now, a preclusivity space (X, #). The preclusive relation # permits us
to introduce for all H € P(X) (where we denote by P(X) the power set of X) its
preclusive complement defined as

H# .= {2z € X :Vy € H (z#y)}.

In other words, H# contains all and only the elements of X that are distinguishable
from all the elements of H. Whenever x € H# we will also write: #H and we will
say that = is preclusive to the set H. Further, we will say that two subsets H and
K of X are mutually preclusive (H#K) iff all the elements of H are preclusive to
K, and all the elements of K are preclusive to H. We remark that, in the context
of modal analysis of rough approximation spaces, the operation # is a sufficiency
operator [DOO01].
The following result has been proved in [Cat97].

Proposition 1.10. Let S = (X, #) be a preclusivity space and let us consider the
structure <77(X), n,u,ec # 0, X>. Then, the following hold:

(1) The substructure (P(X), N, U, 8, X) is a distributive (complete) lattice,
with respect to standard set theoretic intersection N and union U, bounded
by the least element () and the greatest element X. The partial order relation
induced from this lattice structure is the standard set theoretic inclusion C.

(2) The operation © : P(X) — P(X) associating to any subset H of X its set
theoretic complement H® = X \ H is a standard complementation, i.e., it
satisfies:

(C-1) H=(H")*" (involution)

(C-2a) HCK iff K°C H® (contraposition)
(C-2b) H°NK®=(HUK)® (N de Morgan)
(C-2¢) HCUK®= (HNK)® (U de Morgan)
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(C-3a) HNH®=0 (non contradiction)
(C-3b) HUH® =X  (excluded middle)

(3) The operator # : P(X) — P(X) associating to any subset H of X its
preclusive complement H# is a unusual complementation and it satisfies:

(B1) H C (H#)#  (weak double negation)

(B2a) If H C K then K¥* C H#  (contraposition)
(B2b) H¥ N K# = (HUK)# (N de Morgan for #)

(B3) HNH# =0 (non contradiction)
(4) The following interconnection rule holds:
(in) H# C He.

In the particular case of the similarity relation (1), the corresponding preclusive
relation is just its logical negation:

(14) Va,ye X z#py iff notxRpy iff

Ja; € D C Att(X) : F(x,a;) # F(y,a;) and F(z,a;) #* and F(y,a;)# *
Example 1.11. Consider, now, the set of flats H = {f2, fs} relatively to Table 2,
then the preclusive complement of H with respect to D = Att(X) is H* = {f4},
which is different from H¢ = {f1, f3, f1, f5s}. Further, the complementation # does

not satisfy some standard properties. First of all the strong double negation law,
H = H##_ and the excluded middle law H U H# = X. In fact, we have

H={fa, fo} S {f1. fo, f5, fs} = H*#
and
HUH?® ={fs, fa, fo} # X
Moreover, also the U de Morgan law, H# U K# = (H N K)#, and the strong

contraposition law, H# C K# implies K C H, are not generally verified. Let us
consider, for instance, K = {f1, f3s}. Then, we obtain

(HNEK)* =07 =X # {fa, f5, fe} = HY UK?
and

H? ={fs} S{fa, fs, fo} = K¥ but K ={f1,fs} Z{fo,fs} =H
Finally, in general, it does not hold the strong interconnection rule H#¢ = H##.
For instance, H## = {f15f27f35f6} # {f15f27.f35f55f6} = H#C u

On the Boolean lattice based on the power set P(X), we now have two, generally
different, complementations: the usual set theoretic complementation ¢ and the
preclusive complementation #. By their interaction, it is possible to define a closure
and an interior operator on P(X).

Proposition 1.12. Let <’P(X), N, u,c # 0, X> be the algebraic structure based
on the power set of X and generated by the preclusivity space (X,#). Then the
mapping

Ly :P(X)— P(X), H—Ly(H):=H##*
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1s an interior operator, i.e.,

(1o) X =Lx(X) (normalized)
(I) Ly(H)CH (decreasing)
(I2) Ly(H) =Ly (Ly(H)) (tdempotent)
(I3) Ly(HNK)CLy(H)NLy(K) (sub — multiplicative)

Under condition (ly) — (I1), the condition (I3) is equivalent to the monotonicity
condition: H C K implies Lx(H) C Ly (K). In general, the Kuratowsky property
of topological interior, Ly (H N K) = Lx(H) N Ly (K), is not verified.

Example 1.13. Let us consider the two sets of flats H = {f1, fa, f4, f5} and K =
{f1, f2, [5, fe}, relative to Table 2. Then, the interior of H, K and their intersection,
relative to D = Att(X), are respectively Ly (H) = {f4, fs}, Ly (K) = {fo, f5, f6}
and L#({fl,fQ, f5}) = 0. So, L#(H N K) = 7£ {f5} = L#(H) N L#(K) |

From the fact that according to (I1) one has that Ly (H) C H, it is possible to
single out the collection of all #—open sets defined as follows:

O(X,#) := {AC X : A=Ly(A) = AF#Y,
This set is not empty since both the empty set () and the whole universe X are

#—open sets.

Proposition 1.14. Let (P(X), N, U, ¢, 0, X) be the algebraic structure generated
by the preclusivity space (X, #) and # the preclusive complement on P(X). Then,
the mapping

Uy :P(X) = P(X), H—Uyg(H):=H*#

is a closure operator, i.e.,

(Co) 0 =Ux(0) (normalized)
(Ch) H CUy(H) (increasing)
(Cs) Uy (H) =Ux(Ug(H)) (tdempotent)
(Cs) Ux(H)UUL(K) CUx(HUK) (sub — additive)

Let us note that condition (C3), under (Cy) — (C1), is equivalent to the mono-
tonicity condition: H C K implies Uy (H) C Ug(K). In general, the Kuratowski
property of topological closure, Uy (H) UUx(K) = Ug(H U K), does not hold.

Example 1.15. Let us consider the two sets of flats H = {f2} and K = {f5}, rela-
tive to Table 2. Then, the closure of H, K and their union, relative to D = Att(X),

are respectively Uy (H) = {f1, f2, f3}, Ux(K) = {f4, fs} and Ux({f2, f5}) = X.
So, Uy(HUK) =X # {f1, f2, f3: fa, [5} = Ux(H) UU»(K). u

Since according to (C7) one has that H C Uy (H), it is possible to introduce the
collection of all #—closed sets defined as follows:

C(X,#):={B C X : B=Uy(B) = B*#}.

Also this set is not empty since the empty set (§ and the whole universe X are both
#—closed. It is easy to see that A is #—open iff A€ is #—closed, and similarly B is
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#—closed iff B¢ is #—open. Hence,
OX,#)={ACX:A°eC(X,#)}
C(X,#)={BCX:B°€OX,#)}.

If a set is both #—open and #—closed, it is said to be #—clopen. So, the collection
of all #—clopen sets is defined as:

COX,#) = C(X, #) NO(X, #).

Both the empty set () and the whole universe X are #-clopen. In the sequel, if
there is no confusion, we simply speak of open, closed, and clopen sets instead of
#—open, #—closed, and #—clopen sets.

By the increasing (resp., decreasing) property (C1) (resp., (I1)) of the closure
(resp., interior) operator, the following holds:

(1.5) L#(H)QHQU#(H)

Therefore, the pair (Ly(H),Ux(H)) can be thought of as a preclusive rough ap-
proximation of the set H by a preclusive open—closed pair. In fact,

(1) by (Cs) we have that Ux(H) is a closed set, and inclusion H C Ux(H)
says that Uy (H) is one of the possible upper closed approximations of H;

(2) for every closed set B which is an upper approximation of H, H C B, we
have by monotonicity that Ux(H) C Ux(B) = B,

(3) thus, Ux(H) is the best approximation of H from the top by closed ele-
ments (the upper closed approzimation of H).

By the above properties (1)—(3), it follows that the preclusive upper approximation
of a set H can also be expressed as:

(1.6) Uu(H) =N{B e C(X,#): HC B}.

In the case of a closed set H one has that H = Ugx(H), i.e., the upper closed
approximation of any closed set is the set itself. In this sense we can say that
closed sets are upper ezact sets.

Analogously, for the lower preclusive approximation:

(1) by (I2) we have that L4 (H) is an open set, and inclusion Ly (H) C H says
that Ly (H) is one of the possible lower open approximations of H;

(2) for every open set B which is a lower approximation of H, B C H, we have
by monotonicity that B = Ly (B) C Ly (H),

(3) thus, Ly (H) is the best approximation of H from the bottom by -open
elements (the lower open approzimation of H).

By the above properties (1)—(3), it follows that the preclusive lower approximation
of a set H can be expressed as:

(1.7) Lu(H)=U{BeC(X,#): BCH}.

In the case of an open set H obviously H = Ly (H), obtaining that open sets can
be considered as lower exact sets.

