Skip to main content

Unconditionally Secure Encryption Under Strong Attacks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3108))

Abstract

We develop a formalism for unconditionally secure single sender single receiver encryption under strong attacks. We consider coping with adversarial goals assuring secrecy and non–malleability, combined with adversarial power similar to those used in computationally secure systems: ciphertext only, chosen plaintext, and chosen ciphertext. We relate the various security notions described, and give bounds on the keysize for systems secure under the various security notions. In addition to defining systems with perfect secrecy, a la Shannon, we consider weaker ε–secure systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Desai, A., Pointcheveal, D., Rogaway, P.: Relations among notions of security for public–key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

    Google Scholar 

  2. Bellare, M., Sahai, A.: Non–malleable encryption: Equivalence between two notions, and an indistinguishability–based characterisation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 519. Springer, Heidelberg (1999)

    Google Scholar 

  3. Bellare, M., Desai, A., Pointcheveal, D., Rogaway, P.: Relations among notions of security for public–key encryption schemes. (2001)

    Google Scholar 

  4. Bierbrauer, J., Edel, Y.: Theory of perpendicular arrays. J. Combin. Designs 2(6), 375–406 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Desmedt, Y., Frankel, Y., Yung, M.: Multi–receiver/multi–sender network security: efficient authenticated multicast/feedback. In: IEEE Infocom 1992, pp. 2045–2054 (1992)

    Google Scholar 

  6. Dolev, D., Dwork, C., Naor, M.: Non–malleable cryptography. In: 23rd STOC ACM, pp. 542–552 (1991)

    Google Scholar 

  7. Dolev, D., Dwork, C., Naor, M.: Non–malleable cryptography. Technical Report CS95–27, Weizmann Institute of Science (1995)

    Google Scholar 

  8. Dolev, D., Dwork, C., Naor, M.: Non–malleable cryptography. SIAM J. Computing 30(2), 391–437 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hanaoka, G., Shikata, J., Hanaoka, Y., Imai, H.: Unconditionally secure anonymous encryption and group authentication. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 81–99. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic private–key encryption. In: 32nd STOC, pp. 245–254. ACM, New York (2000)

    Google Scholar 

  11. Mullin, R.C., Schellenberg, P.J., van Rees, G.H.J., Vanstone, S.A.: On the construction of perpendicular arrays. Utilitas Math. 18, 141–160 (1980)

    MATH  MathSciNet  Google Scholar 

  12. Naor, M., Yung, M.: Public–key cryptosystems provably secure against chosen– ciphertext attacks. In: 22nd STOC, pp. 427–437. ACM, New York (1990)

    Google Scholar 

  13. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  14. Shannon, C.E.: Communication theory of secrecy systems. The Bell System Technical Journal 28(4), 656–715 (1949)

    MATH  MathSciNet  Google Scholar 

  15. Simmons, G.J.: Authentication theory/coding theory. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  16. Stinson, D.R.: The combinatorics of authentication and secrecy codes. Journal of Cryptology 2, 23–49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McAven, L., Safavi-Naini, R., Yung, M. (2004). Unconditionally Secure Encryption Under Strong Attacks. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds) Information Security and Privacy. ACISP 2004. Lecture Notes in Computer Science, vol 3108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27800-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27800-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22379-5

  • Online ISBN: 978-3-540-27800-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics