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Abstract. We present a linkable spontaneously anonymous group (LSAG)
signature scheme (alternatively known as linkable ring signature scheme)
satisfying the following three properties. (1) Anonymity, or signer indis-
tinguishability. (2) Linkability: That two signatures by the same signer
can be linked. (3) Spontaneity: No group secret, therefore no group
manager or group secret sharing setup. We reduce the security of our
scheme to well-known problems under the random oracle model. Us-
ing the scheme, we construct a new efficient one-round e-voting system
which does not have a registration phase. We also present a new efficient
reduction of famous rewind simulation lemma which only relies on ele-
mentary probability theory. Threshold extensions of our scheme are also
presented.

30th April, 2004.

1 Introduction

We present a 1-out-of-n group signature scheme which satisfy three properties:
(1) Anonymity, or signer-indistinguishability. (2) Linkability: That two signa-
tures by the same signer can be linked. (3) Spontaneity: No group secret, and
thus no group manager or secret-sharing setup stage.

A 1-out-of-n group signature scheme allows any member of a group of n
signers to generate a signature such that any public verifier can determine if
the signature is generated by a group member. They are typically achieved by
generating a group secret and then share it out using centralized methods (with
group manager) or distributed methods (with a all-n-member secret sharing
setup stage) [13, 14, 8, 9].
? The work described in this paper was fully supported by a grant from CityU (Project

No. 7200005).



2 Joseph K. Liu, Victor K. Wei, and Duncan S. Wong

In Cramer, et al. [15] and Rivest, et al. [29] a new paradigm for achieving
1-out-of-n group signature is presented. Any single user/signer can conscript
the public keys of n − 1 other users to form a group of n members. Then a
signature can be generated by that single signer which can be publicly verified
to be signed by one of the n group members. But the group formation and the
signature generation are both spontaneous, meaning that no participation or
even knowledge of the other n − 1 users are needed. The 1-out-of-n signature
generated this way is also anonymous (signer indistinguishable). Furthermore
the anonymity is unconditional (information-theoretic) and exculpable (signer
anonymous even after subpoenaing all n secret keys and all communications
transcripts). Rivest, et al. [29] formalized this kind of signature to be ‘Ring
Signature’ because their construction of the signature forms a ring structure.
Some other works in the literature also call this kind of signature (with the
above properties) ‘Ring Signature’ although some of them may not have a ring
structure for their construction. In alternative terminology, we call this kind
of signature ‘Spontaneous Anonymous Group (SAG) Signature’ as they fulfill
Spontaneity, Anonymity and Group properties regardless of the construction
structure.

This paradigm of SAG signature schemes have found many applications
where maximum or near maximum privacy protection is needed such as whistle
blowing. It has also found applications in group signatures for ad hoc groups
where group secret setup and maintenance are too expensive due to frequent
membership joins and drops. This kind of structure raises new challenges for se-
curity issues as the instance of ad hoc groups are not dependent on any particular
network infrastructure. For example, a group of users who spontaneously decide
to communicate some sensitive data which do not involve any trusted third party
for participation while privacy need to be preserved at the same time. SAG sig-
natures are perfectly suited to such situation due to its spontaneity property.
Additional works on this topic includes [1, 6, 7, 33, 32, 24].

In this paper, we present linkable SAG (LSAG) signatures. Linkability means
two signatures by the same actual signer can be identified as such, but the signer
remains anonymous.

There are several applications of the new LSAG signatures. (1) Linked whistle-
blowing. SAG signature can be used to leak secret information [29]. However,
some media or journalists may not believe what the secret leaker tells and may
think that he is telling lies. They may only believe two or three different sources
with the same piece of information. In this case, SAG signature cannot be used
as one cannot distinguish whether two different SAG signatures are generated
by the same signer or not. Instead, LSAG should be used to allow people to
verify that two given signatures are in fact generated by two distinct signers.
(2) A new efficient e-voting system can be built upon LSAG signatures. This
new e-voting system has efficiency advantage in eliminating one of three typical
phases in e-voting systems. Typical e-voting systems have three major phases:
Registration, Voting, Vote Opening and Tallying Phases. Our e-voting eliminates
the Registration phase, and thus achieve great efficiency and user friendliness.
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The tradeoff is in increased bandwidth requirements. We are going to discuss
this in the later section of this paper.

1.1 Contributions

Our contributions consists of (1) the first linkable SAG (ring) signature. (2)
application of this new paradigm. (3) a new efficient and accessible reduction of
the forking lemma.

We add the property of linkability to ring signatures by presenting the first
linkable ring signature scheme. In alternative terminology, our scheme is the first
LSAG (Linkable Spontaneous Anonymous Group) signature scheme. Unlike the
original ring signature which is exculpable, our scheme is culpable. We stress the
distinction between this new feature and the feature of claimability. Claimability
allows a signer to come forth on his own volition and claim responsibility by
providing proof of having generated a given signature. This feature is easy to
achieve in any of the current ring signature schemes by embedding some secret
proof of knowledge. In general, culpability implies claimability but not vice versa.

Our scheme is proven existentially unforgeable against adaptive chosen-plain-
text, adaptive chosen-public-key attackers provided DL is hard, under the ran-
dom oracle model (ROM). Signer anonymity (resp. linkability) is reduced to
DDH (resp. DL) under ROM.

We present an application of the new LSAG signature paradigm: an e-voting
system without registration phase.

Additionally, we present a new efficient reduction of the forking lemma in
rewind simulation. The reduction efficiency is four times better than that of
heavy-row lemma [26] per rewind. Our reduction proof is the most accessible in
the literature, relying only on the moment inequality from elementary probability
theory.

We also present threshold versions of our LSAG signature.
(Organization) The rest of the paper is organized as follows. Some related work
is reviewed in Sec. 2. It is followed by the description of the security model of a
LSAG signature scheme in Sec. 3. Our LSAG signature scheme is then described
in Sec. 4 and the security analysis is given in Sec. 5. In Sec. 6, we construct an
e-voting system using our LSAG signature schemes. The paper is concluded in
Sec. 7.

2 Related Work

(SAG Signatures) The Spontaneous Anonymous Group (SAG) Signature was
presented by Cramer, et al. [15] and Rivest, et al. [29]. Later on, a separable and
ID-based version were given by Abe, et al. [1] and Zhang, et al. [33] respectively.
Threshold version have been proposed in [6, 7, 32, 24] as well. All of these schemes
are unlinkable.
(E-voting Schemes) The first e-voting scheme was proposed by Chaum in [11].
Since then, there were many different e-voting models proposed. In general, an
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e-voting system consists of a group of voters, a Registry to specify the group of
eligible voters, a Voting Center for collecting votes and a Tally to count votes.
A voting event can be divided into three phases : Registration Phase, Voting
Phase and Vote-Open Phase. In the Registration phase, the Registry may need
to interact with voters to define the group of eligible voters. In the Voting phase,
eligible voters send their votes to the Voting Center. In the Vote-Open phase,
the Tally counts the votes and publishes the result.

In Appendix A, we provide a more detailed description on the common se-
curity definitions of an e-voting scheme and the classification of current e-voting
schemes.

3 The Security Model

A (1-out-of-n) linkable spontaneous anonymous group (LSAG) signature scheme
is a triple of algorithms (G, S, V).

– (ŝ, P ) ← G(1k) is a probabilistic polynomial time algorithm which takes
security parameter k and outputs private key ŝ and public key P .

– σ ← S(1k, ŝ, L,m) is a probabilistic polynomial time algorithm which takes
as inputs security parameter k, private key ŝ, a list L of n public keys which
includes the one corresponding to ŝ and message m, produces a signature σ.

– 1/0← V(1k, L,m, σ) is a polynomial time algorithm which accepts as inputs
security parameter k, a list L of n public keys, a message m and a signature
σ, returns 1 or 0 for accept or reject, respectively. We require that for any
message m, any (ŝ, P ) generated by G(1k) and any L that includes P ,

V(1k, L,m,S(1k, ŝ, L,m)) = 1.

We omit the denotation of the security parameter as an input of the algorithms
in the rest of the paper.

3.1 Existential Unforgeability against Adaptive Chosen-Plaintext,
adaptive Chosen-Public-Key Attackers

A secure LSAG signature scheme should be able to thwart signature forgery
under certain security models. Under the model of adaptive chosen-plaintext
attack, existential unforgeability [21] means that given the public keys of all
group members but not any of the corresponding private keys, an adversary,
who can even adaptively obtain valid signatures for any messages that he wishes,
cannot forge a signature for any message m.

In this paper, we adopt the stronger model of adaptive chosen-plaintext at-
tack for defining the existential unforgeability of a LSAG signature scheme. The
following definition is similar to that of [1] which also captures the adaptive
chosen public-key attack.
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Definition 1 (Existential unforgeability against adaptive chosen plain-
text, adaptive chosen-public-key attackers). Let SO(L′,m′) be a signing
oracle that accepts as inputs any public key list L′ = {PK1, · · · , PKn′} and
any message m′, produces a signature σ′ such that V(L′,m′, σ′) = 1. An LSAG
signature scheme is existentially unforgeable (against adaptive chosen-
plaintext and adaptive chosen public-key attackers) if, for any PPT
(probabilistic polynomial-time) algorithm A with signing oracle SO such that
(L,m, σ) ← ASO(L), for a list L of n public keys chosen by A, its output sat-
isfies V(L,m, σ) = 1 only with negligible probability. Note that (L,m, σ) should
not correspond to any query-response pair to the signing oracle.

3.2 Signer Ambiguity

Signer ambiguity means that it is infeasible to identify which private key was
actually used in generating a given LSAG signature. Formally,

Definition 2 (Signer Ambiguity). An LSAG signature scheme is signer am-
biguous if for any PPT algorithm E, on inputs of any message m, any list L
of n public keys, any set of t private keys Dt = {ŝ1, · · · , ŝt} ⊂ L, and any valid
signature σ on L and m generated by user π, we have

Pr[E(m,L,Dt, σ)→ π]


∈ ( 1

n−t −
1

Q(k) ,
1
n−t + 1

Q(k) ),
if ŝπ /∈ Dt and 0 ≤ t < n− 1

> 1− 1
Q(k) , o.w.

for any polynomial Q(k).

Remark: Note that this implies culpability. That is, the actual signer is able to
prove to others that he is the actual signer by revealing his signing key.

The definition of signer ambiguity for LSAG signature scheme differs from
that of other SAG signature schemes such as [29, 1, 6, 32, 24] in two aspects:
(1) The former signer-ambiguity comes with culpability, and the later is signer-
ambiguous with exculpability because the latter achieves the probability of find-
ing out the actual signer to 1/n, independent of t and whether the private key of
the actual signer is included or not; (2) The signer-ambiguity is now reducible to
a hard problem (to DDHP as we shall see soon) for the former while the latter
case reduces to information-theoretic security.

3.3 Linkability

Two LSAG signatures with the same public key list L are linked if they are
generated using the same private key. Formally,

Definition 3 (Linkability). Let L = {P1, · · · , Pn} be a list of n public keys.
A LSAG signature scheme is linkable if there exists a PPT algorithm F1 which
outputs 1/0 with

Pr[F1(L,m1,m2, σ1, σ2) = 0 : π1 = π2] ≤ ε(k)
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and
Pr[F1(L,m1,m2, σ1, σ2) = 1 : π1 6= π2] ≤ ε(k)

for all sufficiently large k, any π1, π2 ∈ {1, · · · , n}, any messages m1,m2 and
any σ1 ← S(ŝπ1 , L,m1), σ2 ← S(ŝπ2 , L,m2). ε is some negligible function for
sufficiently large k.

