Skip to main content

Algorithms for Point Set Matching with k-Differences

  • Conference paper
Computing and Combinatorics (COCOON 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Included in the following conference series:

  • 567 Accesses

Abstract

The largest common point set problem (LCP) is, given two point set P and Q in d-dimensional Euclidean space, to find a subset of P with the maximum cardinality that is congruent to some subset of Q. We consider a special case of LCP in which the size of the largest common point set is at least (|P|+|Q|ā€“k)/2. We develop efficient algorithms for this special case of LCP and a related problem. In particular, we present an O(k 3 n 1.34 + kn 2 log n) time algorithm for LCP in two dimensions, which is much better for small k than an existing O(n 3.2 log n) time algorithm, where nā€‰=ā€‰ max {|P|,|Q|}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T.: Approximate String Matching with Donā€™t Care Characters. Information Processing LettersĀ 55, 235ā€“239 (1995)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Akutsu, T.: On Determining the Congruence of Point Sets in d Dimensions. Computational Geometry, Theory and ApplicationsĀ 9, 247ā€“256 (1998)

    MATHĀ  MathSciNetĀ  Google ScholarĀ 

  3. Akutsu, T., Tamaki, H., Tokuyama, T.: Distribution of Distances and Triangles in a Point Set and Algorithms for Computing the Largest Common Point Sets. Discrete and Computational GeometryĀ 20, 307ā€“331 (1998)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  4. Alt, H., Melhorn, K., Wagener, H., Welzl, E.: Congruence, Similarity, and Symmetrics of Geometric Objects. Discrete and Computational GeometryĀ 3, 237ā€“256 (1988)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  5. Amir, A., Farach, M.: Efficient 2-Dimensional Approximate Matching of Half- Rectangular Figures. Information and ComputationĀ 118, 1ā€“11 (1995)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  6. Atkinson, M.D.: An Optimal Algorithm for Geometrical Congruence. J. AlgorithmsĀ 8, 159ā€“172 (1987)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  7. Cardoze, D.E., Schulman, L.J.: Pattern Matching for Spatial Point Sets. In: Proc. 38th Symp. Foundations of Computer Science, pp. 156ā€“165 (1998)

    Google ScholarĀ 

  8. Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M., Welzl, E.: Combinatorial Complexity Bounds for Arrangements of Curves and Spheres. Discrete and Computational GeometryĀ 5, 99ā€“160 (1990)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  9. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore (2002)

    BookĀ  Google ScholarĀ 

  10. Highnam, P.T.: Optimal Algorithms for Finding the Symmetries of a Planar Point Set. Information Processing LettersĀ 18, 219ā€“222 (1986)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  11. Indyk, P., Venketasubramanian, S.: Approximate Congruence in Nearly Linear Time. Computational Geometry, Theory and ApplicationsĀ 24, 115ā€“128 (2003)

    MATHĀ  MathSciNetĀ  Google ScholarĀ 

  12. Landau, G.M., Vishkin, U.: Fast Parallel and Serial Approximate String Matching. J. AlgorithmsĀ 10, 157ā€“169 (1989)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  13. Manacher, G.: An Application of Pattern Matching to a Problem in Geometrical Complexity. Information Processing LettersĀ 5, 6ā€“7 (1976)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  14. McCright, E.M.: A Space-Economical Suffix Tree Construction Algorithm. J. ACMĀ 23, 262ā€“272 (1976)

    ArticleĀ  Google ScholarĀ 

  15. Schieber, B., Vishkin, U.: On Finding Lowest Common Ancestors: Simplification and Parallelization. SIAM J. ComputingĀ 17, 1253ā€“1262 (1988)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  16. SzĆ©kely, L.: Crossing Numbers and Hard Erdƶs Problems in Discrete Geometry. Combinatorics, Probability and ComputingĀ 6, 353ā€“358 (1997)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  17. SzemerĆ©di, E., Trotter, W.T.: Extremal Problems in Discrete Geometry. CombinatoricaĀ 3, 381ā€“392 (1983)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  18. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, A., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting Patterns of Gene Expression with Self- Organizing Maps: Methods and Application to Hematopoietic Differentiation. Proc. Natl. Acad. Sci. USAĀ 96, 2907ā€“2912 (1999)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akutsu, T. (2004). Algorithms for Point Set Matching with k-Differences. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics