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Abstract. In this paper we present a methodology for synthesis of controlled be-
havior for systems modelled by modules of signal sets. Modules of signal nets
are modules, which are based on Petri nets enriched by two kinds of signals and
an signal input/output structure. They are also known as net condition/event sys-
tems (or modules) [5, 4, 6]. Given an uncontrolled system (a plant) modelled by
a module of a signal net, and a control specification given as a regular language
representing the desired signal output behavior of this system, we show how to
synthesize the maximal permissive and nonblocking behavior of the plant respect-
ing the control specification. Such a behavior serves as an input for an algorithm
(presented in [11]), which computes a controller realized as a module of a signal
net which in combination with the plant module ensures this behavior.

1 Introduction

In classical control theory it is given a system which can interfere with environment via
inputs and outputs. The aim of its control is to ensure desired behavior by giving the
system right inputs in order to get the right outputs. The central idea in control theory is,
that system and control build a so called closed loop (or feedback loop), which means,
roughly speaking, that the control gives inputs to the system based on the system outputs
which are observed by the control. In this paper, we are interested in control of discrete
event systems, where the dynamic behavior of a system is described by occurrence of
discrete events changing the states of the system. The crucial question to be answered
when choosing a formalism for modelling control systems is how to formalize “giving
inputs and observing outputs”.

An event of a system can have two kinds of inputs: Actuators, which try to force the
event, or sensors, which can prohibit the event. Events associated to inputs are called
controllable. Of course there can be uncontrollable events in the system. Regarding
for example a printer, a “paper jam” event can occur without any influence from the
control. The following two kinds of outputs can be observed: Either the occurrence of
an event (via actuators) or the fact that a state is reached (via sensors). Events resp.
states associated to outputs are called observable. Of course there can be unobservable
events resp. states. It would be natural to model control of a discrete event system by
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influencing its behavior by actuators and sensors in order to observe desired outputs as
described above.

However, the solution in the discrete event control community, which is now quite
accepted, 1s to use only the sensors. More exactly, in supervisory control [2, 14] the
events of the system to be controlled are divided as above into controllable and uncon-
trollable. But the controllable events can only be enabled/prohibited by a supervisor.
Thus, in supervisory control actuators can only be modelled indirectly using the “sen-
sor principle” by prohibiting all controllable events, except the event which is actuated
([1], pp. 185 - 202). There arises the natural question, why not directly model actuators?
In our paper, we adapt the framework of supervisory control providing a methodology
for control of discrete event systems using both concepts, namely actuators and sensors.
Such a methodology with the slogan “forcing and prohibiting instead of only prohibit-
ing” would be more appropriate for the class of discrete event systems, where actuators
and commands are used in practice.

As a modelling formalism, we use modules communicating by means of the above
described signals. This formalism was developed in the series of papers [5,4, 6] un-
der the name net condition/event systems. In this paper we are using the name signal
nets. One reason is that the name condition/event nets is used in the Petri net context
for a well known basic net class. A signal net is a Petri net enriched by event signals,
which force the occurrence of (enabled) events (typically switches), and condition sig-
nals which enable/prohibit the occurring of events (typically sensors). Adding input
and output signals to a signal net, one gets a module of a signal net. Modules of signal
nets can be composed by connecting their respective input and output signals. There
are several related works employing modules of signal nets in control of discrete event
systems. In [5,4, 6] effective solutions for particular classes of specifications, such as
forbidden states, or simple desired and undesired sequences of events, are described.
Recently, an approach for control specifications given by cycles of observable events
was presented in [13]. However, in [13] the actuators are used only to observe events
of the controlled system, but surprisingly, for control actions only condition signals for
prohibiting events are taken. In our paper, we consider a general class of control speci-
fication in form of a language over steps of event outputs (steps of observable events).
We have steps (i.e. sets) of outputs, rather then simple outputs, because some outputs
can be simultaneously synchronized by an event of the system. We allow also steps
containing an input with some outputs. Such a situation describes that an input signal is
trying to synchronize a controllable event of the system, which is also observable. So the
controller can immediately (i.e. in the same step) observe whether the input signal has
forced the event to occur or not. However, since the control is assumed to send inputs
based on observed outputs (as stated in the beginning), we do not allow the symmetric
situation: observable events can not synchronize inputs in the same step.

In our framework we identify which input signals have to be sent to the module of
the plant in order to observe only such sequences of (steps of) output signals, which
are prefixes of the control specification, and every sequence of (steps of) output signals
can be completed to a sequence of output signals belonging to the control specification
(i.e. the behavior is nonblocking). We construct a language over steps of input and
output signals of the module of the plant, which represents the maximally permissive
nonblocking behavior and fulfills the control specification.
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In [11], moreover the construction of a control module (of a signal net), which will
in composition with the plant module realize this maximally permissive nonblocking
behavior, is shown. It is proven that such a control module always exists, if there is
such a behavior of the plant fulfilling the control specification.

The paper is organized as follows: After introducing some preliminary mathemati-
cal notations in Section 2, in Section 3 we present modules of signal nets with definition
of step semantics, composition rules and input/output behavior. In Section 4 we outline
our control framework implementing the “forcing and prohibiting”-paradigm by means
of modules of signal nets. It is compared in detail to classical supervisory control. The
main result is the synthesis of the maximally permissive nonblocking behavior of the
module of a signal net (representing the plant) respecting a given regular specification
language. The Section splits into two parts. In Subsection 4.1 the special case of a prefix
closed specification language is considered. In Subsection 4.2 the general situation is
addressed.

