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Abstract. We present an approach and associated computer tool sup-
port for conducting distributed state space exploration for Coloured Petri
Nets (CPNs). The distributed state space exploration is based on the in-
troduction of a coordinating process and a number of worker processes.
The worker processes are responsible for the storage of states and the
computation of successor states. The coordinator process is responsible
for the distribution of states and termination detection. A main virtue
of our approach is that it can be directly implemented in the existing
single-threaded framework of Design/CPN and CPN Tools. This makes
the distributed state space exploration and analysis largely transparent
to the analyst. We illustrate the use of the developed tool on an example.

1 Introduction

State space exploration is one of the main approaches to computer-aided valida-
tion and verification [4, 7]. The basic idea of state space exploration is to compute
all reachable states and state changes of the system and representing these as
a directed graph. The main advantage of such exploration methods is that they
are highly automatic to use and allow for investigating of many properties of the
system under consideration. The main disadvantage of state space exploration
methods is the state space explosion problem [17].

A wide variety of methods (see [17] for a survey) have been suggested in the
literature to alleviate the state space explosion problem. Recently [5,6], there
has also been increased interest in exploiting the memory and computing power
of several machines to conduct distributed state space exploration. Distributed
exploration does not alleviate the state space explosion problem, but it increases
the memory available for storage of the state space, and has the potential for a
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linear speed-up in time. Distributed state space exploration has been developed,
e.g., for the SPIN [1], UPPAAL [2], and Mur¢ [16] tools.

In this paper we consider distributed state space exploration for Coloured
Petri Nets (CPNs) [14]. Modelling and analysis of CPN models are supported
by Design/CPN [9] and CPN Tools [8]. Until now, only very limited investi-
gations have been conducted on distributed state space exploration for CPNs
[11]. The contribution of this paper is to explore the use of distributed state
space exploration in the context of CPNs and their associated computer tools
Design/CPN and CPN Tools. A main requirement in the developent of our ap-
proach has been to exploit as much as possible the existing support for state
spaces, and to make the distributed state space exploration largely transparent
to the analyst.

The rest of this paper is organised as follows. Section 2 introduces some
basic notations for state spaces. Section 3 presents our algorithm for distributed
state space exploration and section 4 gives some experimental results with this
algorithm on an example. Finally, section 5 contains the conclusions.

2 Background

Figure 1 lists the standard algorithm for sequential explicit state space explo-
ration. The algorithm operates on two sets: UNPROCESSED which is a set of
states for which successor states have not yet been calculated and NODES which
is the set of already visited states. The algorithm starts from the initial state My
and conducts a loop until the set of unprocessed states is empty. In each iteration
of the loop (lines 3-11), a state M is selected from the set of unprocessed states
and the successor states M’ of M are examined in turn. Successor states that
have not been previously visited are inserted into the set of unprocessed states.

UNPROCESSED < {Mg}
NODES + {Mo}
while — UNPROCESSED.EMPTY() do
M < UNPROCESSED.GETNEXTELEMENT()
for all ((t,b), M') such that M|[(¢,b)})M' do
if =(NoDEs.CONTAINS(M')) then
NoDEs.ApD(M')
UNPROCESSED.ADD (M)
end if
end for
: end while

H
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Fig. 1. Sequential state space exploration algorithm.

The time taken to explore the state space of a CPN is determined by the compu-
tation of enabled binding elements and corresponding successor states in line 5,
and the time used to determine whether a newly generated state has already



been explored before in line 6. This computation can be costly for large CPN
models having many tokens and complex arc expressions. The space used to store
the state space is another main factor in the algorithm. A distributed computa-
tion of the state space could potentially achieve the following: 1) Computation
of successor states could be done in parallel for several states at a time, 2) De-
termining whether a state has already been explored could be done in parallel
for several states at a time, and 3) the total amount of memory available for the
state space exploration would be increased by having several machines.

3 Distributed State Space Exploration

Based on previous work [3,15,16] on distributed state space exploration, we
choose to distribute both storage and calculation of successor states to a num-
ber of worker processes. The alternative would have been to only distribute the
storage of states and compute sucessor states centrally. Distribution of successor
states was considered of particular importance for CPNs, where the computa-
tion of successor states can be costly in case of many tokens on places and/or
complex arc inscriptions. Unlike the approaches reported in [15], we introduce
a central coordinator process. The purpose of the coordinator process is to dis-
tribute states. The introduction of the coordinator process makes the implemen-
tation of distributed state space exploration simpler given the single-threaded
nature of Design/CPN and CPN Tools. Furthermore, the introduction of the
coordinator process simplifies the termination detection. A third advantage of
this architecture is that the coordinator can also be used later to control the
verification process while the user interacts with the coordinator process only.