Finally, we have that clopen sets are both lower and upper exact sets, so, we
simply call them ezact sets.

Example 1.16. Making reference to the information system described by Table 2,
let us consider the set H = {f4, f5, f6} and compute its preclusive rough approxi-
mation with respect to the preclusive relation (4) induced by the set D = Att(X)
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of all involved attributes. We have that H#* = {f1, f3} and Ux(H) = H## =
{f1, 5, fo} = H. Computing the preclusive lower approximation, one obtains that
He = {f1, 2, f3}, HF = {fa, fs}, H## = {1, fo, 3} and finally, H##¢ =
Ly(H) = {f4, f5, fo} = H. Thus, the rough approximation of H = {f4, f5, f¢} is
the pair ({f4, f5, fo}, {f4, f5, f6}), and H is a clopen set.

In Figures 1-3, the closed, open, and clopen sets relative to the preclusive rela-
tion induced from Table 2 by the set D = Att(X) are represented through Hasse
diagrams.

{1,2,3,4,5,6}
{4, 5 6}/ \{1 2,3,6}
{4 5} {1,3,4} {1, 3}
{4} {6} {1 3}
(Z)

FIGURE 1. Closed sets relative to Table 2 for D = Att(x).

{1,2,3,4,5,6}
/ \
{2,4,5,6} {1,2,3,5,6}
|
{4,5,6} {1,2,3,4,5} {1,2,3,6}
|
{4,5} {2,5,6} {1,2,3}

~_

FIGURE 2. Open sets relative to Table 2 for D = Att(x).
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{1,2,3,4,5,6}
{1,2,3,6}/ \{4,5,6}
{1,2,3} {4,‘5}

\0/

FIGURE 3. Clopen sets relative to Table 2 for D = Att(x).

In Table 3 examples of similar and preclusive approximations with respect to
some particular subsets of the involved universe are reported.

Lr(H) | Ly(H) H Uy (H) Ur(H)
0 [} {fo} {f1, fa, f3} {f1, fas f3, fo}
{fa} {fa, f5} {fa, f5} {fa, f5} {fa, f5, f6}

{f4} {f47f5} {f17f27f47f5} {f17f27f37f47f57f6} {f17f27f37f47f57f6}
{fe} | {fos S5, fo} | {f1, fo, f5, fo) | {f1, fo, f3, fa, f5, fo )} | {f1s fo, fas fa, f5, fe)

TABLE 3. Examples of Approximations.

As can be seen, in all these particular cases the following chain of inclusions
holds:

(1.8) L (H) C Ly(H) C H C Ug(H) C Ur(H)

Thus, it seems possible to conjecture that the preclusive approximation gives a
better, i.e., closer, approximation of a given set H than the corresponding similarity
one. We will show in Section 3 that this is a general property, which holds for all
subsets of the universe of a preclusivity space. |

2. ABOUT THE MONOTONICAL INCREASE IN TIME OF KNOWLEDGE

Starting from an incomplete information system one can wonder what happens
when we have more knowledge about it, i.e., when the number of unknown values
decreases. One could expect that for a fixed set of attributes to more knowledge
there corresponds more open and closed sets producing in this way a preclusive
rough approximation which is better than the previous one (if the information
increases, then the approximation should be better and better). However, this is
not always the case as the following examples will show.

Example 2.1. We now consider two examples showing two different cases making
reference to the information system of Table 2 which is supposed relative to a
given time, say t;. Let us consider a first situation, which can be attributed to a
knowledge situation of some observer O; at a time, say to, former than the time ¢;
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(i.e., to < t1) in which the knowledge of Table 2 has been achieved. This first case

corresponds to a worst knowledge about flat f3 according to the situation described
in Table 4.

Flat | Price Rooms Down-Town Furniture
f1 | high 2 yes *
f2 | high * yes no
f3 * 2 * no
fa low * no no
I low 1 * no
fe * 1 yes *

TABLE 4. Case 1: only the information regarding flat f5 is different
from the one of Table 2 with a global increase in time of the knowl-
edge.

In the second case, another observer O, is involved whose former knowledge,
relative to time tg, with respect to the information system of Table 2 consists of a
worst knowledge about flat fs according to the situation described in Table 5.

Flat | Price Rooms Down-Town Furniture
f1 | high 2 yes *
f2 | high * yes no
I3 * 2 yes no
fa low * no no
I low 1 * no
fo * 1 * *

TABLE 5. Case 2: only the information regarding flat fg is different
from the one of Table 2 with a global increase in time of the knowl-
edge.

Thus, there are two observers that initially (time to) have a different knowledge
about the same collection of flats (described by Tables 4 and 5). During the time,
both the observers increase their knowledge reaching the same result exposed in
Table 2 at a subsequent time ¢;. The final result is that relatively to the same set
of all attributes D = Att(X) there is a decrease in the number of closed (and so
also of open) sets passing from case 1 (time ¢y) to the situation of Table 2 (time
t1) and an increase going from case 2 (time tg) to Table 2 (time ¢1), as can be seen
looking at Figures 4 and 5.
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{1,2,3,4,5,6}

s S

{1,3,4} {4,5,6}

{1,2,3} {1,2,6}
| | |

{1,3} {1,2} {4,5} {5,6}

{4 ’/////////// ///////// {i}
~ |

} {5}
FIGURE 4. Closed sets in case 1 at time ¢y: during the time evo-

lution from ¢¢ to ¢; (corresponding to Figure 1) there is a decrease

of the total number of closed sets with the appearance of the set

{1}

{1,2,3,6}.
{1,2,3,4,5,6}
/ \
{4,5,6} {1,2,3}
{4J5} {1F3}
\\\\\\\\\\\Q’///////////

FIGURE 5. Closed sets in case 2 at time tg: during the time evolu-
tion from ty to t; (corresponding to Figure 1) there is an increase
of the total number of closed sets.

When considering the clopen sets we observe that their number increases in the
original situation depicted in figure 3 with respect to both case 1 and case 2, as can
be seen in Figure 6.
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{1,2,3,4,5,6}

N

{1,2,3} {4,5,6}

\/

0
FIGURE 6. Clopen Sets: case 1 and case 2 at time tg.

Again we ask whether this is a general property: to a greater knowledge corre-
sponds a higher number of clopen sets. Also in this case, the answer is negative.
Let us suppose that, with respect to the original situation of Table 2 at time ¢q,
both the observers in a later time, say to, increase their knowledge about flat 5
according to Table 6.

Flat | Price Rooms Down-Town Furniture
f1 | high 2 yes *
f2 | high * yes no
f3 * 2 yes no
fa low * no no
fs low 1 no no
fe * 1 yes *

TABLE 6. Case 3 at time tg > t1.

In this case, however, the number of clopen sets decreases with respect to the
knowledge at time t1, as can be seen in Figure 7.

{1,2,3,4,5,6}

T

{4,5} {1,2,3,6}

S~

0

FIGURE 7. Clopen Sets: Case 3 at time to > t;.

When considering the closed sets, it happens that they are numerically less at
time to with respect to the ones at time ¢1, but the set {1,3,4,5} is closed at time
to and not at time ¢;.
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In Figure 8 it is reported the Hasse diagram of closed sets at time 5.

{1,2,3,4,5,6}

T

{4,5,6} {1,2,3,6} {1,3,4,5}

> >

{6} {4,5} {1,3}

/

FIGURE 8. Closed sets: Case 3 at time to > t1.

0

Finally, as a limit final case we consider the complete information system of Table
1, corresponding to an increase of the knowledge represented by Table 6 (occurred
at a time t3 > t9). In this case the set of closed and clopen sets are the same as
the ones of case 3 (see Figures 8 and 7 respectively). |

We can conclude that there is no correspondence between unknown values and
exact (either open or closed or clopen sets) of the preclusive environment. The same
uncertainty holds with respect to the quality of an approximation. Let us consider
an incomplete information system based on the universe X with associated a pair
(R, #) of correlated similarity—preclusive relations. For a given set of objects H
from X we can compute its preclusive rough approximation. Now, if we add (resp.,
remove) some information to (resp., from) the system, and recompute the preclusive
approximation, we have no idea if the result is better or worst than the previous
one.

Example 2.2. Let us consider the information system at time ¢y of Table 4. If
we compute the approximations of the same sets used in Table 3, we obtain the
following results.

Lr(H) | Lg(H) H Uy (H) Ur(H)
(Z) (Z) {f2} {fluf?} {f17f27f37f6}
(Z) (Z) {f47f5} {f47f5} {f37f47f57f6}
0 0 {1 fos fas [} | {Uf1s fou fao fas fs, o} | A1) fou f3s fas S, fe )
{fe} | {fos S5, fo} | {f1, fo, f5, fo) | {f1, fo, f3, fa, fo, fo )} | {f1s fo, £, fa, £, fe)

TABLE 7. Examples of Approximations, case 1 at time %.