2 Mathematical Preliminaries

We need the following language theoretic notations ([8]). For a finite set A we de-
note 24 = {B | B C A} the set of all subsets of A and A* = {a1...a, | n €
No, a1,...,a, € A} the set of all finite words over the alphabet A. Let L. C A*
be a language over a finite alphabet A. The empty word is denoted by ¢, L = {v €
A* | 3z € A* : wx € L} is the prefix closure of L, and post(L) = {v € A" |
Jw € L, dz € A* : v = wxz} is the language of all possible extensions of words
of L. Observe that for a regular language L also post(L) is regular. We will use an-
other operation on languages preserving regularity: For two languages L1, Lo C A*:
Li/Ly ={w e A* | Jv € Ly : wv € Ly} is the quotient of L1 and Lo. We will con-
sider languages over alphabets A = 2% for finite sets X . We need an extension of the
projection operator to such languages for subsets Y C X. Define the hiding operator
Ay w.rt. Y by:

For a character € € A: Ay (§) = £\ Y if £\ Y # 0, and \y (§) = € otherwise.
Foraword w € A*: Ay (w) = Ay (&1) ... Ay (&) ifw = &1 ... &, and Ay (w) = €if
w = €. For alanguage L C A*: A\y (L) = {\y(w) | w € L}.

The hiding operator defines equivalence classes over A* in the following way. For a
w € A* denote [w]y = {v € A* | Ay (w) = Ay (v)}. Regular languages are repre-
sented by regular expressions or finite automata. Remember that states of a determinis-
tic finite automata D F'A can be denoted as equivalence classes over A*:

[wlpra = {v € A* | Execution of v and w lead to the same state}.

3 Modules of Signal Nets

We use an extension of elementary Petri nets (1-safe Petri nets) equipped with the
so called first consume, then produce semantics (since we want to allow loops, e.g.
[10]). The first step in the extension is to add two kinds of signals, namely active sig-
nals, which force the occurrence of (enabled) events (typically switches or actuators),
and passive signals which enable/prohibit the occurrence of events (typically sensors).



241
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Fig. 1. In Figure (a) the enabled steps are {t1,t} and {t2,t}. Figure (b) shows a signal net in
AN D-semantics: here the only enabled step is {t',¢1}, i.e. ¢ is not synchronized. In Figure
(c) the same net is shown in O R-semantics: here we have the enabled step {t',¢1,t}, i.e. ¢ is
synchronized.

These signals are expressed using two kind of arcs. A Petri net extended with such
signals is simply called a signal net. Active signals are represented using arcs connect-
ing transitions and can be interpreted in the following way: an active signal arc, also
called event arc, leading from a transition ¢; to a transition ¢, specifies that if transition
t1 occurs and transition ¢, is enabled to occur then the occurrence of ¢ is forced (syn-
chronized) by the occurrence of ¢1, i.e. transitions ¢ and ¢5 occur in one (synchronized)
step. If ¢4 is not enabled, ¢; occurs without ¢, while an occurrence of ¢ without 5 is
not allowed. Event arcs are not allowed to build cycles. In general (synchronized) steps
of transitions are build inductively in the above way. Every step starts at a unique tran-
sition, which is not synchronized itself. Consider a transition ¢ which is synchronized
by several transitions t1, . ..,t,, n = 2. Then two situations can be distinguished. For
simplicity consider the case n = 2. If the transitions ¢, ¢ do not build a synchronized
step themselves, either ¢1 or ¢2 can synchronize transition ¢ in the above sense, but never
transitions ¢, to can occur in one synchronized step. As an example you can think of
several switches to turn a light on (see Figure 1, part (a)). If the transitions ¢, ¢2 build a
synchronized step themselves, then there are two dialects in literature to interpret such
a situation: In the first one ([5, 4, 6]) both transitions 1, t3 have to agree to synchronize
t. Thus the only possible step of transitions involving ¢ has to include transitions ¢4, ?2,
too. We call this dialect AN D-semantics (see Figure 1, part (b)). In the second one
([3]) the occurrence of at least one of the transitions ¢; and t2 synchronizes transition ¢,
if ¢ is enabled. It is also possible, that ¢1, %5 and ¢ occur in one synchronized step. We
call this dialect O R-semantics (see Figure 1, part (c)). In general the relation given by
event arcs builds a forest of arbitrary depth. In this paper we introduce the most general
interpretation, where both semantics are possible and are interpreted locally backward.
That means we distinguish between O R- and AN D-synchronized transitions. An O R-
synchronized transition demands to be synchronized by at least one of its synchronizing
transitions, whereas an AN D-synchronized transition demands to be synchronized by
all of its synchronizing transitions.

Since we allow loops w.r.t. single transitions, we also allow loops w.r.t. steps of
transitions (see Figure 2, part (a)).

Passive signals are expressed by so called condition arcs (also called read arcs or
test arcs in the literature) connecting places and transitions. A condition arc leading
from a place to a transition models the situation that the transition can only occur if
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Fig. 2. Figure (a) shows an enabled step {1, t}. The left part of Figure (b) shows an enabled
transition £, which tests a place to be marked. The occurrence of ¢ leads to the marking shown in
the right part of Figure (b). Figures (c) and (d) again present situations of an enabled step {¢1,t}.

the place is in a certain state but this state remains unchanged by the transition’s occur-
rence (read operation) (see Figure 2, part (b)). Of course several transitions belonging
to a synchronized step can test a place to be in a certain state via passive signals simul-
taneously, since the state of this place is not changed by their occurrence (see Figure 2,
part (c)). We also allow that a transition belongs to a synchronized step of transitions
testing a place to be in a certain state via a passive signal, whereas the state of this place
is changed by the occurrence of another transition in this step. That means we use the so
called a priori semantics ([9]) for the occurrence of steps of transitions, where testing
of states precedes changing of states by occurrence of steps of transitions (see Figure 2,

part (d)).

Definition 1 (Signal nets). A signal net is a six-tuple N = (P,T, F,CN, EN,my)
where P denotes the finite set of places, T = TanpUTorg the distinct union of the
finite sets of AN D-synchronized transitions T4y p and O R-synchronized transitions
Tor (PNT =0), F C (P xT)N (T x P) the flow relation, CN C (P x T) the set
of condition arcs (CN N (F U F~1) =), EN C (T x T) the acyclic set of event arcs
(ENT Nidr = (), and mo C P the initial marking.