The basic idea is that when a worker computes a successsor state, it first
checks if it itself is responsible for the state. Determing this is based on the use
of an external hash function known to all workers and the coordinator process.
If so, it checks locally whether the state is a new one. Otherwise, it sends the
state to the coordinator. The coordinator then sends the state to the worker
responsible for the state. The main disadvantage of this architecture is that the
central coordinator node could become a bottleneck. On the other hand, the
computation that needs to be done by the coordinator is very limited since it
only consists in relaying states to the appropriate worker process.

The worker and the coordinator processes are all SML/NJ processes (Stan-
dard ML of New Jersey), and the communication infrastructure between the
nodes is based on the Comms/CPN library [12]. This library supports commu-
nication between SML/NJ processes and external applications. In this particular
case, all communications will be between SML/NJ processes. A main problem
with the SML/NJ processes is that they are single-threaded and Comms/CPN
only supports a blocking receive primitive. We have therefore added a CANRE-
CEIVE primitive to Comms/CPN to support a polling receive. We assume that
each of the workers will run on machines with equal computing power and com-
munication between workers and coordinator will be on a local area network.



1: computed < false

2:

3: SEND(STATE Mo, worker(hex(Mo)))

4: nextprobe < hex(Mo)

5: SEND(PROBE,worker(nextprobe))

6: nextprobe ¢ nextprobe +1

7

8: while - computed do

9: forallie{l,...,n}do

10: if CANRECEIVE(worker (7)) then

11: RECEIVE(message,worker (7))

12: if message == STATE M then

13: nextprobe < MIN(nextprobe,hex(M))
14: SEND(STATE M ,worker(hex(M)))
15: else

16: {Probe was returned}

17: if nextprobe > n then

18: computed < true

19: else
20: SEND (PROBE,worker (nextprobe))
21: nextprobe < nextprobe +1
22: end if
23: end if
24: end if
25:  end for
26: end while
27:

28: for all i € {1,...,n} do
29:  sEND(STOP,worker(i))
30: end for

Fig. 2. State space exploration algorithm for the coordinator.

Figure 2 gives the algorithm executed by the coordinator process during the
distributed state space exploration. The coordinator starts by sending the initial
state My to the worker determined by the external hash function hey : M —
{1,2,...,n} used to distribute states between the n workers. It then sends a
PROBE message to this process to be able to detect when the process has finished
processing the state just sent. The PROBE messages and variable nextprobe are
used to detect termination. We will explain how the termination detection works
after presenting the algorithm for the workers. The coordinator then runs a loop
where each of the worker processes is polled for messages using the CANRECEIVE
primitive. If the received message is a STATE, this state is sent to the appropriate
worker process and nextprobe is updated accordingly. If a PROBE message is
received from a worker process, then it is passed on to the next worker and
nextprobe updated accordingly.

Figure 3 lists the algorithm executed by each of the workers. The workers
run in a loop exploring states received from the coordinator. Each worker will



: stop « false

1
2:
3: while - stop do

4:  RECEIVE(message)

5:  if message == STATE M then
6 if "NODES.CONTAINS(M ) then
7 NODES.ADD(M)

8 UNPROCESSED + {M}

10: while = UNPROCESSED.EMPTY() do

11: M <+ UNPROCESSED.GETNEXTELEMENT()
12: for all ((t,b), M') such that M|[(t,b))M' do
13: if hex(M') # i then

14: SEND(STATE M’)

15: else if “NoDES.CONTAINS(M’) then
16: NoDEs.ADD(M')

17: UNPROCESSED.ADD (M)

18: end if

19: end for

20: end while

21: end if

22:  else if message == PROBE then

23: SEND(PROBE)

24: else

25: stop < true

26: end if

27: end while

Fig. 3. State space exploration algorithm for worker 3.

terminate once a STOP message is received from the coordinator. Whenever a
state M is received, it is first checked if the state is already stored by the worker.
If not, then it is added to UNPROCESSED and an exploration starting in M is
conducted. States encountered in this exploration which belong to other workers
are transmitted to the coordinator process, whereas encountered states that
belong to the worker but are not currently stored are added to UNPROCESSED.
When the exploration of the state space from the received state terminates, the
worker goes back waiting for the next message. If a PROBE message is read, this
message is sent back to the coordinator, and in case of a STOP message from the
coordinator, the worker will stop its exploration.