That is, going from a situation at time ¢y to a situation at time ¢;, i.e., adding
knowledge to the information system in a monotonic way, we have that

(1) the time evolution of the preclusive rough approximation of a set is unpre-

dictable, i.e., the approximation becomes either worst (case { f2}), or better

(cases {fs, f5}, {f1, f2, fa, f5}), or remains the same (case {f1, fo, f5, f6});
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(2) on the contrary, in this example the similarity rough approximation at time
t; of a set is always better than the corresponding similarity rough approx-
imation of the same set at the previous time tg, i.e., there is a monotone
behavior of the similarity approximation with respect to the knowledge
increase;

(3) however, at any fixed time the preclusive approximation of a set is always
better then the correlated similarity approximation, i.e., the chain (8) holds
for any set.

As regards to the preclusive approximations, we can select those situations in
which to an increase of knowledge in time corresponds an increase in the quality of
the approximations.

First of all, let us introduce the following definitions.

Definition 2.3. Let K(0)(X) and K£*)(X), with to,t; € R, be two incomplete
information systems based on the same triple (X, Att(X),val(X)) and characterized
by two different information maps

F) . X x Att(X) — val(X) and F): X x Att(X) — val(X).
We will say that there is a monotonic increase of information iff
to<t; and Y(z,a) (F®)(z,a) #* = FU)(z,a) = F%)(z,a)).
In such a case, we will write (%) (X) < K1) (X).
Definition 2.4. Let £(*0)(X) and K£(*)(X) be two incomplete information systems

such that K(*0)(X) < K*)(X). We will say that there is a monotonic increase of
knowledge iff C(0)(X) € C)(X).

In the previous examples we have seen that to a monotonic increase of informa-
tion does not correspond a monotonic increase in the quality of the approximations.
This desirable behavior holds, instead, in the case of monotonic increase of knowl-
edge.

Proposition 2.5. Let K()(X) and K*)(X) be two incomplete information sys-
tems characterized by a monotonic increase of knowledge . Then

(2.1) vH C X LY(H) c LYY (H) c o C Ul ) cul (m).

Proof. By hypothesis, C(*)(X) € C*1)(X) and consequently Q) (X) C O (X).
Now, let us consider the rough lower approximation of a set H, as defined in
equation (7). Suppose that there exists a set A € Q) (X) such that A C H, then,

by hypothesis, A € 00¢1)(X). So LY*)(H) = U{A € 0%)(X): AC H} CU{A €
0oM)(X): AC H} = L;Zl)(H). On the other hand, suppose that there exists
B € C)(X) such that H C B, then it also holds B € C(")(X). So, UY" (H) =
N{BeCH(X): HC B} Cn{BeCW(X):HC B}=UL(H) O

Example 2.6. Let us consider the case 2, at time ¢y, and compute the approxi-
mations of the same sets of Table 3. The results are shown in Table 8.
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Lr(H) | Ly (H) H Uy (H) Ur(H)
0 0 {fo} {f1, fa, f3} {f1, f2, f3, fe}
0 0 {f1, 5} {fa, f5} {fa, f5, fo}
0 0 {1, fou fas [} | {Ufrs fo, foo fas f5, fo} | {f1s fau [0 fas [, fo}
0 0 {f1, fo [, fo} | LS, fo, f3, fas f5, fe} | {Lf1s fo, f3, fas f5, fo )

TABLE 8. Examples of Approximations, case 2.

Going from Table 5 (case 2), at time ¢y, to Table 2, at time ¢;, we have a mono-
tonic increase of knowledge. So, as expected, it results that the approximations
computed in Table 3 are always better or equal to the ones of Table 8. |

Differently from the preclusive rough approximation, if we consider the simi-
larity rough approximation, we can see, comparing Tables 7 and 8 with Table 3,
that the quality of the approximation is monotonic with respect to the quantity of
information. This is a general result, as shown in the following proposition.

Proposition 2.7. Let K% (X) and K*)(X) be two incomplete information sys-
tems such that K(')(X) < K1) (X) (there is a monotonic increase of information,).
Then,

(22)  VHCX LE(H)CLE(H)CHCUR(H) CUR(H).

Proof. Considering the similarity relation defined in equation (1), we have that if
two objects are similar at time ¢; then they are also similar at time tyo: 2R*)y
implies zR(*)y. So the granule (similarity class) of an object = at time tq is
bigger than the the granule (similarity class) of « at time ¢;: S®)(z) C S¢)(g).
Now, let H be a set of objects and compute its similarity rough approximation
as defined in Equations (2a) and (2b). As regards to the lower approximation,
we have that if z € L{(H), then S®)(z) C H. So, St (z) C §t0)(z) C H,
that is 2 € LYY (H), and finally, L&) (H) € LY (H). Similarly, for the upper
approximation, if z € Ugl)(H)7 one obtains by definition that S)(z) N H # 0.
Then S®)(z) N H # 0, i.e., z € USY (H) and UL (H) C US (H). O

Concluding, if we suppose an increase of the information in time we have a
monotononical behaviour of the similarity approximation and an unpredictable be-
haviour of the preclusive approximation, with the last one which is always better
than the first one. From an intuitive point of view we can imagine a situation
similar to the one drawn in Figure 2.
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U_R(H)

U_#(H)

L_#(H)

L_R(H)

FIGURE 9. An imagininary representation of the time evolution of
the similarity and preclusive rough approximations.

All the examples considered until now are about incomplete information systems
and the similarity relation given by Equation (1). However, the pathological be-
havior remarked about the monotonic increase of information holds also in other
contexts.

Another typical case of a reflexive and symmetric binary relation which in gen-
eral is not transitive is the one induced by any distance. Precisely, if it can be
introduced a metric assigning a distance between pairs of objects of the universe of
an information system, we could say that two objects are similar if their distance is
less than a fixed value e. In this situation the similarity relation is sometimes called
e-indiscernibility and “the basic idea is that small differences on some attribute
values may be judged insignificant” [SV95].

2.1. € - indiscernibility in presence of a metric. Let K be an information
system with numeric valued attributes, i.e., Att(X) C R. Then, given an attribute
a € Att(X) a way to define a pseudo—metric for a is
|F(z,a) — F(y,a)|

max{F(z,a):z € X} —min{F(w,a) :w € X}
Clearly, this is a pseudo—metric and not a metric since it is not true that d,(z,y) = 0
implies « = y [Kel55]. Further, we remark that it is well defined since max{F'(z,a) :
z € X} —min{F(w,a) : w € X} is never equal to 0 due to the assumption that for
all attributes a there exist at least to objects x1, x2 such that F(z1,a) # F(z2,a)
(see Section 1).

In presence of two or more attributes collected in a set D C Att(X), we can
introduce an overall distance:

dp(z,y) = Z wada(,Y)

a€D

(2.3) do(z,y) :=

where w, are weights such that Y w, = 1 (a standard choice is w, = ‘—11)‘) So, for
a fixed value € € [0, 1] we can consider the similarity relation defined as follows:

(2.4) 2Rpy iff dp(z,y) <e
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The correlated preclusive relation is the following:
#5y T dp(z,y) > e

Let us stress that this is not the unique possibility to define a metric, for a more
complete discussion see [NSS98].

Example 2.8. We apply now the similarity relation (12) on the same example
used in [SV95] and [GMS98]. Let us consider the situation of 12 firms described in
Table 9.

Firm | a1 | as | a3 |d
1 43 | 78 | 0 | 1
2 54 | 75 | 0 |2
3 1241 50 | 1 |1
4 102 65 | 1 |2
5 98 | 80 | 2 | 2
6 88 | 102 | 2 | 2
7 130 | 57 | 0 |1
8 1281 92 | 1 |2
9 82 | 59 |1 |1
10 [ 134|103 | 2 | 2
11 58 | 55 | 0 |1
12 | 126 71 | 1 |2

TABLE 9. Firms information table.

These firms are analyzed with respect to the following attributes:

e a,= value of fixed capital,

e ao= value of sales in the year preceding the application,

e a3= kind of activity, classified according to the typology 0,1 and 2,
Further, these firms are divided in two classes: paid back their credit (d=1) or not
(d=2).

In order to have a similarity relation we define a distance between two objects by
considering only the first two attributes, i.e., D = {a1,a2}. So, by equation (12),
the family of similarity relations, depending on e, is:

1( |[Fz,a1) = Fy, a1)l | |F(x,a2) = Fy, a2)| ) <.
2 91 53 -
Let us set e = 0.4. We have, for example, that firm 1 is similar to firm 5:

1,143 — 98| |78 — 80|
dD(L5)::§( o1 53

On the other hand, firm 1 is preclusive to firm 12:
1(|43 — 126 n |78 — 71|
2 91 53
Further, firm 5 is similar to firm 12:
1(|98 — 126] n |71 — 80|
2 91 53

xRy iff

):0&<04:e

dp(1,12) = ):0m>04=e

dp(5,12) = )20%<04:e
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Thus, it is easily verified that R%4 is not a transitive relation, since firm 1 is
similar to firm 5 which is similar to firm 12, but firm 1 and firm 12 are not similar.

Now, let us consider the subsets of firms which paid back and did not pay back
their credit: P = {1,3,7,9,11} and N = {2,4,5,6,8,10,12}. In Table 10 we report
their similarity and preclusive rough approximations, with respect to the relation
RO'Q.

L (H) Ly(H) |H Uy (H) Ur (H)
311} | {37911} | P | {1,2,3,7,0,11,12} | {1,2,3,4,7,9,11,12}
{5,6,8,10} | {4,5,6,8,10} | N | {1,2,4,5,6,8,10,12} | {1,2,4,5,6,7,8,9,10,12}

TABLE 10. Example of rough approximations of the sets P and N.

As expected, preclusive approximations are better than the corresponding simi-
larity ones. This is particularly evident when considering the boundary region, i.e.,
U(H)/L(H), which represents the elements whose classification is uncertain. In
fact, considering the set P we have that its preclusive boundary region Uy (P) /Ly (P)
is the set {1,2,12}, whereas its similarity boundary region Ug(P)/Lx (P) is the
set {1,2,4,7,9,12}. Hence, the number of elements whose belonging to P is un-
certain is half in the case of preclusive with respect to the corresponding similarity
approximation.

Now, we turn our attention to open and closed sets. As can be seen in Table 11
the number of exact sets, both closed (and so also open) and clopen, decreases as
the value of € increases.

€ | Closed | Clopen
0.1] 1024 1024
0.2 192 80
0.3 74 20
0.4 34 4
0.5 26 2
0.6 16 2
0.7 8 2
0.8 4 2
0.9 2 2

TABLE 11. Number of exact sets, depending on e.

Thus, one could think that given €; < eo, if H is closed with respect to #<2,
ie, H= U;’f (H), then H is closed also with respect to #, i.e., H = U;i (H). In
other words, one expects that €; < ez implies C2(X) C C*(X). However, this is
not true. For example, we have that {8,10} € C®7(X) but {8,10} & C%5(X). The
same can be said about clopen sets, in fact, we have that {5,7,8,10} € CO%3(X)
but {5,7,8,10} ¢ CO%2(X).

When considering the rough approximation of a set H with respect to different
relations relative to €; < €2, we have the same unpredictability encountered in the
case of incomplete information systems at different time steps ¢; < t5. Indeed,
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we can have that the approximation relative to €5 is better, worst or equal to the
approximation relative to €; < es.

Let us refer to the information system of Table 9. We set D = {aj,a2} and
compute the approximation of some sets using the relation (12) with respect to two
different values €; = 0.6 and €2 = 0.7. The results are reported in Tables 12 and 13,
respectively.

LR (H) |Ly(H) | H | Uy(H) UR (H)
0 [} {8,10} | {6,8,10} | {1,2,3,4,5,6,7,8,9,10,12}
) 0 {2} {1,2} {1,2,4,5,6,7,8,9,11,12}
0 0 {2,4,5} X X

TABLE 12. Example of approximation for e; = 0.6

LR (H) |LGH) | H UZ%(H) UR (H)
[ 0 {8,10} {8,10} | {1,2,3,4,5,6,7,8,9,10,12}
) 0 {2} {1,2,9,11} | {1,2,3,4,5,6,7,8,9,11,12}
0 0 {2,4,5} X X

TABLE 13. Example of approximation for es = 0.7

Thus, in the considered three cases we have all the possible situations: the
preclusive approximation relative to €; is better (case {2}), worst (case {8,10}) or
equal (case {2,4,5}) of the approximation relative to €.

A particular situation that guarantees us to have a better approximation going
from €; to e is given by a monotonic (with respect to €) increase of knowledge.

Proposition 2.9. Let K(X) be a real valued information system (i.e., val(X) CR)
and let €1, €3 € [0,1]. If, with respect to the similarity relation (12), it happens that
Ce(X) C C(X) then

VH C X L¢(H)CLy(H)CHCU(H)CUZ(H).

Proof. Same as Proposition 2.5. O

Example 2.10. Let us refer to the Example 2.8. If we choose ¢; = 0.7 and
€2 = 0.8 we have that C2(X) C C(X), as can be seen by Hasse diagrams of
figure 10 and 11.

So we expect that the approximations relative to e; = 0.7 are better than the
ones relative to eo = 0.8. As an example we compute the approximations of the
same sets of Example 2.8 in the case of e; = 0.8.

By comparing Table 13 with Table 14, it is easily seen that Proposition 2.9 is
verified. |

On the other hand, in the case of the similarity rough approximation, we always
have a monotonic behavior.
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{1,2,9,11} {3,10} {8,10}

NN

{1} \{11} {10}
0/

FIGURE 10. Closed sets: case e; = 0.7.

X
7N
{10} {11}

N,

0

FIGURE 11. Closed sets: case €3 = 0.8.

LR(H) |Ly(H) | H [UY(H) | Uz(H)
0 0 | {810} | X X
] 0 2} X X
0 0 | {245} X X

TABLE 14. Example of approximation, e = 0.8

Proposition 2.11. Let K(X) be a real valued information system (i.e., val(X) C
R) and let €1,e2 € [0,1] with e; < ea. Then, once chosen a set of attributes D C
Att(X) and defined the similarity relation RS, as in equation (12), the following
holds

Lz (H) € LR (H) € H € Ug (H) € Uz (H)

Proof. The proof is similar to the one of proposition 2.7, considering that if ¢; < g
than xRy implies xR2y. (I

3. Quasi BZ DISTRIBUTIVE LATTICES

In the previous sections, through concrete cases based on the power set of a
universe, we introduced preclusivity spaces and the rough approximations generated
by them. Moreover, it emerged that in all the considered examples the preclusive
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approximation was always better than the corresponding similarity approximation.
The aim of this section is to give an algebraic characterization to preclusivity spaces
in terms of quasi Brouwer Zadeh distributive lattice structures ([Cat97, Cat98]).
This will also lead to a theoretical proof of the better behavior of the preclusive
rough approximation with respect to the similarity one.

In particular, we considered the concrete algebra (P(X), U, N, ¢, #) based on the
power set P(X) of a universe X endowed with the set theoretic union, intersection,
complement operations, and a unusual complementation #.

Now, through an abstraction, we are going to introduce an abstract system
consisting of a set X, corresponding to the power set P(X) of the concrete example,
upon which the following operations are defined:

e two binary operations, V and A, corresponding respectively to the set the-
oretic union and intersection of the concrete example;

e two unary operations, ' and ~, corresponding to the standard and preclusive
complementations of the concrete example.

Definition 3.1. A system (3, A,V,’, ~,0,1) is a quasi Brouwer Zadeh (BZ) dis-
tributive lattice if the following properties hold:

(1) ¥ is a distributive lattice with respect to the join and the meet operations
V, A whose induced partial order relation is

a<b iff a=aAb (equivalently b=aVb)

Moreover, it is required that 3 is bounded by the least element 0 and the
greatest element 1:

Vaed 0<a<l1

(2) The unary operation ’ : ¥ — ¥ is a Kleene (also Zadeh or fuzzy) comple-
mentation. In other words for arbitrary a,b € X:
(K1) d"=a
(K2)  (aVvbd) =d AV
(K3) and <bVvl.
(3) The unary operation ~ : 3 +— X is a Brouwer (or intuitionistic) comple-
mentation. In other words for arbitrary a,b € X:
(Bl) ana™™ =a
(B2) (aVvb)™=a~Ab~
(B3) aAa™=0
(4) The two complementations are linked by the interconnection rule which
must hold for arbitrary a € X:
(in) a~<d
We remark that under condition (K1), property (K2) is equivalent to the following
(K2a) (aAb) =d VI
(K2b) a < bimplies ' < d;
(K2¢) ¥ < a implies a <b.
In general neither the non contradiction law a Aa’ = 0 nor the excluded middle law
aV a’ =1 for the Kleene negation are required to hold.
As to the intuitionistic negation, we have that under condition (B1), condition
(B2) is equivalent only to the weak form of non contraposition law

(B2a) a < b implies b~ < a™.
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In general the strong contraposition law, b~ < @™ implies a < b, and the dual de
Morgan law, (aAb)™ = a™ Vb~ do not hold for the Brouwer negation. As expressed
by property (B3), the non contradiction law is satisfied by all elements, whereas,
in general, the excluded middle law is not required to hold.

In the framework of quasi BZ lattices, one can naturally introduce the anti-
Brouwer complement ° : ¥ — ¥ defined for every a € ¥ as: a” := a’~. It can be
easily shown that the operation ” satisfies the following properties:

(AB1) a < b implies ” < a” [Contraposition law]
(AB2) aVa’ =1 [Excluded middle law]
(AB3) a” <a. [Weak double negation law]

Our three complements turn out to be connected by the following chain:
VaeY, a~<d <da.

Proposition 3.2. Let (X,A,V,’, ™, 0,1) be a quasi BZ distributive lattice. Then,
the map i: X — X such that i(a) := a”® = o/~ is an interior operator. That is,
the following are satisfied:

(o) 1=1i(1) (normalized)
(I) ifa)<a (decreasing)
(I2) i(a) =1i(i(a)) (idempotent)
(I3) i(a AD) <i(a) Ai(b) (submultiplicative)
Dually, the map c : X — X such that c(a) := a™" is a closure operator, i.e.:
(Co) 0= c(0) (normalized)
(Ch) a < c(a) (increasing)
(Cq) c(a) = c(c(a)) (idempotent)
(Cs) c(a) Ve(b) <c(aVb) (subadditive)

Under condition (Ip)—(I2) the submultiplicative property (I3) is equivalent to the

monotonicity condition a < b implies i(a) < i(b). Dually, under condition (Cp)—
(C2) the subadditive property (C3) is equivalent to the monotonicity condition
a < b implies c(a) < c(b).

Since in general i(a) < a, an element e € ¥ is said to be innerdefinable (open)
iff i(e) = e. Analogously, since in general a < c(a), an element f € ¥ is said to
be outerdefinable (closed) iff f = c(f). We will indicate by O(X) the set of all
innerdefinable (open) elements of the space, while C(X) will represent the set of all
outerdefinable (closed) elements. In other words:

OX)={ecX:e=i(e)}
CE)={fex:f=cl)}

It is trivial to prove that an element a is closed iff a’ is open, and vice versa an
element a is open iff ¢’ is closed. In this way there is a duality between open and
closed elements determined by the Kleene negation:

0OX)={eeX:ecC(®)}
CE)={fex:f €0(X)}
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In general, these two subsets of ¥ do not coincide, neither one is a subset of the
other. Thus, it is worthwhile to consider also the set of all innouter (or clopen)
elements:

CO(%) :=0(2)NnC((D).
Moreover, CO(X) is not empty because it contains the least element 0 and the
greatest element 1 of the lattice ¥. In the sequel we are also interested to the
so—called exterior of an element a € ¥ defined as the open element e(a) := c(a)’.

The above considerations lead to the definition of an abstract approximation
space generated by a quasi BZ lattice.

Definition 3.3. Let (X, <,’, ™, 0,1) be a quasi BZ distributive lattice. The in-
duced rough approximation space is the structure

(2,0(%),C(%),i,c)
where

Y is the set of approximable elements;

O(X) C X is the set of innerdefinable elements, such that 0 and 1 € O(X);
C(X) C X is the set of outerdefinable elements, such that 0 and 1 € C(X);
i:YX — O(2) is the inner approzimation map;

c: X — C(X) is the outer approzimation map;

For any element a € ¥, its rough approzimation is defined as the pair:
r(a) := (i(a),c(a)) [with i(a) <a < c(a)]
drawn in the following diagram:

a€EXx

i(a) € O(%) r c(a) € C(X2)

\/

(i(a), c(a))

This approximation is the best approximation by open and closed elements that
it is possible to define on a quasi BZ structure. To be precise, for any element
a € X the following holds:

(L1) i(a) is an open element (i(a) € O(X));

(L2) i(a) is an open lower approximation of a (i(a) < a);

(L3) i(a) is the best lower approximation of a by open elements (let e €

O(X) be such that e < a, then e < i(a)).
By properties (L1)—(L3), it follows that the interior of an element a can be expressed
as
i(a) =max{zr € O(X):z <a}

Analogously, for the closure operator,

(U1) c(a) is a closed element (c(a) € C(X)).

(U2) c(a) is a closed upper approximation of a (a < c(a)).

(U3) c(a) is the best outer approximation of a by closed elements (let f €
C(X) be such that a < f, then c(a) < f).
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By properties (U1)—(U3), it follows that the closure of an element a can be expressed
as

c(a) =min{y € C(X) : a <y}

An equivalent way to define a rough approximation is to consider instead of the
interior—closure pair the interior—exterior pair:

re(a) = (i(a), e(a)) := (i(a), c(a)’)

drawn in the following diagram

We remark that both i(a) and e(a) are open elements and that given the interior
— exterior approximation 7.(a), the interior — closure approximation r(a) can be
obtained in an obvious way, and vice versa.

Further, the interior and closure operators satisfy some typical modal properties,
once interpreted the interior as a necessity operator and the closure as a possibility
operator ([Che88]).

Proposition 3.4. In any quasi BZ distributive lattice the following conditions hold:
(mod-1p)
i(1) =1.
That is: if a sentence is true, then also its necessity its true (necessi-
tation rule).
(mod—2p)
i(a) < a < c(a).

In other words: necessity implies actuality and actuality implies pos-
sibility (a characteristic principle of the modal system T ).
(mod—3p)
i(a) =i(i(a)); c(a) = c(c(a)).
necessity and possibility are idempotent operators (a characteristic Sq—
principle).
As a consequence of these properties we can say that the interior and closure
operators induced by a quasi BZ distributive lattice, present a typical behaviour of
a T system, based on a Kleene lattice, instead of on a Boolean algebra, satisfying

also the Sy—principle.
Generally, the following properties of modalities are not satisfied, as showed in

Example 3.5.
(B) a <i(c(a) (a characteristic B-principle);
(S5) i(a) = c(i(a)), c(a) =i(c(a)) (a characteristic Ss-principle).
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Example 3.5. Let us consider the quasi BZ distributive lattice given in the Hasse
diagram of Figure 12.

Then, we have that b is a closed element, i.e., b = ¢(b) and i(c(b)) = i(b) = 0.
So, c(b) # i(c(b)) and i(c(b)) < b. Further, ¢ is an open element, i.e., i(c) = ¢ and
c(i(c)) = 1. So i(e) # c(i(c)). |

Even if the interior and closure operators give the best approximation by closed and
open elements, they are not the only possible ones. Another interesting possibility
is given by the following two operators:

(3.1a) v:Y—CX) via):=d"~
(3.1b) p:Y—0%) wla):=a~’

These mappings can be considered approximation operators because the following
order chain v(a) < a < p(a) holds. Moreover, they behave as modal operators
([Che88]), as shown in the following proposition.

Proposition 3.6. In any quasi BZ distributive lattice the following conditions hold:
(mod-1s)
v(l)=1.
That is: if a sentence is true, then also its necessity its true (necessi-
tation rule).
(mod—2s)
v(a) <a < pla).
In other words: necessity implies actuality and actuality implies pos-
sibility (a characteristic principle of the modal system T ).
(mod-3s)
a < v(p(a)).
Actuality implies necessity of possibility (a characteristic B-principle).
As a consequence of these properties we can say that the modal operators induced
by a quasi BZ distributive lattice, present a typical behavior of a B system, based
on a Kleene lattice, instead of on a Boolean algebra.
Generally, v and u do not satisfy the S; and S5 principles:

(S4) v(a) =v(v(a)); p(a) = u(u(a)) (a characteristic Sy-principle).
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(S5) v(a) = p(v(a)), p(a) = v(u(a)) (a characteristic Ss-principle).

Example 3.7. Let us consider the same quasi BZ lattice of Example 3.5. Then,
v(c) = a, so v(c) # v(v(c)) = 0 and v(c) # u(v(c)) = c¢. Further, u(a) = ¢, so
u(a) # p(p(a)) =1 and p(a) # v(p(a)) = a. u

However, necessity and possibility are not outer and inner operators. In fact, in
general, they do not satisfy the idempotent properties, but only the following weaker
form:

v(v(a)) < v(a)
pa) < p(p(a))

Example 3.8. Let us consider the same quasi BZ lattice of Example 3.5. Then,
ula) =c < 1= p(u(a)) and v(v(d)) =0 < b= v(d). [ |

The major drawback of this approximation is that the rough approximation
based on modal operators is worst than the corresponding one based on the inte-
rior - closure operators, in the sense that it captures less information about the
approximable elements. In fact, for any element a € X, the following order chain
holds:

(3.2) v(a) <i(a) <a<c(a) < pla).

3.1. Rough Approximation Spaces as quasi BZ Lattices. We have seen that
given an element a of a quasi BZ distributive lattice, a possible rough approximation
of a is given by r.(a) = (i(a), e(a)). Now, we show that it is possible to give to the
collection of all rough approximations, r.(a), the structure of quasi BZ distributive
lattice.

Let (X,A,V,,~,0,1) be a quasi BZ lattice. For the sake of simplicity, we define

!’

Va€eX a;:=i(a) ac:=e(a)=-cla)

We recall that both a; and a. are open elements: a;, a. € O(X). Further, we define
the collection of all rough approximations as the set A := {{(a;, a.) : a € }. Then,
the following proposition holds.
Proposition 3.9. The structure (A,M,1,~ ,~,(0,1),(1,0) ) where:
(@i, ae) M {bs, be) := (i(a; A b;),ae V be)
<CL1’, ae> (] <bi, b€> = (a; V b;, i(ae A\ b6)>
(a;,a0)™ = {ae, a;)

e((ac)’), (ac)’)

o~ o~~~

(a;,ae)™ =
1s a quast BZ distributive lattice.
The partial order induced by the lattice operators, M and L, is
(ai,ac) C (bj,be) il a; <b;and b < ae

In this environment the interior, closure and exterior operators are respectively
defined as:

I((ai, ac)) := (i(a:), e(i(a;))) = (ai, e(ai))
C({ai, ac)) = (e(i(ac)), i(ac)) = (e(ac), ac)
E((ai; ae)) = (ac, e(ac))
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The collection of open and closed sets are respectively

O(A) = {{a;,e(a;)) : a € X}
C(A) = {(e(be),be) : be X}

3.2. Preclusivity Spaces as quasi BZ distributive lattices. Now, we come
back to preclusivity spaces, and analize them in a quasi BZ lattice perspective.

Let S = (X, #) be a preclusivity space as defined in Definition 1.9. As recalled
in Proposition 1.10, the structure (P(X),N, U, ¢,# , 0, X), is a quasi BZ distributive
lattice. Thus, the interior Ly (H) = H##¢ and closure Uy (H) = H## operators
as defined in Proposition 3.2 are just the preclusive lower and upper approximation
as defined in Propositions 1.12 and 1.14. More interestingly, when considering the
modal operators v and p of equations (13) it happens that they correspond to the
similarity approximations given in Definition 1.7 by equation (2): v(H) = H* =
L (H) and pu(H) = H#¢ = Ug(H).

As an application of the order chain (14) to the present case we have that VH C
X:

L (H) C Ly(H) C H C Ug(H) C Ur(H)

This means that the preclusive rough approximation of a set H is always closer to H
than the one given by similarity. Thus, what was just a conjecture in Example 1.16
has now been proved.

Now, we can apply Proposition 3.9 and give the structure of quasi BZ lattices
to the collection of all preclusive rough approximations. Given a set of objects H
the pair interior—exterior (i(H),e(H)) is identified with the two sets: (H;, H.) :=
(Ly(H), (Ug(H))C) = (H##e H##¢). So, we have that the collection of all such
pairs {(H;,H.) : H C P(X)} is a quasi BZ distributive lattice, once defined the
operators:

4. BZ LATTICES AND PAWLAK ROUGH SETS

So far we have considered concrete quasi-BZ lattices and concrete rough approxi-
mation spaces induced by a preclusivity space (X, #), where the preclusive relation
# is irreflexive and symmetric (or, equivalently, by a similarity space (X, R), where
the similarity relation is reflexive and symmetric). Now, in order to obtain Pawlak’s
rough approximation spaces ([Paw81, Paw82, Paw92], it will be sufficient to assume
the stronger assumption according to which in any similarity space (X, R) the re-
lation R is an equivalence relation (reflexive, symmetric and transitive). As a
consequence, R will determine a partition of the universe X into a set of equiv-
alence classes E;: two elements z and y will be undistinguishable (zRy) iff they
belong to one and the same equivalence class F;. Given an element z € X we can
define the equivalence class generated by x as the set

E(z)={y € X : 2Ry}
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Obviously, E(z) is not empty because x belongs to it and, analogously to the
similarity case, it constitute a granule of knowledge about x. Let us stress that two
granule are either disjoint or equal between them.

In particular, in the classical Pawlak’s approach to rough sets the equivalence
relation is based on the equality of attribute values of a complete information system
K(X). Precisely, fixed a subset of attributes D C Att(X) the equivalence relation
of any two objects is defined as:

(4.1) x=y iff VYae D F(z,a)=F(y,a)
Obviously, the corresponding preclusive relation is defined as:
(4.2) x#y iff Jae€ D F(z,a) # F(y,a)

Following the general theory of Section 3, we have that the structure P = (P(X),N,U,*,# , 0, X)
is a quasi BZ distributive lattice. However, the transitive property of the similarity
relation introduces some strong “classical” feature.

Example 4.1. Let us consider the flat information system defined in Example 1.2
and reported below.

Flat | Price Rooms Down-Town Furniture
f high 2 yes no
fa high 1 yes no
f3 high 2 yes no
fa low 1 no no
f5 low 1 no no
f6 | medium 1 yes yes

We set D = Att(X) and H = {f3, f4+}. Computing the similarity rough approx-
imation (v(H), u(H)) and the preclusivity rough approximation (i(H),c(H)), we
have that

(v(H),u(H)) = 0,{f1, f3, fa, f5}) = (i(H),c(H))

that is, the two approximations coincide. So, in particular, we have that

v(H) = i(H)
that is, the necessity of H is equivalent to the interior of H, and
u(H) = c(H)

that is, the possibility of H is equivalent to the closure of H. Further, the following
properties hold: v(v(H)) =0 =v(H) and p(u(H)) = {f1, f3, fa, f5s} = u(H), that
is, the modal operators v and u are idempotent. |

The properties analyzed in the previous example, i.e, idempotency of necessity
and possibility, equivalence of necessity (resp., possibility) and interior (resp., clo-
sure) operators, are true for any element H € P(X). This is due to the fact that
the system PP satisfies the axioms of a stronger structure than quasi BZ lattices: BZ
lattices.

Definition 4.2. A structure (X, A,V,”,~,0,1) is a BZ distributive lattice if it is a
quasi BZ distributive lattice satisfying the stronger interconnection rule:

(s-in) a™~ =a™
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Definition 4.3. A BZ distributive lattice satisfying also the V de Morgan property
(B2a) (a AD)™ =a™ Vb~
is called a de Morgan BZ (BZ*M ) distributive lattice.

A consequence of the new axiom (s—in) is that the necessity mapping coincide
with the interior operator and the possibility mapping with the closure operator.

Proposition 4.4. Let (X, AV, ,~,0,1) be a BZ distributive lattice. Then, the
following are true:

Va €Y v(a)=d~ =d" =i(a)

~/

VaeX pla)=a~=a~" =c(a)

Further, we have that the modal operators, v and pu, have the stronger behaviour of
an Ss—modal like system, always based on a Kleene algebra instead of on a Boolean
one. That is, beside properties (mod—1)—(mod-3), the following are satisfied:

(mod—4)
v(v(a)) = v(a)
p(p(a)) = p(a)
Necessity of necessity is equal to necessity; similarly for possibility (a
characteristic Ss-principle).
(mod-5)
p(a) = v(p(a))
v(a) = p(v(a))
Possibility is equal to the necessity of possibility; whereas necessity is
equal to the possibility of necessity (a characteristic Ss-principle).

Finally, another consequence of axiom (s—in) is the equivalence between the collec-
tion of open and closed sets:

OX)={acX:a=i(a)}={aeX:a=c(a)} =C(X)

So, we have not to distinguish between upper exact and lower exact sets, we only
have exact sets, i.e., sets which are clopen. Let us indicate the collection of exact
sets as Y.

We remark that this is not the only way to define exact elements. We have
seen that in general the order chain v(a) < a < p(a) does not hold. Clearly, this
is a fuzzy situation, since in a classical environment we would have no difference
among necessity, actuality and possibility, i.e., we are interested to those elements
for which e = p(e) (equivalently, e = v(e)). This leads us to define the substructure
of all Modal sharp ( M-sharp) (exact, crisp) elements, denoted by X, as, as follows:

Yemi={eeX:ule)=et={ecX:vie)=ec}

However, due to the strong interconnection holding between the two orthocomple-
mentations in a BZ structure, the collection of M—sharp elements coincide with ..
Further, since in general a A a’ # 0 (equivalently, a V o’ # 1) it is possible to con-
sider as Kleene sharp (K-sharp) the elements which satisfy the non contradiction
(or equivalently the excluded middle) law with respect to the Kleene negation:

Y, ={eeX:ene =0t={eeX:eve =1}

In a BZ distributive lattice also this set coincide with X., otherwise, in a BZ
distributive lattice it holds the relation ¥, C X, /.
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Summarizing, we have that in a BZ distributive lattice, we can give only one
rough approximation through exact sets. The approximation operators turn out to
be respectively an interior and a closure operator with the further property that
they have a typical S5 modal behaviour.