Places, transitions and the flow relation are drawn as usual using circles, boxes
and arrows. To distinguish between AN D- and O R-synchronized transitions, AN D-
synchronized transitions are additionally labelled by the symbol “&”. Event arcs and
condition arcs are visualized using arcs of a special form given in Figure 1 and Figure 2.

For a place or a transition  we denote *x = {y | (y,z) € F'} the preset of x and
z® ={y | (x,y) € F} the postset of . For a transition ¢ we denote ¢t = {p | (p,t) €
C N} the positive context of t, ™t = {t' | (',t) € EN} the synchronization set of t,
t~ ={t'| (t,t') € EN} the synchronized set of t. Given a set ¢ C T of transitions,
we extend the above notations to: *¢ = (J;c ¢ *tand€® = ;e t°, 76 =U;c ¢ 71

& =Ue et
Definition 2 (Enabling of transitions). A transition t € T is enabled at a marking
mC P, if *tU Tt Cmand (t* \ *t)Nm = (.

The following definition introduces a notion of steps of transitions which is different
to the usual one used in Petri nets. A step denotes a set of transitions connected by event
arcs, which occur synchronously. A transition, which is not synchronized by another
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transition, is a step. Such transitions are called spontanuous. In general, steps are sets
of transitions such that for every non-spontaneous O R-synchronized transition in this
step at least one of it’s synchronizing transitions belongs also to this step, and for every
AN D-synchronized transition in this step all of it’s synchronizing transitions belong
also to this step.

Definition 3 (Steps). Given a signal net N, steps are sets of transitions & defined in-
ductively by

—Ift € T with "t = () (L is spontaneous), then & = {t} is a step.

—If€is astep, andt € T \ € is a transition, then £ U {t} is a step, if either t € Top
and “tNEFD, ort € Tanp and ) # ~t C &

The set of all steps of N is denoted by X'y.

Now we introduce how a step is enabled to occur. A step £ is said to be potentially
enabled at a marking m if every transition ¢ € £ is enabled at m and no transitions
t1,t2 € £ are in conflict, except for possible loops p € *£NE® wart. €, where p € m is
required. From all steps potentially enabled at a marking only those are enabled which
are maximal with this property.

Definition 4 (Potential enabling/enabling of steps). A step £ is potentially enabled in
a marking m if

—Vte& *tU Tt Cmand (t* \ *€) Nm =0 and

~Vt,t' e & t#£tn ' =t* N (') =0 (t, ¢ are notin conflict).

The step € is enabled, if € is potentially enabled, and there is not a potentially enabled
step n 2 & (€ is maximal).

Definition 5 (Occurrence of steps and follower markings). The occurrence of an

enabled step & yields the follower marking m’ = (m '\ *&) U £®. In this case we write
migym’

Definition 6 (Reachable markings, occurrence sequences). A marking m is called
reachable from the initial marking my if there is a sequence of markings my, ..., my =
m and a sequence of steps &1, . . ., £, such that mo[&1)ma., ..., mg_1[Ex)my. Such a
sequence of steps is called an occurrence sequence. The set of all reachable markings
is denoted by [my).

Adding some inputs and outputs to signal nets, i.e. adding condition and event arcs
coming from or going to an environment, we get modules of signal nets with input and
output structure.

Definition 7 (Modules of signal nets). A module of a signal net is a triple M =
(N,¥,cp), where N = (P,T,F,CN, EN,my) is a signal net, and ¥ = (W9, gar¢)
is the input/output structure, where W59 = O™ U E'™ U C°% U E°“ is a set of in-
put/output signals, and W = CI° U EI*° U CO*° U EO**° is a set of arcs
connecting input/output signals with the elements of the net N. Namely, C*™ denotes a
finite set of condition inputs, E'" a finite set of event inputs, C°“" a finite set of con-
dition outputs, E°“t a finite set of event outputs (all these sets are pair-wise disjoint),
CI%¢ C C™ x T a set of condition input arcs, EI*"¢ C E™ x T a set of event input
arcs, CO¢ C P x C°% g set condition output arcs and EO% ¢ C T x E°% q set of
event output arcs. co C C'™ is the initial state of the condition inputs.
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Fig. 3. Figure (a) shows a module of a signal net. Figure (b) shows the same module, where
condition inputs and outputs are replaced by equivalent structures involving event inputs and
outputs.

We extend the notions of preset, postset, positive context, synchronization set and
synchronized set to the elements of ¥*%9 in the obvious way. An example of a module
of a signal net, with C** = {ci}, B = {j, k}, C°* = {co} and E°** = {u,v} is
shown in the Figure 3, part (a).

Two modules can be composed by identifying some inputs of the one module M;
with appropriate outputs of the other module M5 and replacing the connections of the
nets to the involved identified inputs and outputs by direct signal arcs respecting the
identification (see Figure 4).

Definition 8 (Composition of modules of signal nets). Let M, = (N1, V1, coy1), My =
(N2, W, co2) be modules of signal nets with input/output structures W; = (W, WeTe),
i = 1,2 and initial markings mo1, mos. Let further Q C Eplsig and 2 : Q — Ll?zsm
be an injective mapping, such that the initial markings are compatible with the initial
states of the condition inputs in the sense: (p,co) € CO™¢ A £2(co) € co2 = p € mo1
and (p,co) € CO ¢ A 27 co) € co1 = p € mo2. Moreover §2 has to satisfy
QB 1Q) C B, Q(BZNQ) C By, 2(CINQ) € C5™, and Q(C{NQ)
C", such that no cycles of event arcs are generated.

Then the composition M = M x¢q My of M; and My w.r.t. {2 is the module
M = (N, v, Co) with N = (Pl UPb.TyUTy, 1 UF, CN,EN,mg U moz) and
U = (U9, W), where involved inputs, outputs and corresponding signal arcs are
deleted, i.e.