The algorithm F1 outputs 1 if it thinks the two signatures are linked, that
is, are signed by the same group member. Otherwise, it outputs 0.

Remark: Note that linkability defined above requires that the list of public
keys L is fixed while there is no additional requirement on the messages of the
signatures. Any two LSAG signatures with different L cannot be linked.

4 A LSAG Signature Scheme

Let G = 〈g〉 be a group of prime order q such that the underlying discrete
logarithm problem is intractable. Let H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G
be some statistically independent cryptographic hash functions. For i = 1, · · · , n,
each user i has a distinct public key yi and a private key xi such that yi = gxi .
Let L = {y1, · · · , yn} be the list of n public keys.

4.1 Signature Generation

Given message m ∈ {0, 1}∗, list of public key L = {y1, · · · , yn}, private key
xπ corresponding to yπ 1 ≤ π ≤ n, the following algorithm generates a LSAG
signature.

1. Compute h = H2(L) and ỹ = hxπ .
2. Pick u ∈R Zq, and compute

cπ+1 = H1(L, ỹ, m, gu, hu).

3. For i = π+1, · · · , n, 1, · · · , π−1, pick si ∈R Zq and compute

ci+1 = H1(L, ỹ, m, gsiycii , h
si ỹci).

4. Compute sπ = u− xπcπ mod q.

The signature is σL(m) = (c1, s1, · · · , sn, ỹ).

Remarks: Other methods of generating h can be used, provided it is computable
by the public verifier and that it does not damage security. We shall see examples
in some of our applications.

4.2 Signature Verification

A public verifier checks a signature σL(m) = (c1, s1, · · · , sn, ỹ) on a message m
and a list of public keys L as follows.

1. Compute h = H2(L) and for i = 1, · · · , n, compute z′i = gsiycii , z′′i = hsi ỹci

and then ci+1 = H1(L, ỹ,m, z′i, z
′′
i ) if i 6= n.

2. Check whether c1
?= H1(L, ỹ,m, z′n, z

′′
n). If yes, accept. Otherwise, reject.
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4.3 Linkability and Culpability

For a fixed list of public keys L, given two signatures associating with L, namely
σ′L(m′) = (c′1, s

′
1, · · · , s′n, ỹ′) and σ′′L(m′′) = (c′′1 , s

′′
1 , · · · , s′′n, ỹ′′), where m′ and

m′′ are some messages, a public verifier after verifying the signatures to be
valid, checks if ỹ′ = ỹ′′. If the congruence holds, the verifier concludes that the
signatures are created by the same signer. Otherwise, the verifier concludes that
the signatures are generated by two different signers.

For a valid signature σL(m) = (c1, s1, · · · , sn, ỹ) on some message m and
some list of public keys L, an investigator subpoenas a private key xi from user
i. If xi is the private key of some yi ∈ L (that is, yi = gxi) and ỹ = H2(L)xi ,
then the investigator conducts that the authorship of the signature belongs to
user i.

4.4 Threshold Extension

It is trivial to extend our 1-out-of-n LSAG signature to t-out-of-n threshold
LSAG signature by using the linkable property. Each signer simply generates his
own 1-out-of-n LSAG signature and concatenate together to form the t-out-of-n
threshold LSAG signature. By linkability, verifier can ensure the signature is
generated by t distinct signers.

5 Security Analysis

In this section, we analyze the security of our proposed scheme with the as-
sumption that all the hash functions are distinct and behave like random oracles
[3].

5.1 Security of Our LSAG Signature Scheme

We give security theorems of our LSAG signature.

Theorem 1 (Existential Unforgeability). Our LSAG signature scheme is
existentially unforgeable against adaptive chosen-plaintext and adaptive chosen
public-key attackers provided the DLP (Discrete Logarithm Problem ) is hard,
under the random oracle model.

Corollary 1. Assume there exists a PPT algorithm A which makes at most qH
queries to random oracles H1 and H2 combined and at most qS queries to signing
oracle SO defined in Def. 1 such that

Pr[A(L)→ (m,σ) : V(L,m, σ) = 1] >
1

Q1(k)

for some polynomial Q1 and sufficiently large k. Then, there exists a PPT al-
gorithm which can solve the Discrete Logarithm Problem (DLP) with probability
at least ( 1

n(qH+nqS)Q1(k) )2 and expected running time no more than twice that of
A.
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Theorem 2 (Signer Ambiguity). Our LSAG signature is signer ambiguous
provided DDHP (Decisinal Diffie-Hellman Problem) is hard, in the random or-
acle model.

Theorem 3 (Linkability). Our LSAG signature is linkable provided DLP is
hard, in the random oracle model.

Proofs of the Theorems are in Appendices B, C, and D.

5.2 The ROS (Rewind-on-Success Lemma)

In the proof of the above theorems, we have used a new proof of the core lemma
in rewind simulation. This is the literature’s third such proofs, after the forking
lemma [28] and the heavy-row lemma [26]. We call it the ROS (Rewind-on-
Success) Lemma. Our proof is the most accessible of the three, relying on only
the moment inequality from elementary probability theory. And our proof has
the best simulation efficiency of the three. Details of the ROS Lemma will be
addressed in Appendix E.

6 A New E-voting System without Registration Phase

We present a new e-voting scheme without a registration phase. The scheme uses
LSAG signatures.

Most e-voting schemes that appeared after the paper by [20] consists of three
phases: Registration phase, Voting phase and Vote-Open phase. In the Registra-
tion phase, voters obtain untraceable blank ballots from one or more Registry.
The untraceability is often achieved by using blind signature techniques. In the
Voting phase, each voter casts its filled ballot, in encrypted/blinded form, to
one or more Voting Centers. Some e-voting schemes require that all cast ballots
(in blinded or encrypted form) be published so each voter can ensure his vote is
included. Then one or more independent tallies opens the votes using deblinding
parameters sent in by satisfied voters and compute the voting results.

