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Abstract. XL was first introduced to solve determined or overdetermined sys-
tems of equations over a finite field as an “algebraic attack” against multivari-
ate cryptosystems. There has been a steady stream of announcements of crypt-
analysis of primitives by such attacks, including stream ciphers (e.g. Toyocrypt),
PKC’s, and more controversially block ciphers (AES/Rijndael and Serpent).
Prior discussions of XL are usually heavy in simulations, which are of course
valuable but we would like more attention to theory, because theory and simula-
tions must validate each other, and there are some nuances not easily discerned
from simulations. More effort was made in this direction of recent, but much
of it was restricted to a large base field of size � , which is usually equal to � � .
By conducting an analysis of XL variants in general, we try to derive rigorous
“termination conditions”, minimal degree requirements for reliable, successful
operation of XL and its relatives, hence better security estimates. Our work is
applicable to small � , in particular the significant ���	� case.
Armed with this analysis, we reexamine previously announced results. We con-
clude that XL and variants represent a theoretical advance that is especially sig-
nificant over small fields (in particular over 
���
���� ). However, its applicability
and efficacy are occasionally overestimated slightly. We discuss possible future
research directions. Much remains to be done.

Keywords: XL, finite field, multivariate cryptography, system of quadratic equa-
tions, algebraic attack.

1 Introducing the XL Family of Algorithms

XL is loosely descended from the relinearization ([17]) of Shamir and Kipnis. [8] im-
plied that relinearization is superseded by XL which will always succeed if relineariza-
tion does. We will herein discuss only XL and its variants.

Goal: Find one solution to the system of � quadratic equations � ���������
� ��������� ������� �� �����!� " in # variables �$� ��%&�(')%*�+'�,�,-,�')%*./� over the base field0 �21435�76�� . We will also use the following notations: The degree of a monomial �98:�%*;=<� %>;@?� �-���A% ;@B. , is denoted CED�C � FHGJI G . The set K � KMLONQP comprises all monomials of
total degree RTS . It has U � UVLONQP elements.

1.1 Basic Procedures of XL

XL only operates on determined or over-determined systems, i.e. #WR � . With more
variables than equations, we must guess at enough variables so as to have at least as
many equations as variables. XL at degree S then proceeds as follows:



1. “X” means to eXtend or multiply. Take all ��8�� K L N�� � P (i.e., all monomials of
degree R S ��� ), and generate a set of equations � 8 � G � � � � " . The system of
equations will be collectively termed � � � LONQP .

2. “L” means to Linearize. Run an elimination on the system of � � � U LON	� � P equa-
tions � � � LONQP , treating each monomial � 8 � K LONQP as a variable. Enough equa-
tions must be independent to resolve the system. Because the system � is homo-
geneous in the variables (monomials) of K , if there is a solution, then the number
of independent equations (which we will denote 
 as opposed to �
����� as in some
earlier works) cannot exceed U���� , and is usually exactly U���� if there is a unique
solution. It was noted in [8] that 
 need not be as high as U���� . It suffices to be able
to eliminate enough monomials to express � as a linear combination of powers of% � (or any other variable). Thus the termination condition, which ensures reliable
resolution of the system, is 
 � U�������� � S ' 6 ��� � . This was first noted in [10].

3. Solve the last remaining variable (usually % � as above), and recursively solve for
the other variables as needed. The time cost of XL is hence � XL

��� � U ' � � , where� �! '#" � is the cost elimination on  variables and " equations.
Courtois et al often uses �%$'&�(*) � U �,+.- for � � U ' � � under Strassen’s Blocking Elimi-
nation Algorithm when the field is 143�� � � . We believe that an adjustment is needed.
The best all-around elimination algorithm in the literature is [3], where the versa-
tile D. J. Bernstein describes GGE, or the “Generalized Gaussian Elimination”, a
general way to compute what he termed a quasi-inverse to a non-square matrix. Via
GGE we can solve an equation (his algorithm “S”) or find a suitable basis of the
kernel of a matrix, essentially a reduced echelon form (algorithm “N”). If the cost
of multiplying two  /0 matrices is 1�2  �3 , and 4 �5$ 2 & � � 3 � ) � then the time
cost of GGE is given by

�769�! '8" � � �*2 � �:9;4 �
� � 3 �<� �

" 3 � �  9 2 "=3
� � 3 ��� �?> (1)

�A@ �! '8" � � �*2 � �A9;4 �
� � 3 �<� �

" 3 � �  � 9
) 2B4
$ " 3 � �  9 2 " 3

� � 3 ��� �
, (2)

With 2 � $'&�(*) we get �C6�� U ' � � � "),D$�( UC� �#+E- 9 "), " �*F'� �,+.- . This likely rep-
resents a better estimate than �%$'&G(G) � U �,+.- , because Strassen’s original algorithm
has a large probability of failure particularly in 143�� � � , and even the later Bunch-
Hopcroft ([2]) version can work only for square matrices.

Note: We need to decide on S before the algorithm is run, hence this study.

[8] assumed S0H , the minimum S needed for XL to work, to be not far removed
from what makes � I U , and hence obtained the heuristic of SJH�1 # &LK � , and [10]
repeated this estimate for 1 35� � � . Over 1 35� � � XL will work with most dimensions, but
for a large 6 it was found that S�H � � . for � � # ; and3 SMH � # � � �5� when
# � � �N� . [8] claimed that when # R � ��� , “it is likely” that S HPO K # because S0H
“drops abruptly when ��� # increases”, although [7] verified that for larger dimensions,
“ � � # may need to be yet higher”. So XL sometimes work less smoothly, which led
to FXL ([8]). We seek to understand the behavior of SJH (hence XL and variants) better.

3 The formula below may be off by one equation, i.e. the authors may have meant Q .



1.2 The XL’ Variant

XL’ operates like XL ([10]), except that we try to eliminate down to � equations that
involves only monomials in � of the variables, say % � '�,-,�, '/%�� , then solve the remaining
system by brute-force substitution. If U � is the number of degree R S monomials in �
variables, then we require U � 
 to be at most U � �N� instead of S . Hopefully we can
run with a smaller S , and 6 � is relatively small. The time complexity is then bounded
by � XL’

� �T� U ' � � 9 6 � U � S & � � � ���� , (3)

Note that we must test degree- S polynomials with � variables and up to � �	� NN 
 terms,
and there is a � &�6 probability for any polynomial to vanish on random inputs. We will
discuss the behavior of XL’ in the next section more accurately.

1.3 The XL2 Variant: New Equations from Old?

Let K �G be the set of monomials that when multiplied by % G will still be in K � K LONQP ,
and U � be their number. I.e. U � � C K �G C , where K �G � � � 8
� % G � 8 � K�� . If U I 
 ,
� �TU � 9 
 � U5I " , then we can try to generate more useful equations:

1. Starting from the equations � � � LONQP , we eliminate monomials not in K �� first. We
are then left with relations � � , which gives each monomial in K � K �� as a linear
combination of monomials in K � , plus � equations � � � with terms only in K �� .

2. Repeat for K � to get the equations � � and � �� (we should also have C � �� C � � ).
3. For each � � � � � , use � � to write every monomial in K��/K �� in the equation %&� � �T"

in terms of those in K � . Do the converse for each %>� � , � � � �� .
We get �'� new equations. [10], which proposed XL2 over 143�� � � only, suggests that
most of these �L� equations will be linearly independent, because they are somehow
built out of all the equations. It was also remarked that XL2 can be repeated as needed
for more equations and eventually a solution. The attacker can also run XL2 using more
variables, as in adding ��%�� � �� � , and so on.

1.4 Other Relatives of XL: FXL, XFL, XLF, and XSL

FXL and XFL: The “F” here means to “fix” ([8]). � variables are guessed at random
in the hope that the degree S�H needed for XL will decrease. After guessing at each
variable, XL is run and tested for a valid solution. In [7], it was proposed that the �
equations be generated and an elimination be run on them as far as it can go before
guessing at the variables. It is named improved FXL, but we think that XFL suits
better. For large � � ' # � these are mainly useful (cf. Sec. 3) for removing excess
solutions. To cut the operative S , we need � proportional to # (cf. [24]).

XLF: In [7] the authors proposed a variation, trying to use the Frobenius relations
% � � % to advantage when 6 � ��� , by considering ��% �G � , ��%�� G � , . . . , ��% ����� <G � as
new independent variables, replicating all � equations � times by repeatly squaring
them, and using the equivalence of identical monomials as extra equations.
The variant is called XLF, for “field” or “Frobenius equations”.



XSL: Not a true XL relative, this is a related linearization-based method designed to
work on overdefined systems of sparse quadratic equations that characterize cer-
tain block ciphers. [9] suggested that it may be possible to break AES using XSL
and thereby raised a storm of controversy. Occasionally we see amazingly low num-
bers given for this attack based on applying XSL to structural equations discovered
by Murphy and Robshaw ([19]) in AES, but in contrast to the general public, few
researchers appear to believe that AES has been broken. We mention XSL only
because its final stage or the “ U � -method” resembles XL2.

It was thought that FXL/XFL/XLF for small fields like 143�� � � do not appreciably in-
crease speed compared to original XL. But we refer you to [24] for an update.

2 Termination Behavior for XL – a Combinatorial Study

We discuss when XL can be expected to terminate using combinatorial technique. We
first prove an easy lemma about U in general. The combinatorial notation ������� will
denote “the coefficient of term � in the expansion of � ”. E.g. � % � � � � 9 %>� � � ( .
Lemma 1 (Number of Monomials up to a Given Degree).

U � U LONQP � ��� N � � �:9�� 9	�
� 9 ���-� 9�� � � � � .
� �
� � ��� N � � � ���

� � .
� �7��� � . � � (4)

Proof. Consider the product � .G�
 � � � 9 % G 9 % �G 9 ����� % � � �G � � � .G�
 � � � � � % �G � &)� �B� % G � � .
This generates all possible monomials, exactly once each. Set every % G be equal to � in
this expression, and clearly the coefficient of � N counts the monomials of degree exactly
S . As ��� H	9 � � � 9 � � � � 9 ���-� 9 � N � NN9 ����� �-� �	9�� 9�� � 9 ����� 9�� NN9 ����� � has as its
S -th degree coefficient ��� H	9 ���-� 9 � N � , we have derived U LONQP henceforth. ��
Lemma 1 unites as useful corollaries the special cases of large S (i.e. S I 6 ) where
U � � . � NN 
 as first given in [8], and 6:� � when U � F NG�
 H � . G 
 as in [10]. � LONQP �
� U LON	� � P and hence is given by �����AN�� � � � � � ��� � � . & � � �
� � . � � 
 .We want to know how many independent equations there are in the general case,
when dependencies abound among the equations. Denote by � ��� the equation � ����� �2" ,
and assume that � G � � � � F���� � � G � � % � % � 9 F�� I G � % � 9�� G ' then

�
��� �

� G � � � % � % � � G�� � 9 � � I G � � % � � G�� � 9�� G �E� G�� � � �
��� �

� G�� � � � % � % � � G � 9 � � I G�� � � % � � G � 9�� G�� �E� G � '

I.e. �E� G � � � appears as two different linear combinations of the equations. And there will
be dependencies among the dependencies, so it is not so obvious that we can compute
the number of free equations under reasonable conditions.
Remark: T. Moh’s critique on XL ([18]) did not clarify what conditions or “extraneous
dependencies” may be, stating only “from well-known facts in algebraic geometry”.
Mathematically, what Moh implied adds up to the � G ’s forming a semi-regular sequence
(see [1] for a complete definition compatible with Moh’s results). [11] is likely the most



rigorous of the independent derivations to date. The validity of many generating series
result on XL and ��� - ��� rests on the Maximum Rank Conjecture ([15]). This implies
that (among other things, cf. [11]) for a generic sequence � � G � in a infinite field, the sum
of the ideals � � ����� � � � G � � � C � � for ���	� is equal to � � ����� � F G � G ����� � G ����� � � � C � � .
We will assume that this holds in our slightly different case.

Theorem 2. The number of independent XL equations over 1435�76�� is bound by

U �<
�
 ��� N �
� �
� ���

� � �
� �
� ����
 . � � �
� �

� �
� � � 
  
 ' for all S � S �����J' (5)

where S ����� is the “degree of regularity” defined by

S ����� � ��� � � S � ��� N � � � � �
� � � . � � � � �
� � � . � � ��� � �  � � �
� � � � �  
 R " � , (6)

If there are no extra dependencies, the bound would be an equality. For this to happen,
no � G ����� � 2 can be non-trivially factorizable for any � G and 2 �$143���6 � , and the � G ’s
must contain enough degree-2 monomials so make �����Q� G � 8 � CED�C�9 � for any D and
any � . These conditions being met, the minimum S for XL to operate reliably is

SMH � ������� S � ��� N � �
� �
�

� � ��� �
� �
��
 . � � �
� �

� �
� � � 
  R������ � S ' 6 ��� ���:, (7)

Proof. Linear subspaces of ���! G� KML#" P (a.k.a. degree R S polynomials in % �('�,�,-,�'A%*. )
form a partially ordered set. In fact, the intersection and the algebraic sum ( $ 9&% ���' 9)( � '<� $ ' ( � % � ) fulfill requirements for the infimum and supremum operations
of a modular lattice with the dimension as the rank function, which in plainer language
means that for any subspaces $ and % , we have� ���*$ 9+� ���,% � � ��� � $ 9+% � 9+� ��� � $.-/% � , (8)

Eq. 8 implies (cf. previous section and [11]) a form of the Principle of Inclusion-
Exclusion ([21]), one which states that if (a) 0 G is the subspace of ���! *��K LONQP compris-
ing all polynomials of degree R S divisible by � G ; and (b) the � G form a semi-regular
sequence, then

� ��� ��
G�
 � 0 G � ��

� 
 � � � � �
�
� ��12 �

� � G <4365757583 G#9 � � � ��� � 0 G < - ���-� -:0 G#9 �<;= , (9)

Let 0 G be the set comprising all polynomials of degree R S that is divisible by � G .
So ���! *� � LONQP � F  G�
 � 0 G and 
 � � ���&���! *� � LONQP , and we need to compute � ���,0 G ,� ���&0 G -/0 � , and in general � ���,0 G < - ����� -/0 G 9 . We first find the dimension of 0 G ����! G� � � 8 � G � CED�C R S ��� � � � G ���! G� � KMLON	� � P � . We would have � ���&0 G � U LON	� � P
were there not � ����� �E� G ����� � of degree R S that are identically zero. Since � G is assumed
not to factor, � ����� �E� G ����� � vanishes iff � � ��� is divisible by � � G � � �A� � � � � � , hence we
have a 1-to-1 correspondence of 0 G with a quotient space of ���! G��KMLON	� � P by � � ����� ������ � R S � � '9� � � � �G ��� � C � � � � � � � �G ��� � ���! G��K LON	� � � P . Ergo,� ���,0 G � � ��� � G ���! *� � K LON	� � P � � U LON	� � P �>� ��� � � � � � �G � � � ���! G� � K LON	� � � P � � ,



So � ���&0 G would be U L N	� � P � U LON	� � � P except for that � � � � �G �N� � ���! *� � K LON	� � � P �Q�� � � � � �G � � ��� � � � � ����� � RTS��C� 6 � , is not in bijective correspondence with ���! *� � K LON	� � � P �
because we have to discount (or quotient out) all � such that � � � � �G ��� ��� ����� �2" . Under
the conditions the theorem, this means � G C � , so we must recompensate to get� ���&0 G � U LON	� � P � U LON	� � � P 9 � ��� �

� G ���! G� � K LON	� � � � � P � � ,
By the same reasoning, we must deduct U LON	� � � P , add U LON	� � � � � P , and so on, repeating
until we hit zero. If we let � � � �Q� � � �
� � � . � � � �A�
� � � . , then U LONQP � ��� N � � � � � and� ��� 0 G � ��� N	� � � �J� ��� N	� � � � �09 ��� N	� � � � � � � � ��� N	� � � � �09 ��� N	� � � � � � �J� 9 �N9 �����

� ��� N � � � � � �
� � � � � & � � �
� � � � 
 , (10)

Similarly, � ��� � � � � � �G ��� � ���! G�!K LON	� � � P � � ��� N � � � � � � � �
� � � � & � � �
� � � � 
 , (11)

What is � ���,0 G - 0 � � � ��� � � G � � ���! G��K LON	� � P 
 ? � G � � � � �G � � � � � � � � � � �� � � � �2" ,

so any � � � � �G � � ��� �(� � � 9 � � � � �� ��� ���J������� vanishes when multiplied by � G � � . Hence0 G - 0 � 1� ���! *�!K LON	� � P & � � � � � �G ��� � ���! *��K LON	� � � � � P 9 � � � � �� ��� � ���! G�!K LON	� � � � � P � ,
So � ��� 0 G - 0 � should be U LON	� � P minus the dimension of the subspace spanned by
multiples of � � G � � � � � � ��� � and � � � ����� � � � ��� � that are of degree RTS � ) , and� ���,0 G - 0 � � U LON	� � P �>� ��� � � � � � �G ��� � ���! *��K LON	� � � � � P �

� � ��� � � � � � �� ��� � ���! G��K LON	� � � � � P � 9+� ��� � � � � � �G � � � � � � � �� � � � ���! G��K LON	� � � P � '
again via Eq. 8, and � ��� � � � � � �G ��� � � � � � �� ��� � ���! G��K LON	� � � P � via the same reason-

ing is found to be UVLON	� � � P minus� ��� �
� G ���! G��K LON	� � � � � P � 9�� ��� �

� � ���! G��K LON	� � � � � P � � � ��� �
� G � � ���! G� K LON	� � � � � P � ,

I.e., if � ���,0 G - 0 � � ��� N � � � � � , then it is also equal to

��� N �
�
� � � � � � � � � � � � � � � �
� � �� ��� � � � 
 9 � � � � � � �<� � � � � � � � �
� � � �� �
� � � � 
 9 � � � � � � � � 
 
 '

which routinely simplifies to ��� N � � � � �Q� � ���&0 G - 0 � � ��� N � � � � � �
� � � � � � & � � �
� � � � � 
 ,The same Inclusion-Exclusion manuever assisted by mathematical induction shows that

� ��� � 0 G < - ���-� - 0 G#9 
 � ��� N �
� � � �
� � �
� �
� � � 
 � � > in fact, we have also (12)

� ��� �
�

� 
 �
� � � � �G � ��� � � ���! G� K LON	� � � � P � ��� N �

� � � � �
� � � � �
� �
� � � 


�
� , (13)



To see that this is so, we apply Eq. 8 two more times in succession on

� ��� � 0 G < - ����� - 0 G 9 
 � U LON	� �
�
P�P �>� ��� ��

� 
 �
�
� � � �G � ��� � ���! G��K LON	� � L � � � � � P�P ,

and we verify Eqs. 12 and 13 as consistent. Substituting Eq. 12, we finally get

U��;
 � ��� N � �
 �
� 
 H

� � � � � � � � 
 � � � �
� � � � � & � � �
� � � � � � ��� N �
�
�
�
� � � � �
� � �

� ��� � � 
  

� ��� N � � � �7��� � � . � � � � �
� � � . � �A�
� � �  � � ��� � � � �  
 , [=Eq. 5]

This cannot hold if the right hand side is non-positive, which also indicates that XL will
terminate. With a conjecture in commutative algebra, we can show that 
 will only be
smaller ([11]). ��
Corollary 3. When applying XL over the field 143�� � � at degree S � S ��� � , then

U �<
 � ��� N � � � � �
� � � � � ��9�� � . � �	9�� � � �  
 , (14)

XL will usually terminate if the RHS R " , with a unique solution if U��;
 � � .
Note: Eq. 14 is consistent with the partial results (i.e. for S R�� ) of [10].

Corollary 4. The degree of regularity (the maximum degree of in the elimination stage)
of the Gröbner algorithm � � &�� is no lower than XL’s degree of regularity over 143�� � � .
Proof. The degree of regularity for � � &�� ([13, 14]) is given (according to [1]):

S ����� ������ � ����� � S � ��� N � � � ��9�� � .
� �:9�� � �  
 R " � , (15)

S
� � � ���� � is the degree of the first non-positive coefficient in � �B9 � �. � � 9 � � � �  . Compare

this to Eq. 6, where our S XL
� �� ��� is the degree of the first non-positive coefficient in� � 9�� � . � � 9
� � � �  � � � � � � � , or the lowest degree up to which the coefficients sum up

non-positive in � ��9�� � . � ��9�� � � �  . We see that S ����� ������ R S XL
� ������ , Actually,

S XL
� ���� � � S �	�
� ������ 1 "),���"�" � 9�
 � � <� � ' (16)

via the same kind of asymptotic argument in [1]. Note that the operation of both � � &	�
and XL/2 are hinged on the sparse system solving stage, so we cannot conclude that� � &�� is faster even though it will have a smaller S�H . ��
Corollary 5. XL’ (cf. Sec. 1.2) applied over 1 3 � � � will operate when the U ��
TR
F NG�
 H � �N 
 � � (cf. Eq. 5). This reduces to Theorem 2 if � � � , as expected.

The large 6 case differs sufficiently from small 6 that all further XL discussions on
large fields probably belongs to another paper ([23]). But merely setting � � �H" we get:



Corollary 6 (Large 6 case). For large 6 and S � S ����� , we have

1. If 6 I S , then U��;
 � ��� N � � � � �
� �  � . � � � � �
� � �  
 
 " .
2. S ��� � (resp. S0H ) is the least S such that the RHS above R " (resp. R ����� � S ' 6 � � � ).
3. If �  �� � � 6 ' S H � I S 
 6 , then U �7
 � ��� N � � � �A�
� �  � . � � � � � # � � ��� � �
� � �  
 ,

Theorem 2 carries over nicely to higher-order equations with little change.

Theorem 7 (Non-Quadratic Equations). If ��� � � G ��� G instead of � , then

U �<
 � ��� N �
� � � �	� � � .
� � �
� � . � � 
  �

G�
 �
� � � �
����� �
� � �
� � � � � 
 ' for all S � S ����� , (17)

assuming no extra dependencies. Just as in Theorem 2, S ��� � is the smallest S for which
the left side of Eq. 17 is non-positive. In particular, if ��� �Q� G � � for all � , then

U��<
 � ��� N �
� �
� �
�

� � ��� �
� �
� 
 . � � �
� �

� ��� � � 
  
 ' for all S � S ����� , (18)

The proof carries so well, in fact, that we can see that if for example one of the � G is
a product of two factors of degree � and � � , then the corresponding factor in Eq. 17

becomes
�
� �

� � � � �
� � � � � � � � ��� � � � � � & � � �7�
� � � �-� �A�
� � � � � � � .

This theorem governs the behavior of XL when used for generalized or higher-order
correlation attacks such as in [5, 6], which is an application of Eq. 18 with � � F .

3 Looking at Earlier Claims and Results over �
	���
��
Enough theory! We turn to some practical assessment of XL over 143�� � � . An interesting
tidbit from Eqs. 14 and 16 is that when � � # (in fact whenever � & #�� � , a constant),
we do not have S H O # & K � as postulated by [10]; instead, Eq. 16 gives S H 1 � # ,
where �AO "), "�� for � � # . Let us back this up by plotting up to around 2000:

The SMH vs. � graph is a straight line with a linear correlation coefficient of around"),������	� . This precludes the ratio � � U & � at S � S H from being proximate to � . It
apparently decreases to " inversely to an increasing � , which will be proved in Prop. 8.

[4] claims to break HFE ([20]) challenge 1 ( # � � � ��" ). This is a “generalized
algebraic attack”, not via XL over 143�� � � . In [10] the authors were more cautious,
allowing that for � � # XL may turn out to be always somewhat slower than brute-
force search. Using Eq. 6, S�H � ��� for � � # ����" . The number of operations (by the
Bernstein formula) is O � ����� ( O�� ��� � substitutions), well above brute-force search.

All is not completely lost for XL. Solving sparse equations (cf. related texts, e.g.
[12]) is easier than in general. If there are  variables, " rows, but only � terms in each
row, an optimistic bound for a time cost is ��� � � "  	� � H 9 � ��� �  � . The constants �,H
and � � for the best case are usually around � " and � & � " respectively (and can be several
times more). This get us a complexity of around � - � substitutions, which is much better.

Let us justify somewhat the assessment of [5] of exponential running time for XL.

Proposition 8. For � � #�� � , XL runs in exponential time � 1 � � . � - � over 143�� � � .
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Proof. If � � � while N � 2�O "), "�� , then � � �  ���� � ? ���� � � �  
L <� � � P ? O

 � H H , and

U�1
� .�
� 
 H

� # � 
 1
� #
2�# 
 1 �

��� 2 � � �;2 �
�
2 � � � � �<2 � �9L � � � P � . '

using the optimistic (Lanczos) bound above, the time cost is at most polynomial times� 2 � � � � � �;2 � � � L � � � P 

.

. If 2�O "), "	� then ��� � � � 1 � �  � - �J� rational in � � , ��
This means that XL over 1435� � � will eventually be a little better than brute-force.
To show that in fact, decreasing # by fixing variables does not do much when 6 � � ,

we let � � # be � " , ��� , and � " , and plot three S H -vs.- � graphs using Eq. 14:
One is hard-pressed to see the difference in the three lines in Fig. 2(a)! For any fixed

� �4# , SMH & � approaches the same constant as � � � . Hence as a speed improvement
of XL, XFL/FXL are lacking. Obviously, they may have other useful traits.

Does things change much if we instead make � & # a fixed ratio? It seems not, see
Fig. 2(b): Although the slopes are different, S H & # still seems to approach a limit.

We are yet to understand all of the interesting behavior in XL, even asymptotically
for large � and # , because the coefficients of generating functions are hard enough to
estimate, let alone the sign-change point. We leave some for a later work ([24]).

4 XL2 (and XL’) over Smaller Fields

One problem with the methods of XL’ and XL2 is that they really require general and
not sparse matrix methods. However, Strassen-like methods can still be used. There-
fore, over 143�� � � , XL2 and XL’ may show good advantage, a small advantage or no ad-
vantage compared to running just XL with well-designed sparse-like algorithms (even
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Fig. 2. Behavior of � � in XL over 
���
���� for fixed Q � � and Q � �

though we are not sure how sparse matrices mesh with 1 35� � � ), depending on how well
everything can be optimized, and the exact comparison is still up in the air.

That said, it is likely possible to inject some extra insight. The authors of [10] seem
to consider XL’ inferior to XL2, so we aim to have some meaningful discussion about
XL2 for both 143 � � � (for which XL2 had originally been designed) and larger fields
where formerly only heuristics are available, viz. the following observations about XL2.
While we believe these to be correct (tested only for small dimensions), the discussions
above may not constitute mathematically rigorous proofs.

1. For large 6 , i.e. 6 IWS , every K �� is the same, in fact it is exactly K LON	� � P . So XL2
can simultanenously apply to any subset of one, two or many variables, because
� � � � � � ����� � �� ' � � � � � �� � ����� � � � , so by multiplying the � relations
� � by every variable % G we can maximize the return from XL2, saving a little time.

2. It is not necessarily true that if 

� � U ��U � � � � I " we will be able to run XL2.
The reason is that for any � , all the monomials in K
� K �� are at the top degree S .
Not all of the 
 independent equations have those terms.
Let us illustrate with an example. For large 6 , we take � � �'� , # �5$ , and S � F .
Now we have �'� / �%$ 9 � � � � � equations in XL, all of them independent and� � � �� 
 ���*) cubic monomials. It seems as if we should be able to run XL2. Not so,
because only $'$ of the equations actually have cubic terms.

3. We can expand on the preceding discussion a little to find when XL2 can be run for
larger 6 . There are � L NQP � � LON	� � P equations at the top degree. There are usually
� LONQP �N
 LONQP dependencies, i.e. linear relations between equations, but we need to
eliminate the 
 LON	� � P independent equations from those, so there are

� � LONQP �<� LON	� � P � � � � LONQP �<
 L NQP �<
 LON	� � P � � 
 LONQP � � � LON	� � P �<
 LON	� � P �



independent equations involving the top-degreed monomials, of which there are
U LONQP � U LON	� � P . So the condition we seek is: for 6 I S , XL2 operates if:

S � U L N P �<
 LONQP � U LON	� � P � � � LON	� � P �<
 LON	� � P � , (19)

The term between the parenthesis is our correction to [10] for the large 6 case. For
small 6 , the behavior is too complex for us to analyze it completely up to now.
However, we can do things case-by-case. E.g., we diagnose for the HFE challenge
( � �
��")' # ����")')6V� � ) case, that XL2 runs at S � �'� , saving only one degree.

4. For S 
 6 I � we can still run XL2. Here, K �� generically comprises all mono-
mials of degree less than S (i.e. every monomial in K LON	� � P ), plus all degree- S
monomials where the exponent of % � is exactly 6 ��� . So

U � � ��� N � � �A�
�
� � . � �

� �7��� � .
� � � � �
� � �

� �
� 9	� � � � 
 ,

5. Generally speaking, running XL2 on all independent variables % G is equivalent to
running XL at one degree higher, regardless of 6 . How so? Multiply each original
XL equation in � by %&� . This new set of equations (we write % � � for short) have
only monomials in % � K � � % � � � � � K � . Run an elimination on % � � to write
every monomial in % � K ��K in terms of % � K>- K �T% � K �� . These can be bijectively
mapped to the equations % � � � , and the remaining � equations with only %�� K ��
monomials correspond similarly to the equations %�� � � � . Further substitution with
relations of % � may simplify the equations but does not add new ones.
So, running XL2 with % G effectively includes equations % G � at one degree higher.
Running it with every variable will consequently raise the degree of XL by 1.

5 Conclusion

XL is clearly an intriguing idea, one that due to its simplicity has the potential to join
Gröbner bases methods ([13, 14]) as a premier equation-solving method. Especially
over 143�� � � , when the objections of [18] seem inapplicable, XL may and should do
well. On the other hand, its theory is still woefully incomplete. Even to implement a
solver for large � and # for the simple field of 1 3 � � � still poses a challenge, due to
its space requirements, so we do not know yet the final form of XL. In this, we are
reminded of the � �	�

bytes storage requirement that was suggested in [5]. Clearly some
breakthrough in the form of less unwieldy space management techniques needs to be
found, as witness the amount of sparse matrix algebra used by Faugère for � ��& � ([13]).

Our misgivings aside, we sincerely hoped to have shed some light on the subject.
Generating functions provide a relatively easy way to check if any particular combina-
tions of dimensions will be an operative case for any XL variant. Much remains to be
done. Even if behavior of coefficients in generating function can be asymptotically de-
termined, an actual optimization with an obvious space-time tradeoff will still be hard.

Still, we do hope to see a practically useful XL solver at some point.
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