The basic idea to detect termination of the state space exploration is that
the coordinator passes a PROBE message among the workers. This solution is
inspired by the distributed deadlock detection in [10]. The coordinator keeps
track, in the nextprobe variable, of the next worker to send the probe to. The
idea is that workers with an identity strictly smaller than nextprobe are known
to be blocked, i.e., they are waiting for an incoming message in line 4 of the
algorithm in figure 3. Hence, when the coordinator sends a state to a worker



with an identity which is smaller than the current nezxtprobe, this worker will
be become active and thus the coordinator decreases the value of nextprobe
accordingly (see line 13 in figure 2). When the coordinator sends the probe to a
worker (see line 20 in figure 2), it updates the nextprobe to be the next worker.
Hence, if states are not given to workers with a lower identity before the probe is
returned, the next worker will then be probed. When the coordinator receives the
probe from the last worker (line 17 of the algorithm in figure 2), then all workers
are known to be in the blocked state and hence the state space exploration has
been completed.

The distributed state space exploration requires a hash function he,; mapping
states onto workers. Assuming that the workers are running on machines of
equal computing power in terms of memory and CPU, then this function should
achieve two goals. Firstly, it should distribute the states uniformly across the
n workers. Secondly, it should ensure a certain degree of locality, i.e., to reduce
the communication overhead we would like as many successors states of a given
state to reside on the same machine. To some extent these are conflicting goals.

To achieve a degree of locality we can select a small subset of the places Py
of the CPN and let the hash function depend on the marking of these places.
All transitions in the CPN model which do not have a place in P, as input or
output will hence not affect the hash value and when such a transition is enabled
from a state M, the successor state M’ will belong to the same machine as M.
Intuitively, we can thus control the degree of locality by the size of the set P,. On
the other hand, the set of reachable markings of the set P, must accommodate
a preferably even distribution of states onto the n workers.

Another issue is the relationship between the external hash function he and
the internal hash function hi,; used in the internal hash table on each of the
workers. Here we assume that all workers will be using the same internal hash
function. We need to ensure that these hash functions are independent, i.e., that
the external hash function hey does not cause the internal hash function hin
to map the states stored on that worker into a very small set of values. One
approach to avoid this is to let the internal hash function h;,; depend on the
marking of places in P\ Py. It should however be mentioned that the marking
of places in P\ P could be related via place invariants to the marking of places
in Pp, and hence the markings may not be totally independent. The issue of the
external hash function will be investigated further in section 4.

4 An Example

We now present a set of initial results obtained with the basic state explo-
ration algorithm presented in the previous sections. We consider the distributed
database system from [14] in figure 4. The CPN model describes the communi-
cation between a set of database managers D = {d;,da,...,dn} for maintaining
consistent copies of a database in a distributed system. The idea of the protocol
is that when a database manager updates its local copy of the database, requests
are sent to the other database managers for updating their copy of the database.
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Fig. 4. The distributed database example.

When each database manager has updated its copy, it sends an acknowledgement
back to the initiating database manager to confirm that the update has now been
performed. A database manager in the protocol can either be in a state Waiting
(for acknowledgement), Performing (an update requested by another database
manager) or Inactive after having sent the acknowledgement back. All database
managers are initially Inactive.

Table 1 gives some statistics for the distributed data base system where we
have used 1-10 workers. For these experiments, the external hash function hex:
is based on the standard internal hash function Ay used by Design/CPN:

hext (M) = (hint(M) mod n) + 1 (1)

The |DBM]| column gives the number of database managers considered and
the n column specifies the number of workers. States gives the total number of
states in the state space and Time specifies the total time used for the exploration
as measured in the coordinator process. The exploration time is written on the
form mm:ss where mm is minutes and ss is seconds. The Transmit column
specifies the total number of states transmitted. FExternal indicates the number
of successor states computed that were external while Internal gives the number
of successor states computed that were internal. This is measured across all the
workers. Column Stored gives the total number of states received by the worker
which were already stored by the worker when received.

Table 2 gives detailed statistics for the workers. The |[DBM| column gives
the number of managers considered and the n column specifies the number of
workers. For each worker W1-W10, we list the number of states stored on the
worker and in Table 3 the total time that the worker spent in the blocking state.

To reduce the number of states transmitted, a small cache is introduced on
each process. This cache contains a set of recently sent states and is consulted
before transmitting a state. The best results obtained in our experiments with



Table 1. Initial experimental results for the database system.