Definition 4.5. Let (X,<,’, ~,0,1) be a BZ distributive lattice. The induced
rough approximation space is the structure

<E7 287 V’ ILL>
where

Y is the set of approximable elements;

Y.e C X is the set of exact elements;

v Y — Y. is the inner approzimation map;
WX — Y. is the outer approximation map;

For any element a € 3, its rough approzimation is defined as the pair:

r(a) := (v(a), p(a)) [with v(a) <a < p(a)]
drawn in the following diagram:

a €Y

T~

(v(a), p(a))

Also in the case of BZ distributive lattice, r(a) is the best approximation by exact
elements of the element a. That is, for any element a € ¥ there hold properties
(L1)—(L3) and (U1)—(U3).
Moreover, in this context, the approximation r. is given by the necessity—impossibility
pair:
re(a) = (v(a), i'(a)) = (v(a),a™)

drawn in the following diagram:

4.1. Rough Approximation Spaces as BZ lattices. In Section 3.1, we showed
that it is possible to give to the collection of rough approximations induced by a
quasi BZ distributive lattice the structure of quasi BZ distributive lattice. A dual
result holds also in the case of BZ distributive lattices.

Let us consider the collection of all necessity—impossibility rough approximations.
Analogously to the quasi BZ lattice case, we define

Ya € ¥ a;:=v(a) ae:=a”
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so that the collection of rough approximations is A = {(v(a),~ a) : a € ¥} =
{{a;,ac) : a € ¥} with a; and a. exact sets: a;,a. € X.. Now, the following
proposition holds for any BZ lattice.

Proposition 4.6. The structure (A,M,U,” ,*,(0,1),(1,0)) where:

(ai, ae) M {bi, be) := {a; A bi,ae V be)
(i, ac) U (bs, be) := {a; V bi,ae A be)
<auae>_ (Ge, ai)
(ai,ae)™ = (ae, (ac)’)

is a BZ*M distributive lattice.
Also in this case the partial order induced by the lattice operators, M and LI, is

(ai,ac) C (bj,be) il a; <b; and b < ae

In this environment the interior, closure and exterior operators are respectively

defined as:
La;, ae) == (ai, (a;)")
Clai,ae) :== {(ae), ae)
E<ai7 ae> = <a€7 (ae)/>

Obviously, the interior is equal to the necessity: I{a;,a.) = O{a;,a.), and the
closure is equal to the possibility: C(a;, a.) = O{a;, ac).

As can be seen, in terms of the original BZ lattice the modal operators of necessity
O and possibility ¢ single out an exact element. That is, the necessity of a rough
approximation (a;, a.) is equal to the rough approximation of the necessity of a:

(4.3) O(re(a)) = O{ai, ac) = {ai, (a:)) = re(v(a)

Dually, the possibility of a rough approximation (a;, a.) is equal to the rough ap-
proximation of the possibility of a:

(4.4) O(re(a)) = O {ai, ac) = ((ac)’, ae) = re(p(a))
The rough approximation of an element (a;, a.) is

Re (ai, ac) = (Kai; ac), Blai, ac)) = ({as, (a:)'), (e, (ac)'))
and according to Equations (17) and (18)

Re (ai; ac) = (re(v(a)), re(p(a)))

4.2. BZ lattices induced from Information Systems. Now, we return to
Pawlak rough sets

Proposition 4.7. Let (X, Att(X),val(X), F) be a complete information system.
Then, the structure P = (P(X),N,U,°,# |0, X) where, once fized a set of attributes
D C Att(X), the preclusive relation # is defined

H* ={zeX:Vy € H3ae D F(x,a)# F(y,a)}

is a BZ distributive lattice.
In general the structure P is not a de Morgan BZ lattice.
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Example 4.8. Let us consider the flat information system of Table 1. We set
H = {f1, f2, f¢}, K = {fs, f1, f6}, D = Att(X) and use the preclusive relation
given by Equation (16). Then

(HNEK)# = {fs}* = {f1. fo, 3. fa. fs} # {f2. fu, fs} = {1, fs}U{fo} = HF UK?#
]

In this case, we have that the necessity (resp., possibility) operator corresponds
to the “classical” rough sets lower (resp., upper) approximation:

v(H)=L(H)={r€ X : H C E(z)}

wH)=UH)={zxe X: HNE(z) # 0}
where E(z) is the granule generated by the element x.

So, given a set of objects H C X, its rough sets approximation is given by the
pair (L(H),U(H)). Equivalently any rough set can be expressed as the lower -
exterior pair (L(H),E(H)) = (L(H),U(H)). By the previous subsection, we have
that the collection of all pairs (L(H),E(H)) on an information system K(X) =
(X, Att(X), val(X), F), let us call it RS(X), gives rise to a BZM distributive
lattice (RS(X), N, U, =, &, (0, X), (X, D)) where the operators are defined according
to Proposition 4.6.

5. HW ALGEBRAS

In the previous section, we have seen that it is possible to give to Pawlak rough
sets an algebraic representation through BZ4M distributive lattices. However, this
is not the only possibility. In literature, at least two other algebras are well known
as a possible algebrization of rough sets. They are Heyting algebras and Wajsberg
algebras ([Pag96, Pag98, Pol02]). In the following we will introduce Heyting Wa-
jsberg algebras as a structure which admits as a model the collection of rough sets
and as substructures all the above mentioned algebras ([CC02c]).

Definition 5.1. A system A = (A, —1, —q,0) is a Heyting Wajsberg (HW) alge-
bra if A is a non empty set, 0 € A, — |, —¢ are binary operators, such that, once
defined

(1) aVb —(a—>Lb)—>Lb
(2) anb:=((¢/ =L V) -0
(3) ¢/ :==a—r0

(4) a~:=a—¢0

(5) 1:=0

the following are satisfied:

(HW1) a —»ga=1
(a—gb)Ab=1D
a—g((bAc)=(a—gb)A(a—¢c)

l—=ra=a
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It turns out that the operations A and V are just the meet and join operators of
a distributive lattice structure whose partial order is as usual defined as:

(5.1) a<b iff anb=a
It is easy to prove that

(5.2a) a<b iff a—pb=1
(5.2b) i a—gb=1

The primitive operator — behaves as a Lukasiewicz implication, as can be seen
by the following proposition.

Proposition 5.2. Let A be a HW algebra. Then the structure (A,—r,1) is a
Wagsberg algebra according to [Waj31l, Waj35|, i.e., it satisfies:
(Wl) 1-pa=a
(W2) (@ =1 b) =L ((b—Lc) =L (a—pc)) =1
(W3) (a = b) > b=(b—ra)—La
(W4) (¢/ - V) —p (b—pa)=1
Let us note that the structure of Wajsberg algebra induces a distributive lattice
with respect to the partial order formally defined as in Equation (20a). In this
lattice one can define the unary operator a’ := a —, 0 which turns out to be a
Kleene (or Zadeh) orthocomplementation. In other words properties (K1)—(K3) of
Section 3 hold.
We remark that Wajsberg algebras are equivalent to Chang MV algebras ([Cha58]).

Given a Wajsberg algerba, the MV disjunction & and conjunction ® operators are
defined as:

(5.3a) a®b:=-a—rb
(5.3b) a®b:=-(a—r b)
Viceversa, given a MV algebra, the Lukasiewicz implication is defined as:
(5.4) a—b:=-adb
On the other hand, the primitive operator —¢ behaves as a Godel implication.

Proposition 5.3. Let A be a HW algebra. Then by defining the lattice operators
A and V as in Definition (5.1), the partial order relation < as in Equation (20b),
we have that (A, —g,A\,V,") is a linear symmetric Heyting algebra according to
[Mon80], i.e., A satisfies the following properties (adopting the original Monteiro
enumeration,):

(Al) a—>Ga:b—>0b

(A2) (a =g b)Ab=D

(A3) a =g (bAc)=(a =g b)A(a —¢gc)
(Ad) aN(a—gb)=aAbd

(A5) (aVb) —mgc=(a—gc)A(b—gc)
(A6) (a') =a

(A7) (anb) =d VY

(K) ana <bV¥

L) (a—=cb)V(b—ga)=1



ALGEBRAIC STRUCTURES FOR ROUGH SETS 35

In particular, the unary operation a™ = a —¢g 0 is a Brouwer orthocomplementa-
tion. In other words properties (B1)—(B3) of Section 3 hold .

Finally, from the above propositions we have that any HW algebra induces a
lattice structure endowed with a Kleene and a Brouwer negation, then it can be
easily proved that HW algebras have as substructures distributive BZ lattice.

Proposition 5.4. Let A be a HW algebra. Then, by defining A and V as in (5.1),
we have that (A, A, V,',~,0,1) is a distributive BZM [attice.

As a consequence of the latter proposition, we can define in any HW algebra a
possibility (resp., necessity) operator and, as in BZ lattices, it behaves as a closure
(resp., interior) operator. Further, these operators have an S5 modal behaviour.
So, in any HW algebra we can define a rough approximation space as in Definition
4.5. We recall that, given an element a € A its rough approximation is given by
the necessity—possibility pair:

r(a) = (v(a), u(a)) = (a'~,a™) [with v(a) < a < p(a)]
or equivalently, by the necessity—impossibility pair:

re(a) == (v(a),p'(a)) = (a'~,a™)
In the following we will see that it is possible to give the structure of a HW algebra

to the collection of all rough approximations that can be obtained on a given BZ
lattice, and consequently on a given HW algebra.

5.1. Rough Approximation Spaces as HW algebras. In Section 4.1, we have
proved that it is possible to give to the collection of all rough approximations
A = {{v(a),a™) : a € B} on a BZ lattice (X, A,V,’,~,0,1) the structure of a BZ4M
lattice. We now prove that it holds the stronger result that A has the structure of
a HW algebra.

Let us set, for the sake of simplicity a; = v(a) and a. = p(a) = a~, and
consider the collection of all necessity—-impossibility pairs on a BZ distributive lattice
A :={{ai,a. : a € L}. Then the following result holds:

Proposition 5.5. The structure (A, =1, =¢,0), where =1, =¢q and 0 are defined

(5.5a) (aj,ae) =1 (bi,be) = (((a;)" A (be)") V ae V b, a; A be)
(5.5b) (aj,ae) = (biybe) := (((a:i) A (be)') V ae Vb, (ac) Abe)
(5.5¢) 0:=(0,1)

is a HW algebra.
According to Definition 5.1 it is possible to define the lattice operators on A as:

{ai,ae) U (bi,be) := ({as,ac) =1 (biybe)) =1 (bi,be) = {(a; V b;,ae A be)
(ai,ae) M{bi,be) = (({as,ae)™ =1 (biybe) ™) =1 (biybe) )™ = {a; Ab;,ae Vbe)
whose induced partial order is, as usual:
(a;,ae) T (b;,be) iff a; <b; and b < a,

According to Equations (21), the MV disjunction and conjunction operators are
defined as:

(ai,ae) ® (bi, be) = ((aS ANDE) V (a; V b;),ae Abe)
(ai,ae) © (bi, be) == {a; Nby, (ai ANbF) V (ae V be))
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The Kleene and Brouwer negations, the modal operators and the rough approxi-
mation are defined as in Subsection 4.1.

Of course, Theorem 5.5 holds for any BZ lattice. So, in particular, we can
consider the structure P = (P(X),N,U,°,#,0, X) which is a BZ lattice thanks to
Proposition 4.7. As a consequence, we have that the collection of Pawlak rough
sets RS(X) on an information system K(X) = (X, Att(X), val(X), F') has an HW
algebraic structure (RS(X),=1,=g,0) once properly defined the operators =,
and = ¢ and the constant 0 according to Proposition 5.5.

Example 5.6. Let us consider the flats information system introduced in Table
1. Once defined the sets H = {f1, fa, f5}, K = {fo, fa, f¢} and considering all the
attributes to define the equivalence relation Rp, i.e. D = Att(X), we have that the
rough sets induced by H and K are respectively: r.(H) = ({fa, f5}, {2, f6}) and
re(K) = {{f2, fo},{f1, f3})- So the HW implications applied to r.(H) and r.(K)
become:

<Hi7 H€> —L <K“ K8> = <{f27 fﬁ}a @>

(Hi,He) —c (Ki, Ke) = ({ f2, fo}. {f1, f3})
Needless to stress ) C {f1, f3} so it is verified that

((Hi, He) —a (Ki, Ke)) E (Hi, He) — 1 (Ki, Ke))

The meet and join lattice operators are:

(Hi, He) U(K;, Ke) = ({f2, fa, f5, f6}, 0)

(Hi, He) M (K, Ke) = (0,{f1, f2, f3, f6})
As can be seen, r.(H) and r.(K) are incomparable, i.e. neither r.(H) C r.(K) nor
re(K) Ere(H).
The MV disjunction and conjunction are respectively:

<Hia H8> D <KZ5 K8> = <{f15 f37 f4a f5}a @>

(Hiy He) © (K, Ke) = (0,{f1, f2, f3, fo})

Finally, the necessity and possibility of r.(H) are respectively:

D<Hi7H€> = <{f47f5}a {flaf27f3af6}>
O(H;, He) = ({ f1, f3, fa, f5}, {f2, f6})

6. Fuzzy SETS

In the previous sections we introduced some different algebraic approaches to
the theory of rough sets. In particular, we have seen that it is possible to give a
rich algebraic structure to the collection of rough sets on an information system.
Now, we see how the same approach applies also to fuzzy sets by showing that the
collection of fuzzy sets, once defined the suitable operators, has the structure of an
HW algebra. This result leads us to the possibility of having a complete algebra
which is able to fully characterize both rough and fuzzy sets.

Let us consider a set of objects X, called the Universe. A fuzzy set or generalized
characteristic functional on X is defined as usual as a [0, 1]-valued function on X:

f:X—10,1]
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We will indicate the collection of all fuzzy sets on X as F(X) = [0,1]X. This
set contains two special elements: the identically 0 fuzzy set (also characteristic
function of the empty set: 0 = xg)

VeeX 0(x):=0

and the identically one fuzzy set (also characteristic function of the universe :
1=xx)

Vee X 1(z):=1
Obviously, this two elements will play the role of minimum and maximum element
of the lattice structure we are going to define.

Proposition 6.1. The structure <[O, 1%, -1, —>@Q> is a HW algebra once defined
the implication operators as follows

(fi = fo)(x) : = min{1,1 — fi(z) + fa(x)}
(f1 =c f2)(z) : = {1 fi(z) < fa(2)

fa(x)  otherwise

Example 6.2. Let us define the fuzzy set of tall and very tall people. So, we have
that x is a real positive number, representing the height in centimeters. The tall
fuzzy set is defined as:

1 z>1.80
t(z) == 25150 150 < 2 < 1.80
0 z <150

and the very tall people fuzzy set is:

1 x> 1.90
vt(z) == ¢ L=L00 1,60 <2 < 1.90
0 z < 1.60

If we compute the degree in which the fuzzy set very tall implies the fuzzy set tall,
we correctly obtain with both implications the value 1:

vt - t=1
vt —»gt=1

that is, if one is very tall is surely tall. Of course, the viceversa is not true, and
computing the implication of tall to very tall, we obtain:

1 <150 or x>1.90
1.80—x
1.50 < 2 < 1.60
(t —p vt)(z) =4 090 v
5 1.60 <z < 1.80
x—1.60
030 1.80 <z < 1.90

in the case of — implication and

1 rz<150 or z>1.90
(t =g vt)(z) =<0 1.50 < z < 1.60
z=160 1 60 <z < 1.90
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in the case of —¢ operator. We remark that it holds an order relation among the
two fuzzy sets (t —g vt) and (t — vt): the first one is always less than or equal
to the second one, as can be easily seen in Figure 6.2.

i . i
15 16 18 19 15 16 18 19

FIGURE 13. On the left it is drawn the set (¢ —¢ vt) and on the
right the set (¢t —, vt).

The lattice operators on F are defined as:
(frV f2)(2) : = max{fi(2), f2(2)}
(fu A fo)(@) : = min{ f1(2), f2(2)}

The partial order relation induced on F by the above lattice operators is the usual
pointwise ordering on fuzzy sets:

Vi, fa€[0,11, fi < foiff Vo e X, fi(z) < folz)

The MV operators of conjunction and disjunction are respectively defined as:

(fr & f2)(z) : = min{1, fi(z) + f2(2)}

(f1 © f2)(2) : = max{0, fi(z) + fa(zx) — 1}
The Zadeh, Brouwer and anti-Brouwer negations are respectively defined as:

fl@):=1- f(x)
1, if f(x)=0

fow) = {O, oth{el(rw)ise

1 fla) #1

0 otherwise

(0f)(x) : :{

For any fuzzy set f € [0, 1]% one can single out some peculiar subsets of the universe
X:

e The certainly-yes domain of f:

A(f) ={zeX: f(x)=1}

e The certainly-no domain of f:

Ao(f) ={zeX: f(x) =0}
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The necessity of a fuzzy set f is the characteristic functional of the certainly-yes
domain of f:

1 if f(z) =1

v(f) = xaun = 0 otherwise

We can assume that two fuzzy sets define the same property iff they have the same
certainly-yes domain. In this way, any property of fuzzy sets is associated with the
certainly-yes domain Aq(f) of any of its elements. Such a property is interpreted
as follows: “belonging with certainty to the subset Aq(f) of X”. Consequently any
property is exactly represented by the characteristic functional xa,(y)-

The possibility of a fuzzy set f is

1 if f(z) #0

0 otherwise

u(f) =

Hence the impossibility operator is given by the characteristic functional of the
certainly-no domain of f:
1 (f) = Xao(r)

We can assume that two fuzzy sets define the same noperty iff they have the same
certainly-no domain. Any noperty can be associated with the unique subset Ag(f)
of X that represents the noperty in question: “not belonging with certainty to the
subset Ao(f) of X”. As a consequence, our noperty is exactly represented by the
characteristic functional xa,(y)
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