W = (07 Q) U (85" \ 2(Q),
v = (T ((PQ X Q)U(Q x Q) U
(5" ((*2(Q) x 2(Q)) U (2(Q) x 2(Q)*))),
co = (co1 \ Q) U (co2 \ £22(Q)),

and new signal arcs are added according to (2 in the following way:
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Fig.4. The standalone of the module of a signal net in Figure 3 (a). The composed modified
modules are indicated by dashed boxes. The input/output behavior of the module is given by the
set of all occurrence sequences of this standalone, where the transitions in the left box are hidden.
The control module with respect to a given specification can be synthesized by adding appropriate
net structure to the maximally environment module represented by the right box.

CN =CN, UCNyU
{(p,t) | 3eco € C"* : (p,co) € COY™® A (£2(co),t) € CIF™} U
{(p,t) | Jci € O™ : (ci,t) € CIM A (p, $2(ci)) € COL™Y,
EN = EN; UENy U
{(t,t") | Beo € ES"* : (t,e0) € EOJ™C A (2(e0),t') € EIS™} U
{(t,t") | Fei € B"™: (ei,t') € EIM™ A (t, 2(ei)) € CO5™¢Y
In the following, we define the input/output behavior of Petri modules as the set of
all possible sequences of input signals sent to the module and output signals sent from

the module. Since condition signals are signals with duration, we replace them for this
purpose by equivalent structures of event signals in the following way (see Figure 3):

Definition 9. Let M = (N, V¥, cy) be a module with W = (W9, W), Define M,,, =
(N, s Com ), W, = (W29, W) by deleting condition inputs and outputs via

Cin — Cout = CO]%c = CO%c = (Z)
m m m m ?
and adding new structures involving event inputs and outputs in the following way:

Forc € C°" . E°“" = {c.on, c.off | c € C°""}

B0 = {(t,con), (t',c.off) |e€ O™, t € *(Te), ' € (To)})
Forc € C"™ : P, = PU{pc.on | c € C'"}

T =T Ut tioy | e € C™}

Fin = FU{(t25,,Pe.on)s (De.onstity) | ¢ € C™)

E™ = {c.on. c.off | c € C"}

E13¢ = {(c.on, t3%)), (c.off ,th%) | c € C™}

’7ec.on

Finally every p. o, is marked if ¢ € co. M, is called modified module (of M ).
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For modified modules, composing a condition output 9t of one module with a
condition 1nput ¢ of another module translates to composing c¢¢“¢.on with c*.on and
e off with ¢4 .off (Observe that the initial marking of Pein.on 18 then chosen accord-
ing to the initial marking of the place in "c9%). Then every occurrence sequence of
the composition of the original modules corresponds to the same occurrence sequence
of the composition of the modified modules in which every step of transitions involv-

ing a transition in ®( *¢9“%) resp. ( T¢9%t)® additionally includes the transition t"et
.on

resp. t”ﬁf off° In order to define formally the input/output behavior of a module M as
the set of all possible sequences of input and output event signals we first compose
M with another module E representing the maximally permissive environment of M.
Then we can represent sequences of input and output event signals of M by occurrence
sequences of the composed module restricted to the transition set of I (see Figure 4).

As the mentioned maximally permissive environment we recognize a module £, which

— at any moment can send event inputs to M: so each event signal of M is modelled
in I/ by a corresponding always enabled transition;

— at any moment can enable and disable condition inputs of M: so each condition
input of M is modelled in E by a corresponding place, which can be marked and
unmarked by associated transitions;

— can observe outputs of M: every output of M is modelled in £ by a corresponding
transition, which is synchronized in the case of an event output, and enabled in the
case of an condition output;

— does not allow synchronization between its transitions: in particular, inputs should
not be sent in steps from £ to M, and outputs M should only be observed by F
and not synchronize inputs of M via F.

Definition 10 (Maximally permissive environment). Let M = (N, ¥, ¢y) be a mod-
ule with W = (U5 wre). Define the maximally permissive environment module ;=
(Ng,¥g,con), ¥r = (¥, 0%°), wrt. M by ENp = CNp = () and

Force C°: Ty = {t.| ce C},
C = {ci. | c € OO}, CI = {(cic, t.) | c € O},
Forc € C™ : Ty =Tr U {te.on, tei off | €I € C'™Y, P = {pei.on | ci € C"™}
Fr = {(tei.on:Pei.on)s (Pei.on:teiof) | ci € C™}
mog = {pei.on | ¢i € C™ Uco}
Cot = {co, | c € C"}, COY® = {(pe, co.) | c € C'™},
Fore € B : TE =TrU{t.|ee B},
= {ei. | e € B°"}, EIY ¢ = {(eic, t.) | e € E°"'}
Fore € B ; TE =T U{t.|ec E™},
B9t = {eo. | e € ™}, EOY® = {(t., e0.) | e € E™}.
We call the composition of the modified module of M with the modified module of

its maximally permissive environment the standalone of M (observe that this compo-
sition has empty input/output structure) (as an example see Figure 4). The restriction
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of the occurrence sequences of the standalone to the transition set of the environment
is then formalized by using the hiding operator defined in section 2, which is used to
make the inner transitions of a module invisible.

Definition 11. (Standalones) Let M be a module of a signal net, E& be the maximally
permissive environment module of M and M,, = (N,V¥), E,, = (Ng,¥g) be their
modified modules. The standalone of M is the composition module Mg = (Ng,¥s) =
Ny, x0 Ep, w.rt. the following composition mapping 2 : W9 — w79

Q(e) = ei fore € B3
2(e) = eo, fore € B

Theset I = {t € Ts NTg | t # 0} is called the set of input transitions of Mg, the
set O ={t € Ts NTg | 7t # 0} is called the set of output transitions of Ms.

Definition 12. (Input/output behavior of modules of signal nets) Let M be a module of
a signal net with the set of transitions T'. Let L be the set of all finite occurrence se-
quences of the standalone Mg of M. Then the language A (Ly) is called input/output
behavior of the module M.

L s represents the set of all possible sequences of steps of input and output signals
under the assumptions: Output signals of M can not synchronize input signals of M
via the maximally permissive environment module. Input signals of M are not sent in
steps from the maximally permissive environment module.

4 Controller Synthesis

Throughout this section we consider a module of a signal net P as a model of an un-
controlled plant. As in the previous section 7" denotes the set of transitions of P, and 1
resp. O denote the sets of input resp. output transitions of the standalone of P.

In our modelling formalism we consider the inside of P as a black box: We only
can send input signals to P and meanwhile observe sequences of output signals. In
particular, the behavior of the DES (represented by P) is forced, not only restricted
from outside. Of course this approach leads to formal and technical differences to the
classical supervisory control approach:

Mainly, all events of P are assumed to be uncontrollable and unobservable. Con-
trollable are only the input signals, modelled by the set of transitions / of the maximally
permissive environment of P, and observable are, beside the input signals, exactly the
output signals, modelled by the set of transitions O of the maximally permissive envi-
ronment of P.

We specify a desired behavior of P by a set of desired sequences only of output
signals. Observe moreover that, since the event arc relation produces a step semantics,
we observe sequences of steps of output signals. Therefore we suppose a specification
to be given as a language L. C (20)*. Since sets of occurrence sequences of signal
nets are regular languages' over an alphabet of steps, we assume L., also to be regular.

! Observe that we use elementary nets, which have a finite reachability graph.
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The question is, whether it is possible to force the behavior of P via input signals
to respect the given specification of output signals in a maximally permissive way. This
can be formalized by asking, whether there is a module of a signal net C modelling the
control and a composition P * ¢, C, such that the set of occurrence sequences of P x¢, C
respects L.

The answer of the question above splits into two parts. One part is to decide whether
a control exists for the given specification and in the positive case to compute the be-
havior of the desired control module resp. the resulting composed module, also called
the behavior of the controlled plant. The other part is, to implement the given controlled
behavior via synthesizing the control module C from the behavior of the controlled plant
and composing this module with the plant module P, such that the resulting composi-
tion has exactly this controlled behavior. The scope of this paper is the first part. We
will finally give the behavior of the controlled plant by a deterministic finite automaton,
which is intended to represent the marking graph of the composed module, where only
input and output transitions are visible.

The second part is presented in [11]. The main idea is to synthesize C from the
automaton representing the behavior of the controlled plant, by adding new net structure
to the modified maximally permissive environment module £ of P (see Figure 4). That
means the control module C is constructed from £, and composed with P via the given
connections between P and £.

For a detailed running example of the computation of the behavior of the controlled
plant and the implementation of this behavior via synthesizing a control module we
recommend the paper [12].

We will formulate our approach language theoretically similarly as it is done in
classical supervisory control. We will see, that despite the mentioned differences, some
algorithms of classical supervisory control can at least be adapted to our framework.
While omitting therefore most details of these algorithms, out paper remains self con-
tained, i.e. can be understood without previous knowledge of supervisory control.

Without knowing any control module C we search for a sublanguage K (of occur-
rence sequences) of the language Lp (of all occurrence sequences of the standalone of
‘P) which represents the behavior of a composition of the plant module P and a control
module C (i.e. the behavior of the controlled plant):

— If an occurrence sequence in K can be extended by a step of output transitions
or invisible transitions to an occurrence sequence in Lp, then also this extended
occurrence sequence should be in K. This follows the paradigm: “what cannot be
prevented, should be legal”.

— According to unobservability of some events, some occurrence sequences in Lp
cannot be distinguished by the control. As a consequence, following the paradigm
“what cannot be distinguished, cannot call for different control actions”, if an input
is sent to the plant after a sequence w of steps has occurred, then the same input has
to be sent after occurrence of any other sequence, which is undistinguishable to w.

Observe that the first condition corresponds to the classical one supervisory control.
The second one is due to our step semantics, where an input can synchronize different
invisible and output transitions depending on the state of P, in combination with the
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notion of observability in supervisory control. Such a sublanguage K is called control-
lable w.r.t. Lp, I and O:

Definition 13 (Controllable Language). Given three finite, disjoint sets T, I and O
and a prefix closed regular language L over the alphabet 27°1YC then a prefix closed
sublanguage K of L is said to be controllable w.r.t. L, I and O (or simply controllable,
if the sets are clear), if

- Vw € K,Vo €29 : wo e L = wo € K,
- Vuj € K, j € 2IY0UT in T #£0,vj € 2V Xour(j) = dour(j'), Vo' €
K, A\r(v) =Ar(V): v'j € L =15 € K.

Of course we are searching for such a K, which additionally respects L. and is
maximal with this property.

Definition 14 (Maximally Permissive Controllable Language). Let T, I and O be
finite, disjoint sets, L be a prefix closed regular language over the alphabet 27°1Y0
and L. be a regular language over the alphabet 2°.

Let K C L be controllable w.r.t L, I and O satisfying

Mrur(K) C L.

We say that K is maximally permissive controllable w.r.t. L., L, I and O (or simply
maximally permissive controllable, if the sets are clear), if there exists no language K’
satisfying K C K' C L, which is controllable w.r.t. L, I and O and fulfills A1 (K') C
L..

It is possible to get the result K = {e} as maximally permissive controllable lan-
guage, what means that the maximal behavior respecting the specification is empty, but
there happens nothing wrong without inputs from outside. If even without any input the
specification can be violated, we call L. unsatisfiable w.r.t. L, I and O.

Definition 15. L. is said to be unsatisfiable w.r.t. L, I and O (or simply unsatisfiable,
if the sets are clear), if

Jw € (2°YT)* . w e LA M (w) € L. (1)
We call this condition unsatisfiability condition.

Consider a maximally permissive controllable language K: by definition every oc-
currence sequence in K is a prefix of an occurrence sequence respecting L.. But it
can happen there are such occurrence sequences that cannot be extended within K to
an occurrence sequence respecting L., i.e. the desired behavior is blocked. We require
additionally K to be nonblocking:

Definition 16 (Nonblocking Language). Let T', I and O be finite, disjoint sets, L be a
prefix closed regular language over the alphabet 279 1YC and L. be a regular language
over the alphabet 2° .

Let K C L be maximally permissive controllable w.r.t L., L, I and O.
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Let M C K be controllable w.r.t. L, I and O satisfying
Vre M : 3z e (2991 with ra € M, \jnr(rz) € Le. (2)

We say that M is nonblocking controllable w.r.t. L., L, I and O (or simply nonblock-
ing controllable, if the sets are clear). If it is maximal with this property, M is called
maximally permissive nonblocking controllable language.

In the next two paragraphs we synthesize the maximally permissive nonblocking
controllable language M, if it exists. First we examine the case, when L. is prefix
closed. In this case the maximally permissive controllable sublanguage of Lp is al-
ready nonblocking. In particular safety properties can be formalized via a prefix closed
specification L.

4.1 Safety Properties

Safety properties specify undesired behavior, that should not happen (for example for-
bidden states of the system). If some undesired behavior is realized by an occurrence
sequence, the whole possible future of this occurrence sequence is undesired too.

The searched (control) language M as defined in the last paragraph is computed
in several steps. First we define the (potentially safe) language Lsqre as the set of all
occurrence sequences of Lp respecting L.

Definition 17. We define Lysare = {w € Lp | Ajur(w) € Le} and Lypsafe =
LP \ Lpsafe-

Observe that L, e is only a first approximation to M, since it is in general not
controllable. In particular it may contain occurrence sequences which are not closed un-
der extensions by outputs (first condition in definition 13). Such occurrence sequences
must be cut at the last possible input (the last possibility of control), if there is one.
The prefixes ending with these inputs are collected in the language Lgjqnger. Deleting
the futures of occurrence sequences in Lgqnger from Lyg, re gives the language L, fe,
which we will prove below to be the searched language M.

Definition 18. We define

Ldange'r - {U] € Lpsa,fe | ] € 2TUIU07 ] ayi 7é @7 (3’0/ € [U]T)
AT € 279199 Aruo(5) = AMruo(5'))
A3y € (2TY9)" 1 v'j'y € Lunsase)}-

Lsafe - Lpsafe \pOSt(Ldangc'r)-

It is obvious from the definitions of Lysq e, Lunsafe, Ldanger and Lsq fe that every
equivalence class [w]r N Lp is either subset of or disjoint to these languages.
The main result of this subsection is the following theorem:

Theorem 1. L, . is maximally permissive nonblocking controllable, if L. is not un-
satisfiable.
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Before proving this theorem we give an algorithm to compute L, s.: It is essentially
shown, that L, . can be constructed by appropriate operations on regular languages.
We want to remark here that for computing the maximally permissive controllable lan-
guage also the more involved framework presented in [2] could be adapted (since our
different notion of controllability is still compatible with the union operation U). There
can also be found some hints to the complexity of the computation.

Let us first see that the language L. se is regular. We use the following general
construction to pump regular languages by new characters:

Definition 19. Ler A, A’ be two finite, disjoint sets and o be a regular expression over
the alphabet 2°. We construct a regular expression Qegt(Ar) Over the alphabet 24uA
by replacing every x € 24 in a by

* *

extar(x) = Z Y Z rUy Z Y

ye24’ ye24’ ye24’

By this construction we want to generate a regular expression whose corresponding
language L(a.s;) contains exactly all those words, which belong to L(«) when all
characters of the alphabet A’ are hidden. Later on, this construction will be used to
pump L. by I UT'. Then Lys,¢. can be computed as the intersection of such pumped
L. and Lp. Pumping a regular language by A’ in the above way computes the preimage
A1+ () of this language w.r.t. the appropriate hiding operator:

Lemma 1. Let A, A’ be finite disjoint sets and o be a regular expression over the
alphabet 24. Eachw € <2AUA/> satisfies

AA/ (’IU) S L(O[) = INS L(aemt(A’))'

Proof. We will show both directions of the above Lemma.

‘=": we show by structural induction over the construction rules of regular expressions

that the above property holds true:

Let a = 2 € 24 U {¢} (these are the constants of a regular expression over 24),
and w € (2494")* satisfy A4/ (w) = x. Then w is of the form w = e ...en, €; €
9AUA" quch that there exists an index i satisfying A4/ (e;,) = @ and A4/ (e;) = € for
J # io. It follows immediately from the construction above, that w € L(exta/ (x)) =
L(aewt(A’))'

Let o' and o be two regular expressions over the alphabet 2 satisfying the induc-

tion hypothesis, o, and a2, be the corresponding extensions according to the above

construction, and w € (24YA")*.

(i) Let o = o' +a? and A/ (w) € L(a). Then A g/ (w) € L(a?),i = 1 ori = 2.
By induction hypothesis w = w;, w; € L(a’,,),7 = lori = 2. Sow €
L(al,, +a?,,) = L(ceg), what follows immediately by the above construction.

(i) Let @ = a'a? and Aa/(w) € L(a). Then w = wyws, such that A4/ (w;) €
L(a*), i = 1,2. By induction hypothesis w = wyjwy € L(al,,)L(a?,,). So
(CURS L(aimtazmt) = L(aewt)'
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(iii) Leta = (al)*and A4/ (w) € L(a). Thenw = wy ... wy, Aar(w;) € L(at),n €
N. By induction hypothesis w = w; ... w, € L(al,,)*. Sow € L((al,,)*) =
L(Oéewt).

Observe that obviously o’ , + a2, = (a' + a?)ews, b 0?2, = (ala?)es and
(&éxt)* = ((al)*)e:ct-

‘=" let be w € L(aey). It follows immediately by the construction of «.,; that
A (w) € L(a), because each constant z € 24 of « is pumped up only by charac-
ters of 24", O

Corollary 1. L, . is regular.

Proof. Let o be a regular expression with L(«) = L. Then according to Lemma 1

Lpsafe = {w €Llp | /\IUT(w) € Lc} =LpnN L(O‘ext(IUT))a
i.e. Lpsafe, as the intersection of regular languages, is regular. O

Since post(L) is obviously a regular language for regular languages L, it remains
to show L gy ger t0 be regular in order to show L, s to be regular. Since with Ls fe
also the language Ly, sqfe 1S regular, we can give Lggnger as a simple formula on the
regular languages (2°Y7)* and Ly,sq .. First observe that the regular language

Lreal — (Lunsafe/(QOUT)*) N va

danger

where the symbol “/” denotes the quotient operation on languages, is the set of those
words vj € Lganger, Which themselves can be extended by an y € (QOUT)* to a word
in Lyysqre- The remaining words in Lggpger are of the form o' with o' € [v]r and
§'N T =jnIforawordwvj € L' . We get these words by means of a special

danger:*

defined hiding operator \ : (20Y/VT)* — (20VIUT)* defined by

For w = vz, v € (209T9T)* 2 € 209IVT . X(w) = Ar(0)Aruo (),

and extended in the obvious way to languages. Obviously the operators A and P
preserve regularity of languages, since this is the case for the hiding operator A as
argued in lemma 1. We get

1 —
MLyrvare)l N Lpsage-

Lemma 2. Ldanger = A unsafe

From now on we assume L. to be satisfiable. The main theorem 1 now is shown in
two steps by the following lemmata.

Lemma 3. L. is controllable.
Proof. First we have to show, that
Yw € Lgage, Vo € 2097 wo € Lp = wo € Lygpe.

Assume w € Lgqpe and o € QouT satisfying wo € Lp, butwo ¢ Lggf.. There are two
cases:



253

— wo € Lpsqre: Then wo € post(Lganger). This implies obviously w € post
(Ldanger ), what contradicts w € Lgq fe.

— wo & Lpsare: Then by definition wo € Lyysafe. Since L. is satisfiable, w has a
prefix in Lggnger. This again contradicts w € Lgqfe.

It remains to show, that

Yuj € Lsage, j € 29T 501 # 0,5 € 299" Nour(j) = Mour(§),
Vo' € Lsafe, V' € [V]7: V'j' € Lp = v'j € Lgase.

For vj and v'j’ as above we have according to the definition of Lggnger:
vj € post(Laanger) < vV'j" € post(Lganger)- O

Lemma 4. There is no language K C Lp satisfying Lsqre & K, which is controllable,
and which fulfills A\;ur(K) C L.

Proof. We choose a w € K \ Lsqfe and construct from w a w’ € K satisfying
Aur(w') € L.. Asw € Lp, there are two cases:

- W ¢ Lpsafe: Then w € Lypsqpe and thus Arur(w) & Le.

- w € Lygqpe: Then w € post(Lianger), 1.6. w has a prefix vj € Lggnger. That
means, there are v’ € [v]r, j/ € 2/YOYT with jN T = j' NI andy € 297, such
that v'j'y € Lyunsafe, i.6. Arur(v'j'y) € L. Since K is controllable, v’j" also
belongs to K (second property), and consequently v'j’y € K (first property). O

It follows immediately from the above proof, that L, s, 1s the unique maximally
permissive (nonblocking) language, analogously to related results in supervisory con-
trol.

4.2 Nonblocking Control

More general properties as for example the full execution of certain tasks cannot be
formalized by a regular language L. which is prefix closed. Of course a maximally
permissive controllable language K w.r.t. a not prefix closed L., Lp, I and O should
contain occurrence sequences of the standalone of Lp which represent prefixes of words
in L., but only such ones, which can be extended to a word in L. within K, i.e. which
are nonblocking. In other words the set of blocking words of K

Kbiocking = {r € K | Az € (299191 . ro € K A \jur(rz) € Le}.

should be empty.

For this purpose replace L. by L. in the definitions of Lpsafe and Luyysq e (defi-
nition 17). We now search for a sublanguage L4 e Of Lgq e, Which is controllable,
nonblocking and maximal with these two properties according to definition 16. Since
in our framework the special property, namely that every controllable event is also ob-
servable, is fulfilled, we are able to adapt a result in supervisory control ([2], subsection
3.7.5), which states under the assumption of this property: If there is at least one con-
trollable language respecting L. which is nonblocking, then there is a unique maximal
one.
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We compute Lypsq fe, if it €xists, in two steps:
First we represent L, . by a finite automaton A which
— separates by its states words respecting L. from words not respecting L..:
Vw € (21VOYTY* "y € [w]a : Ajur(v) € Le < Arur(w) € L, and
— separates by its states words, for which undistinguishable words with different futures
exist.
Second we recursively delete input edges in A, which can lead to blocking words.

Such an automaton always exists. We omit the construction of A due to space limi-
tations. For a detailed investigation see [11].

According to the first property of A we can define the set of states S. = {[w]a |
Arur(w) € L.} representing L. So finding blocking words translates to finding block-
ing states, from which there is no continuation in A to a state in S.. The following
lemma directly follows:

Lemma3s. Let K = Lyy. andletr € K.

— 1 € Kplocking iff every x € (2I1VOYTY* with rx € L,y fulfills [rx]a & Se.
= Ifr € Kplocking and [r]a = [r']a for aword " € K, then " € Kpiocking-
= Ifr € Kylocking andr € M C K, then v € Myjocking.