IDBM| n  States Time Transmit External Internal Stored

10 1 196,831 112:49 1 0 1,181,000 0
10 2 196,831 58:25 590,501 590,500 590,500 585,380
10 3 196,831 63:00 1,180,981 1,180,980 20 984,160
10 4 196,831 83:03 1,180,991 1,180,990 10 984,160
10 5 196,831 108:59 1,181,001 1,181,000 0 984,170
10 6 196,831 47:38 1,180,991 1,180,990 10 984,160
10 7 196,831 40:48 590,511 590,510 590,490 492,090
10 8 196,831 27:12 1,180,991 1,180,990 10 984,160
10 9 196,831 57:08 1,181,001 1,181,000 0 984,170
10 10196,831 77:07 1,181,001 1,181,000 0 984,170

Table 2. Number of nodes on workers for the database system.

[DBM| n W1 W2 W3 W4 W5 W6 W7 W8 W9 WIO

10 1 196,831
10 2 98,410 98,421

10 3 65,610 65,610 65,611
10 4 49,210 49,211 49,200 49,210

10 5 40,330 47,521 25,280 53,940 29,760

10 6 31,950 33,660 34,510 33,660 31,950 31,101

10 7 6,720 46,090 20,160 23,221 40,320 6,560 53,760

10 8 24,130 24,240 24,600 24,240 25,080 24,971 24,600 24,970

10 9 12,960 29,160 17,101 23,490 23,490 17,100 29,160 12,960 31,410

10 10 20,160 23,761 12,640 26,970 14,880 20,170 23,760 12,640 26,970 14,880

the database example uses a cache with 200 states. Hence, this configuration is
used hereafter.

Until now we have used the internal hash function in each worker as a basis
for the external hash function. For the DBM system it is however possible to
come up with a tailored hash function based on the observation that except for
the initial marking only one of the database managers is active at a time. If we
let Waiting(M) denote the database manager which is waiting (if any) in the
state M and 1 if there is none, then a possible external hash function for the
DBM system would be:

hext(M) = (Waiting(M) mod N) + 1 (2)

With this hash function it only makes sense to have at most N workers. The
experiments conducted with 10 database managers and a cache size of 200 states
are presented in Table 4. The hash function splits the state space into 9 sets of
19,683 states each, plus one containing also the initial marking (19,684 states).
These sets are evenly distributed among the computation nodes. In these experi-



Table 3. Waiting time of workers for the database system.

[IDBM| » W1 W2 W3 W4 W5 W6 W7 W8 W9 WI0
10 1 0:00

10 2 4:22 8:33

10 3 23:43 23:38 18:40

10 4 43:52 21:57 29:08 55:24

10 5 27:22 40:50 80:46 64:01 99:50

10 6 13:30 10:34 10:15 15:49 33:46 32:39

10 7 40:03 7:10 35:10 35:12 25:10 40:16 1:07

10 8 12:43 5:36 7:20 15:07 7:11 11:57 6:57 10:44

10 9 54:21 37:40 51:23 48:07 49:24 52:04 39:44 54:23 9:53
10 10 42:23 51:36 67:18 60:19 73:56 52:49 51:33 68:36 14:01 64:17

ments 18 of the new states computed are external while the 1,180,982 others are
internal. Hence, there is very little communication between the processes and
they can perform their local computations without waiting for other workers to
provide new states to handle. The results obtained are thus considerably better
than with the original hash function. For 9 and 8 workers, some computation
nodes are handling 2 groups of states, which explains the longer computation
time, and the longer blocking time for the other workers.

Table 4. Experimental results using the tailored hash function.

n Time Block. Time

10 3:39 2:14
9 5:48 4:22
8 5:58 4:33

5 Conclusions and Future Work

We have described an approach to conducting distributed state space explo-
ration for CPNs and presented some experimental results obatined with an im-
plementation of our approach within Design/CPN. The experimental results are
encouraging and indicate that the art of distributed state space exploration is
in the choice of a good external hash function mapping states onto workers. In
the general case, we would like to automatically derive an external hash func-
tion without relying on the user knowledge of the system to specify a good hash
function. Hence, we need a way of determining a set of places that can be used to
obtain a good hash function. A possible approach to this is to conduct an initial
partial state space exploration (depth-first and breadth-first) and from the mark-
ings encountered attempt to derive a hash function. This hash function can then



be based on counting the tokens on a selected set of places, or eventually, when
dealing with places having simple colour sets such as integers or enumerations,
on the rank of the colours in the place. Future work includes exploring more
elaborated approaches to perform model-checking in our distributed framework.
A possible starting point for this work would be [13,15].
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