Using LSAG signatures, we can construct a new e-voting system which con-
tains only two phases: the Voting phase and the Vote Opening phase. There is
no Registration phase. It is believed that the eliminating of one of three phases
will result in large efficiency improvement.

Infrastructure assumptions: We have in mind a voter population where
each voter has a published public key. There is a trustworthy list of all voters’
public keys that can be downloaded from a reliable repository. For example, the
list of all citizens’ public keys published by the national government. Or the
list of all voting members’ public keys published by a society or a board. For
the time being, we assume all voters have discrete log key pairs with the same
discrete log parameters p, q, and g. The list of all voters’ public keys is denoted
L.

To initiate a voting event: To initiate a voting event, some messages are
generated by reliable means. There are many centralized or distributed methods
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to do so. Then the messages are published. For simplicity, we consider a yes/no
referendum. In this case, two messages Myes and Mno are published.

Voting Phase: Each yes-voter send in a LSAG signature on message Myes

and public key list L. Each no-voter does same on message Mno.
Vote Opening Phase: It is a simple matter to count the yes-votes and the

no-votes.
If anyone votes twice (or more), whether both times in the same column or

otherwise, his votes will be linked and appropriate actions taken.

6.1 Discussions

The above represents the bare essence of an anonymous e-voting scheme based
on LSAG signatures. The most striking distinction between this scheme and
popular schemes in the literature is the lack of the Registration phase. Many
details are left out. Here we discuss some of them.

(Anonymous Channel and Bulletin Board) In order to ensure voter anonymity,
the send-in of LSAG signatures should be via anonymous channels. Furthermore,
We assume that once the LSAG signature is sent in to a voting center, it will
be published to a public bulletin and that public information cannot be altered
further.

(Multiple Voting Events) The above scheme works for one voting. If there are
future voting events, we will need to alter the value of h = H2(L) for each event.
This can be accomplished by several methods. For example, using a different H2

each event, or change to h = H2(L, eventlabel).

(Vote-and-Go) In comparison to most e-voting schemes in the literature, our
scheme has the vote-and-go feature. That is, the voters are not involved in the
Vote-Opening Phase.

(Receipt-freeness) A receipt-free e-voting system prevents a voter from claim-
ing the authorship of a particular vote. This property deters vote-buying. The
voter cannot provide evidence of compliance to vote buyers. Since the LSAG
signature scheme is claimable, the e-voting system above is not receipt-free. Our
systems can be modified to support receipt-freeness by using a tamper-resistant
randomizer [23]. A built-in randomizer is responsible for generating all the ran-
dom numbers for probabilistic functions carried out in the device. Users are only
allowed to enter their vote choices and their devices do the rest without further
intervention. This is a practical model and we omit the details due to the page
limitation.

7 Conclusions

In this paper, we present the first LSAG signature scheme which simultane-
ously achieves linkability, spontaneity, and anonymity. All these properties of
our scheme are proven secure under the random oracle model. Our scheme has
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many applications, especially where maximum or near maximum privacy pro-
tection, and impromptu linkup are desired or required.

An e-voting system based on our LSAG signature scheme is proposed. In the
system, there is no involvement of voters in the registration phase and the voting
phase is only one-round (that is, vote-and-go). The Tally is just a public bulletin
so that everyone can do the counting.

Additionally, we present a new proof of the core lemma in rewind simulation.
This is the literature’s third such proofs, after the forking lemma [28] and the
heavy-row lemma [26]. Our proof is the most accessible of the three, relying on
only the moment inequality from elementary probability theory. And our proof
has the best simulation efficiency of the three.

There are many interesting problems that are to be solved. For example, it
is interesting to design a LSAG signature scheme which still maintains uncondi-
tional anonymity. In addition, LSAG signature schemes may also be constructed
based on other hard problems such as factorization. To obtain more scalable
e-voting systems, much shorter and more efficient LSAG signature schemes are
to be devised.
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A Background on E-Voting Schemes

In this section, we provide an overview of the security requirements of an e-
voting scheme and specify the two major types of previously proposed e-voting
schemes.

A.1 Security Requirements

According to a popular definition of a secure e-voting scheme given by Fujioka
et al. in [20], there are seven requirements needed to fulfill: completeness, sound-
ness, privacy, unreusability (detecting double voting), eligibility, fairness and
verifiability. Completeness requires that all valid votes should be counted cor-
rectly. Soundness requires that all invalid votes should not be counted. Privacy
means that all votes should be kept secret until all votes have been collected
and are ready to count. Unreusability prevents any voter to vote twice or more.
Eligibility prevents unauthorized entities to vote. Fairness requires that noth-
ing can affect the result. Verifiability ensures that the voting result is publicly
verifiable.

Recent researches suggest some additional requirements. One is receipt-free
voting systems [5, 22]. Such a system prevents a voter from claiming the author-
ship of a particular vote. Another requirement is non-transferability. In most of
the e-voting systems, the voting right can be transferred because the authenti-
cation document is irrelevant to the voter. A non-transferable e-voting system
ensures the transfer of the voting right is equivalent to the transfer of all the
secret information owned by the voter. This requirement is considered in [10].

A.2 Classification: The Two Types

Previous e-voting systems can mainly be classified into two types [20]. In the first
type, each voter sends the ballot to a trusted third party, the Voting Center, in
an encrypted form. In the second type, each voter sends the ballot to the Voting
Center through an anonymous channel [11, 27].

Type 1 In the Voting phase, voters send their votes with their signatures to a
public bulletin which acts as the Voting Center. Votes are encrypted with
the public key of a trusted third party, say the Tally, using homomorphic
encryption schemes. The homomorphic encryption scheme allows the Tally
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to sum up the votes and obtain the final result without decrypting each
individual vote.
There are several advantages. First, double voting is prevented since voters
sign their encrypted votes which are publicly verifiable in the bulletin. Sec-
ond, no interaction with the voters is required for the Registry to define the
group of eligible voters. Hence the registration phase is simplified. Third,
the Tally outputs the vote result without decrypting each individual vote.
Hence the vote of each voters is protected from being known by others.
However, the system leaks information on who has voted and who has not.
In addition, the Tally needs to be trusted for protecting privacy. In order
to reduce the risk, secret sharing techniques [31] or threshold cryptosystems
[18] are suggested to use with this type of e-voting systems. Another draw-
back is that although homomorphic encryption protocols work efficiently for
“yes/no” type ballot, it becomes inefficient when it applies to 1-out-of-n type.
It is even less practical when there is a large election scale or a t-out-of-n
type of votes are conducted for t being close to n/2.
Examples of this type of e-voting systems are [4, 30, 16, 17, 22, 2].

Type 2 In Voting phase, a voter sends a vote to the Voting Center through an
anonymous channel which can be established easily in practice. The anony-
mous channel protects the identity of the voter. It is more practical for large
scale election since the communication and computation overheads are rea-
sonable even if the number of voters is large [20].
However, as the channel is anonymous, special mechanisms are needed to
prevent or detect double voting and to check the eligibility of a voter. Hence
interaction with voters is necessary in the Registration phase to have the
Registry dispatch some token or voting pass to each eligible voter. Blind
signature is usually used. Examples of this type are [12, 20, 25].

B Proof of Theorem 1 (Unforgeability)

Proof. We prove by rewind simulation, together with the classification technique.
Parameters p, q, g are fixed throughout this paper, and omitted from nota-

tions. Let L be a list of public keys of which each key is generated according
to the description in Sec. 4. Assume PPT adversary A, which makes at most
qH queries to H1 and H2 combined and at most qS queries to SO, can forge
(1,n)-LSAG signature with non-negligible probability, i.e.

Pr[A(L)→ (m,σ) : V(L,m, σ) = 1] >
1

Q1(k)

for some polynomial Q1, and qH and qS being no more than polynomially grow-
ing with respect to the security parameter k. Note SO is a signing oracle which
returns valid signatures, upon A’s query, other than the one A eventually pro-
duces. The independent random oracles H1 and H2 produces random outcomes,
except to maintain consistencies among duplicated queries. Note that SO also
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makes queries to H1 and H2, and consistencies between its queries and A’s
queries are maintained.

We construct a PPT simulator (i.e. the reduction master) M which calls
A and solves DLP of at least one of the public keys in L with non-negligible
probability. Denote a subset of L by L = {y1, · · · , yn}, and denote the forged
signature with respect to L by

σ = (c1, s1, · · · , sn, y0)

where it satisfies the Verification (Sec. 4.2) including the following n equations:

ci+1 = H1(L, y0,m, g
siycii , h

siyci0 ), for 1 ≤ i ≤ n− 1;
c1 = H1(L, y0,m, g

snycnn , h
snycn0 ).

The masterM will invokeA with constructed inputs, receive and process outputs
from A, and may invoke A for multiple times depending on A’s outputs from
previous invocations. In the random oracle model, M flips the coins for the
random oracles H1 and H2 and record queries to the oracles. Consider each
invocation of A to be recorded on a simulation transcript tape. Some transcripts
produce successful signature forgeries. Others do not.

The Signing Oracle: Given any message m, any sequence of public keys L =
(y1, · · · , yn), the signing oracle SO generates a signature. M simulates SO to
generate a signature without knowing any secret key but by back patching H as
follows:

Assume without loss of generality, H2(L) has been queried before andM has
simulated it by randomly picking r and returning H2(L) = gr. To simulate SO,
M randomly picks π ∈R {1, · · · , n}, and randomly picks c1, · · ·, cn, s1, · · ·, sn.
Compute ỹ = yrπ. Back patch to

H1(L, ỹ,m, gsiycii , g
rsiyrciπ ) = ci+1

for 1 ≤ i ≤ n with the short-hand notation that subscript n+ 1 means subscipt
1.

Remark: The signature returned by SO looks just like one actually signed
by signer π.

Let E be the event that each of the n queries corresponding to the n Ver-
ification queries have been included in the qH queries A made to the random
oracles, or in the queries made by the signing oracle on behalf of A in its qS
signing queries. In the event Ē, M needs to flip additional coins in order to
Verify A’s signature forgery. Then the probability of c1 satisfying the (final)
Verification equation is at most 1/(q − qH − nqS) because A can only guess the
outcomes of queries used in Verification that he has not made. Therefore

1
Q1(k)

< Pr[E]Pr[A forges|E] + Pr[Ē]Pr[A forges|Ē]

≤ Pr[E]Pr[A forges|E] + 1 · ( 1
q − qH − nqS

)
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and

Pr[E and A forges] >
1

Q1(k)
− (

1
q − qH − nqS

)

Hence the probability of A returning a forged signature and having already
queried the random oracles for all the n queries used in Verification is essentially
greater than 1/Q1(k) as 1

q−qH−nqS is negligibly small.
Therefore, in each A transcript which produced a valid signature, there exists

n queries to H1, denoted by Xi1 , · · ·, Xin , 1 ≤ i1 < · · · < in, such that they
match the n queries made in Verification. This happens with each transcript that
A successfully produces a valid signature, with negligible exceptions. Queries to
random oracles H1 and H2 made by the signing oracle SO when it responds to
A’s requests to sign have a negligible effect.

In a successful signature forgery σ by A, consider the set of all queries made
by A that were used (including duplicate queries) in Verification. Let Xi1 , · · ·,
Xin denote the first appearance of each of the queries used in Verification, i1 <
· · · < in. Let π be such that

Xin = H1(L, y0,m, g
sπ−1y

cπ−1
π−1 , h

sπ−1y
cπ−1
0 )

in Verification. We call π the gap of σ.
We call a successful forgery σ by A a (`, π)-forgery if i1 = `. I.e. the first

appearance of all Verification-related queries is the `-th query and the gap equals
π. Queries made by S to random oracles on behalf of A are counted. There exist
` and π, 1 ≤ ` ≤ qH , 1 ≤ π ≤ n, such that the probability A produces (`, π)-
forgery is no less than 1/(n(qH + nQS)Q1(k)).

In the following, M will do a rewind-simulation for each value of ` and π.
In the rewind-simulation for a given (`, π), M first invokes A to obtain its

output and its Turing transcript T .M computes the output and the transcript to
determine whether they form a successful (`, π)-forgery. If not, abort. Otherwise
continue. This can be done in at most polynomial time because M records
queries made by A to the random oracles. The transcript T is rewound to the
`-th query and given to A for a rewind-simulation to generate transcript T ′.
New coin flips independent of those in T are made for all queries subsequent to
the `-th query while maintaining consistencies with the prior queries. T and T ′
use the same code in A. The `-th query, common to T and T ′, is denoted

H1(L,m, y0, g
u, hv).

M knows gu and hv but not u or v at the time of the rewind. After A returns
the output from the rewind simulation, M proceeds to compute the DL of yπ.

Let H` denote the common prefix of T and T ′ whose length is exactly up to
the `-th query. Let

ε`,π(H`) =
∑

T :H` prefixes T ,T (`,π)-forgers
Pr[T ]/Pr[H`]

= Pr[T (`, π)-forges|H` prefixes T ]
= Pr[T ′(`, π)-forges|H` prefixes T ′]
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Note that

Pr[H`] =
∑

H` prefixes T
Pr[T ]

∑
`,π

∑
H

ε`,π(H) ≥ 1/Q1(k)

Pr[H` prefixes T ′] =
ε`,π(H`)Pr[H`]∑
H ε`,π(H)Pr[H]

Then

Pr[T ′ (`, π)-forges]

=
∑
H`

Pr[H` prefixes T ′]Pr[T ′ (`, π)-forges|H` prefixes T ′]

=
∑
H`

(
ε`,π(H`)Pr[H`]∑
H ε`,π(H)Pr[H]

) · ε`,π(H`)

=
〈ε`,π(H`)2〉
〈ε`,π(H`)〉

≥ 〈ε`,π(H`)〉

The last inequality is well-known in probability theory.
Remark: The above proves the technical lemma critical to the proof con-

cerning ROS (Rewind-on-Success) lemma. Details of the ROS lemma will be
addressed in Appendix E. It depends on the well-known moment inequality
〈χ2〉 ≥ 〈χ〉2 from probability theory. Alternatively, the heavy-row lemma [26]
or the forking lemma [28] can be used to prove a similar technical lemma for
our rewind simulation, albeit with inferior constant. The main difference is that
our rewinding is adaptive – it rewinds only on successful transcripts T . In the
traditional forking lemma or heavy-row lemma, T is indiscriminately rewound
whether it is a success or not.

The tape T and a rewind-simulation tape T ′ produce two (`, π)-forgery sig-
natures with

gu = gsπycππ = gsπ+xπcπ mod pπ, from T
hv = hsπycπ0 = hsπ+rπcπ mod p0, from T

gu = gs
′
πy

c′π
π = gs

′
π+xπc

′
π mod pπ, from T ′

hv = hs
′
πy

c′π
0 = hs

′
π+rπc

′
π mod p0, from T ′

where y0 = hrπ mod q0. Solve to obtain

xπ =
s′n − sn
cn − c′n

mod qπ and rπ =
s′n − sn
cn − c′n

mod p0 (1)
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The reduction master M solves for xπ based on recorded and computed cπ,
sπ, c̄π, s̄π as shown above. There exists (`, π) such that

〈ε`,π(H`)〉 ≥
1

n(qH + nqS)
1

Q1(k)

ThereforeM achieves a solution in at least one of its runs for all possible values of
(`, π), 1 ≤ ` ≤ qH +nqS , 1 ≤ π ≤ n, with the above probability. The complexity
of M is no more than n(qH + nqS) times that of A. The probability of success
of M is at least ( 1

n(qH+nqS)Q1(k) )2, still non-negligible. Desired contradiction.
Theorem 1 is proved.

Remark: The following improved simulator M can achieve complexity no
more than twice that ofA, and success probability at least 1/(n(qH+nqS)Q2

1(k)).
M invokes A to obtain a transcript T . If M confirms T is a successful (`, π)-
forgery then rewind to `-th query. Otherwise abort. an (`, π)-forgery with prob-
ability 〈ε`,π〉. The probability of M succeeding both in the first invocation and
the rewind simulation is∑

`,π

Pr[T ′ (`, π)-forges, T (`, π)-forges]

=
∑
`,π

Pr[T ′ (`, π)-forges|T (`, π)-forges]Pr[T (`, π)-forges]

=
∑
`,π

∑
H`

Pr[T ′ (`, π)-forges|H` prefixes T ′, T (`, π)-forges]

· Pr[T (`, π)-forges|H` prefixes T ] Pr[H`]

=
∑
`,π

∑
H`

ε`,π(H`)ε`,π(H`)Pr[H`]

=
∑
`,π

〈ε2`,π〉 ≥
1

n(qH + nqS)
(
∑
`,π

〈ε`,π〉)2 ≥ 1
n(qH + nqS)

1
Q2

1(k)

ut

C Proof of Theorem 2 (Signer-Ambiguity)

Proof. We first prove the case that 0 ≤ t < n − 1 where ŝπ /∈ Dt. The DL
parameters p, q, g are fixed throughout the rest of this paper, unless explicitly
stated otherwise.

Suppose there exists a PPT algorithm A, on inputs of a message m, a list L
of n public keys, a set of t private keys Dt = {ŝ1, · · · , ŝt} ⊂ L, 0 ≤ t < n − 1,
and a valid signature σ on L and m generated by user π, with probability

Pr[A(m,L,Dt, σ)→ π] >
1

n− t
+

1
Q(k)

for some polynomial Q(k) in the case of ŝπ /∈ Dt, then we construct below, a PPT
simulator M which can solve the Decisional Diffie-Hellman Problem (DDHP):
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Pr[M(α, β, γ) = b : random `0, `1, `2, `
′
0, `
′
1, `
′
2 ∈R {1, · · · , q − 1};

α0 = g`0 , β0 = g`1 , γ0 = g`2 , α1 = g`
′
0 , β1 = g`

′
1 , γ1 = g`

′
0`
′
1 ; b← {0, 1};

(α, β, γ) = (αb, βb, γb)] =
1
2

+
1

Q2(k)

for some polynomial Q2(k). For simplicity, we prove for the case t = 0. Other
value of t where 0 < t < n− 1 are similar and omitted.

We will prove by back patching to H2(L) = β.
To simulate,M computes a ”candidate signature” σ′ as follows before calling

A:

1. Randomly generate n, L, m. Generate π ∈R {1, · · · , n}. Randomly generate
` ∈R {1, · · · , q − 1} and let c′π = g`. Set yπ = α.

2. For i = π′, · · · , n, 1, · · · , π′ − 1, randomly generate si and compute

ci+1 = H1(L, γ,m, gsiycii , h
siγci)

querying the oracle H1 along the way.
3. Set the oracle outcome

H1(L, γ,m, gsπ−1y
cπ−1
π−1 , h

sπ−1γcπ−1) = cπ

4. σ′ = (c1, s1, · · · , sn, γ)

In the simulation, M calls A with H1, H2, L, m, and σ′. The oracles H1

and H2 will produce random outcomes upon A’s queries, except H2(L) = β
and H1(L, γ,m, gsiycii , h

siγci) are predetermined, for 1 ≤ i ≤ n, to maintain
consistencies on duplicated inputs with queries already made by M. By the
random oracle model, these pre-dispositions affect the randomness of H1 and
H2 only negligibly.

The adversary A returns an integer j, 1 ≤ j ≤ n, to M. By convention, A
returns 0 if it cannot identify a signer. The simulator M outputs 1 if j = π;
outputs 0 if j = 0; and outputs 1/0 with equal probability otherwise. Then

Pr[M(α, β, γ) = b|b = 1]
= Pr[M(α, β, γ) = b|b = 1,A(H1,H2, L,m, σ

′) = π]
+ Pr[M(α, β, γ) = b|b = 1,A(H1,H2, L,m, σ

′) 6= π, 6= 0]

≥ 1 · ( 1
n

+
1

Q(k)
) +

1
2

(1− 1
n
− 1
Q(k)

)

≥ 1
2

+
1

2n
+

1
2Q(k)

If b=0, then all signers are symmetric from A’s perspectives, and A can do no
better than random guessing. Averaging over M’s random choice of π, 1 ≤ π ≤
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n, we obtain

Pr[M(α, β, γ) = b|b = 0]
= Pr[M(α, β, γ) = b|b = 0,A(H1,H2, L,m, σ

′) = π]
+ Pr[M(α, β, γ) = b|b = 0,A(H1,H2, L,m, σ

′) 6= π]

≥ 0 · 1
n

+
1
2

(1− 1
n

)

Combining, we have Pr[M(α, β, γ) = b] ≥ 1
2 + 1

4Q(k) . Therefore M solves
DDHP with probability non-negligibly over 1/2. Desired contradiction. Signer-
ambiguity is proved.

Remark on the randomness of H1 and H2: H2(L) = β. But L and β are
random, therefore so is H2. The randomness is H1 is more complicated. The set
of all random oracles can be partitioned into q parts, according to the value of
i in

i = H1(L, γ,m, gsπ−1y
cπ−1
π−1 , h

sπ−1γcπ−1)− cπ

Averaging over all q parts, A has a non-negligibly probability above 1/n of
producing results. However, there could be pedagogical examples where A is a
PPT adversary over random H1 but not the kind of oracle randomized over q
partitions. Under the random oracle model, we assume the oracle H1 constructed
above by M behaves like random oracles, and PPT adversary A can compute
results given H1 in place of a true random oracle.

Now we prove for the case of t = n− 1 and ŝπ /∈ Dt.
The last component of a valid signature is ỹ = hŝπ . After trying hŝi for

ŝi ∈ Dt, 1 ≤ i ≤ t, one can conclude that user i, 1 ≤ i ≤ t, are not the actual
signer. As the signature is unforgeable, it must be generated by one of the n
users. Thus, the remaining user must be the actual signer.

For the case that ŝπ ∈ Dt, one can find out the fact that ỹ = hŝπ easily and
conclude that user π is the actual signer. ut

D Proof of Theorem 3 (Linkability)

Proof. If PPTA can produce two unlinkable signatures with non-negligible prob-
ability ε, then there exists a simulatorM which can compute the discrete log of
two public keys among y1, · · ·, yn. Since A is in possession of at most one secret
key, M will have solved a hard problem: the DLP.

The proof is by rewinding twice the simulation transcript at two suitable
forks. We follow notations in the Proof of Theorem 1. Consider that A pro-
duces a pair of signatures (σ, σ′) that are (`, π)-forgeries and (`′, π′)-forgeries,
respectively, with Turing transcript T . Denote σ = (c0, s1, · · · , sn, y0) and σ′ =
(c′0, s

′
1, · · · , s′n, y′0). Let y0 = hrπ and y′0 = hr

′
π denote the linkability tag in the

two signatures respectively, where rπ and r′π are yet to be determined.
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Suppose A always produces, with negligible exception, signature pairs with
π = π′. By rewinding T to just before the `-th query and re-simulate, A can
produce with non-negligible probability another signature pair (σ̃, σ̃′), which
are (`, π)-forgeries and (`′′, π′′)-forgeries respectively with transcript T ′. Denote
σ̃ = (c̃0, s̃1, · · · , s̃n, ỹ0) and and σ̃′ = (c̃′0, s̃

′
1, · · · , s̃′n, ỹ′0). By a derivation similar

to that which led to Equation (1), we find that

xπ = rπ =
s̃n − sn
cn − c̃n

mod q

where y0 = hrπ and yπ = gxπ mod p.
Then a second rewind simulation. By rewinding T to the `′-th query and

re-simulate, M obtains with non-negligible probability, another signature pair
(σ̂, σ̂′) where the second signature is an (`′, π)-forgery. A similar argument shows

r′π = x′π mod q

where y′0 = hr
′
π and yπ = gx

′
π mod p. Therefore, xπ = x′π = rπ = r′π mod q and

y0 = y′0. The two signatures σ and σ′ are linked. But then y0 = y′0 = hxπ mod p
and the two signatures are linked.

Therefore, A can generate with non-negligible probability signature pairs
with different gaps, i.e. π 6= π′. In particular, there exists (`, π, `′, π′) satisfying
1 ≤ π < π′ ≤ n, 1 ≤ `, `′ ≤ qH + nqS , such that A can generate, with non-
negligible probability, signatures pairs that are (`, π)-forgery and (`′, π′)-forgery
respectively. Then the rewind simulation technique can be used, twice, to show
that M can enslave A to compute the discrete log of yπ and yπ′ .

In the above, A is assumed to query the random oracles no more than qH
times and the signing oracle no more than qS times. Theorem 3 is proved. ut

E Details of the ROS (Rewind-on-Success) Lemma

In a typical rewind simulation [19, 28, 26], a reduction master M invokes an
adversarial algorithm A to obtain a certain output. The simulation proceeding,
including the coin flip sequences, are recorded on a simulation transcript tape T .
M rewinds T to a certain header position H, and redo the simulation from then
onward to obtain another transcript T ′. The two transcripts T and T ′ use the
same code A, have the same coin flips up to H, but have different coin flips after
H. After both simulations are done, M processes T and T ′ to obtain answers.

Assume the probability of success of A, which equals the probability of suc-
cess of T , is ε. The forking lemma [28], or the heavy-row lemma [26], can be
used to show that the probability of success of T ′, which equals the probability
of success of A with given transcript header H, is at least ε/4. The complexity
of M is essentially twice that of A, and the probability of success of M is at
least ε2/4.

In our proof, we used the technique based on ROS (Rewind-on-Success)
lemma. M invokes A once to obtain transcript T . Then M processes T to
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conditionally decide the next step. Then M rewinds T to an adaptively-chosen
header H and re-simulates A to obtain T ′. Finally, M processes T and T ′ to
obtain answers.

In the unforgeability proof below, we only use a very simple adaptive mech-
anism: rewind on success. Suppose there are qH queries of H1 and H2 altogether
in one simulation.M rewinds to the `-th query if produces a valid (`, π)-forgery.
Abort if T is a failure. Assume the probability of success of T is ε, then the prob-
ability of success of T ′, which equals the probability of success of A with a given
header H which was selected because it was the header of a successful T , is also
ε. Then the complexity of M is essentially twice that of A, and its probability
of success is essentially ε2. The proof of this probability bound depends on a
well-known moment inequality in probability theory: 〈X2〉 ≥ 〈X〉2.

The success rate bound in our adaptive rewind simulation is 4 times better
than that of the (indiscriminate) rewind simulation. More importantly, the suc-
cess rate of subsequent rewind simulations remain the same as the success rate
of the first simulation. This fact makes adaptive rewind simulation potentially
more powerful than (indiscriminate) rewind simulation in proof scenarios where
multiple layers of rewinding are nested.

In the following, we review proofs of the forking lemma for the (indiscrimi-
nate) rewind simulation and the new ROS (Rewind-on-Success) lemma for our
adaptive rewind simulation.

Lemma 1 (ROS (Rewind-on-Success) Lemma). Let M invokes A to ob-
tain transcript T . If T is successful, then M rewinds T to a header H and re-
simulates A to obtain transcript T ′. If Pr[T succeeds] = ε, then Pr[T ′ succeeds] =
ε.

Sketch of Proof: All probabilities are with respect to all coin flips. For each H is
a suitable domain of prefixes, let

εH =
∑

T :H prefixes T ,T succeeds

Pr[T ]

= Pr[T succeeds|H prefixes T ]
= Pr[T ′ succeeds|H prefixes T ′]

Then

Pr[T ′ succeeds] =
∑
H

Pr[H prefixes T ′]Pr[T ′ succeeds|H prefixes T ′]

=
∑
H

Pr[H]εH∑
H′ Pr[H ′]εH′

εH

=
〈ε2H〉
〈εH〉

≥ 〈εH〉 = ε

ut
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(Indiscriminate) Forking Lemma: Use notations as above. There exists a set of
prefixes H, such that

∑
H∈H εH ≥ ε/2 and Pr[T ′ succeeds|H prefixes T ′] ≥ ε/2

for each H ∈ H.
Sketch of Proof: Let H = {H1,H2,H3, · · ·} denote the set of all possible prefixes
arranged in a way such that

εH1 ≥ εH2 ≥ εH3 ≥ · · ·

Let i be the integer such that∑
j<i

Pr[Hj ] < ε/2 ≤
∑
j≤i

Pr[Hj ]

We assert that εHi ≥ ε/2 which proves the lemma. Suppose the opposite that
εHi < ε/2. Then∑

j

εHjPr[Hj ] =
∑
j<i

εHjPr[Hj ] +
∑
j≥i

εHjPr[Hj ]

=
∑
j<i

Pr[Hj ] + εHi
∑
j≥i

Pr[Hj ]

< ε/2 + εHi < ε/2 + ε/2

But the left-hand-side of the above equation equals ε, a desired contradiction.
ut