That means we can construct Ly,psq fe from L, re by deleting edges in A represent-
ing inputs, which lead to blocking states in the sense of the above lemma in a maximally
permissive way. Of course such edges must be deleted in all undistinguishable paths in
A (see step 4 of the algorithm later on). The second property of A ensures that two
different words ending with the same such edge in A, are both undistinguishable from
words with a blocking future (i.e. by deleting such edges no futures of words, which
have no blocking future, are cut). Since the deletion of an edge can produce new block-
ing states, the procedure is iterative. As for controllability (condition (1)), there is a con-
dition saying when we cannot find a controllable nonblocking sublanguage: Every con-
trollable sublanguage of Ly, s. contains all words in L, s of the form w € (2097)*.
Therefore:

Lemma 6. Let M C L,y If there is a w € Myjocking N (QOUT)*, then there is no
controllable sublanguage of M, which is nonblocking w.r.t. L.

We call this condition blocking condition. It is only sufficient for nonexistence of a
controllable nonblocking sublanguage, but not necessary. We are now prepared to state
the algorithm:

Input: Automaton A° = A, Integer k = 0

Output: Automaton A, psq e, if Lppsafe €Xists

Step 1: If L(A*) fulfills the blocking condition, then return “L,,;s, . does not exist”

Step 2: If (L(A*))piocking = 0, then return A*

Else Choose w € (L(A*))piocking

Step 3: Compute a prefix vj of w with j N I # (), such that w = vjy fory € (20V7)*

Step 4: Compute the set of states S5, = {[u]s+ | u € [v]7}

Step 5: Delete every edge starting in any state [u] 4» € S, with a label 7 fulfilling
inI=4n1I
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Step 6: Setk =k + 1
Set A* to be the new constructed automaton
Goto Step 1

Let us state the main theorem of this subsection:

Theorem 2. There exists a maximally permissive nonblocking controllable sublanguage
of Lsqfe, if and only if the previous algorithm outputs an automaton Appsefe. In this
case L(Anpsafe) is this searched sublanguage.

Proof. Let Agqpe = A% ... ANo be the sequence of automata the algorithm has com-
puted until it has stopped.

We first show the “only if”-part:
Assume the previous algorithm outputs “L,p4 e does not exist”. We have to show, that
there is no maximally permissive nonblocking controllable sublanguage of L f.. For
this it is enough to prove, that every controllable sublanguage K of L, s, must contain
a blocking word w.r.t. K.

According to lemma 5 it is enough to find a word in K which is blocking w.r.t.
Lsase- By Step 1 L(AN0) fulfills the blocking condition, i.e.

Jug € (2OUT) D g € ngckmg-
Since K is assumed to be controllable, K contains all words in L, . N [vo] 7. If one of
these words is blocking w.r.t. L, fe, we are done.
So assume all w € Lgqfe N [vo]7 Dot to be blocking w.r.t. Ly, ¢.. That means every
such u can be extended by an y # € (remark that Apyr(ve) € L.!) such that [uy| 40 €
S, in particular vg. Observe that

— If none of all such possible extensions y of vy is in K, we are done (this would
imply vg to be blocking w.r.t. K'). So assume that there is at least one such extension
VoYo € K with [’ono]Ao € S..

— We have voyo € L(A®) = Lgape but voyo ¢ L(AN) (since vy blocking w.r.t.
LNo).

Therefore there must be an index N; < Ny and a prefix zz of yo (with z €
(21VOUTyx i ¢ 2IVOUT "y [ £ (), such that [voz]o~v, € Sk and the edge
starting in state [vgz] 4~, with label i was deleted from A™ in Step 5. This deletion

was caused by the existence of a v; € Lé\l[}wkm g of the form vy = w;jwsy, where
j c QIUOUT, wy € (2IUOUT)*’ and

(a) wy € ox]r N Lsafe, (b)FiNIT=iNT and (c) wy € (2°°7)*

Remember now that all prefixes of vy, in particular vox and voxi, belong to K. Since
K is assumed to be controllable, K contains all words in L s N [voz]7, in particular
w1 (property (a)). From the second condition of controllability and (b) we get further
w1j € K, and therefore v = wyjwy € K (first condition of controllability and (c)).



256

By repeating this construction we get an strictly decreasing sequence of natural
numbers No > N; > ... and associated words vg,v1,... € K, such that v; €

Ll])\l](ijck:ing’ ¢t = 0,1,.... Finally Ny = 0 for some k, which implies v, € K block-
ing w.r.t. K.

Next we consider the “if”’-part:
By construction L(AN°) = L(A,psase) is controllable and nonblocking. It remains
to show that it is maximally permissive with these two properties. Assume another
language K to be maximally permissive nonblocking controllable w.r.t. L., Lp, I and
O satisfying L(Appsare) & K C Lgqse. We will construct inductively a blocking word
in K.

Thereis ax € K \ L(Anpsare)- As L(Appsare) and K are prefix closed we can
assume (without loss of generality) = wj, w € L(Appsase), j € 21999, 5N 1T # 0.
Because K is controllable, we have

vy € (299 v’ € [w]p, V' € 21VOYT i nT=4NT:
w'j'y € Logre = w'j'y € K.

Since in some step N1 < Ny the edge starting from the state [w] 40 with label j was
deleted, one of these words w’j'y, call it vo, must be blocking w.r.t. L(A™). Moreover,
analogously to the “only if’-part, either one of these words is blocking w.r.t. L, f. (and
we are done), or all of them must have an extension within K to a word respecting L.,
in particular vgy. Let vgyg be this extension of vg. Proceed now as in the “only if”’-part.
t

5 Conclusion

In this paper we have presented a methodology for synthesis of the controlled behavior
of discrete event systems employing actuators which try to force events and sensors
which can prohibit event occurrences. As a modelling formalism, we have used mod-
ules of signal nets. The signal nets offer a direct way to model typical actuators behav-
ior. Another advantage of such modules consists in supporting input/output structuring,
modularity and compositionality in an intuitive graphical way.

In the paper we were not focusing on complexity issues. It is known that the com-
plexity of the supervisory control problem is in general PSPACE-hard, and sometimes
even undecidable ([16], pp. 15 - 36). To get efficient algorithms one has to restrict the
setting in some way, for example by considering only special kinds of specifications.
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