N

HAL

open science

Multiseed Lossless Filtration

Gregory Kucherov, Laurent Noé, Mikhail A. Roytberg

» To cite this version:

Gregory Kucherov, Laurent Noé, Mikhail A. Roytberg. Multiseed Lossless Filtration.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2 (1), pp.51-61.

10.1109/TCBB.2005.12 . inria-00354810

HAL 1d: inria-00354810
https://inria.hal.science/inria-00354810
Submitted on 21 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00354810
https://hal.archives-ouvertes.fr

Multiseed lossless filtration

Gregory Kucherov, Laurent N Mikhail Roytberg

Abstract

We study a method of seed-based lossless filtration for appeade string matching and related
bioinformatics applications. The method is based on a dsanabus use of several spaced seeds
rather than a single seed as studied by Burkhardt and Kartkaﬂ]. We present algorithms to
compute several important parameters of seed familiegly dfweir combinatorial properties, and
describe several techniques to construct efficient familiée also report a large-scale application of

the proposed technique to the problem of oligonucleotidiscten for an EST sequence database.

Index Terms

filtration, string matching, gapped seed, gapped Q-granal lalignment, sequence similarity,

seed family, multiple spaced seeds, dynamic programmi8g, Bligonucleotide selection.

I. INTRODUCTION

F ILTERING is a widely-used technique in biosequence analyspplied to the approx-
imate string matching problenf][2], it can be summarized ke fihlowing two-stage
scheme: to find approximate occurrences (matches) of a gitrerg in a sequence (text),
one first quickly discards (filters out) those sequence regishere matches cannot occur,
and then checks out the remaining parts of the sequence fioalamatches. The filtering
is done according to small patterns of a specified form thatstarched string is assumed
to share, in the exact way, with its approximate occurrendesimilar filtration scheme is
used by heuristic local alignment algorithmp ([3], [4], .[$], to mention a few): they first

An extended abstract of this work has been presented t€timebinatorial Pattern Matchingonference (Istanbul, July
2004)

Gregory Kucherov and Laurent Noé are with the INRIA/LORBY5, rue du Jardin Botanique, B.P. 101, 54602 Villers-
les-Nancy, France, e-mail:Gr egory. Kucherov, Laurent. Noe] @oria.fr

Mikhail Roytberg is with the Institute of Mathematical Pteims in Biology, Pushchino, Moscow Region, Russia, e-mail:

royt berg@ npb. psn.ru

identify potential similarity regions that share some @ats and then actually check whether
those regions represent a significant similarity by conmaua corresponding alignment.

Two types of filtering should be distinguishedlesslessand lossy A lossless filtration
guarantees to deteatl sequence fragments under interest, while a lossy filtrahay miss
some of them, but still tries to detect a majority of them. &loglignment algorithms usually
use a lossy filtration. On the other hand, the lossless fdtrdtas been studied in the context
of approximate string matching problerf] [7]] [1]. In this papwe focus on the lossless
filtration.

In the case of lossy filtration, its efficiency is measuredwy parameters, usually called
selectivityand sensitivity The sensitivity measures the part of sequence fragmeritgesést
that are missed by the filter (false negatives), and the thatgéndicates what part of detected
candidate fragments don’t actually represent a solutiaiséfpositives). In the case of lossless
filtration, only the selectivity parameter makes sense arttierefore the main characteristic
of the filtration efficiency.

The choice of patterns that must be contained in the searsbgdence fragments is a
key ingredient of the filtration algorithnGapped seed&paced seeds, gappedrams) have
been recently shown to significantly improve the filtratidficeency over the “traditional”
technique of contiguous seeds. In the framework of losswafiitin for sequence alignment,
the use of designed gapped seeds has been introduced bywitheRRHUNTER method
[A] and then used by some other algorithms (e[$. [B], [6])[8h [B], spaced seeds have
been shown to improve indexing schemes for similarity deamcsequence databases. The
estimation of the sensitivity of spaced seeds (as well a®wiesextended seed models) has
been subject of several recent studies [10]] [1A]] [12]].[1E4], [LT]. In the framework of
lossless filtration for approximate pattern matching, gabpeeds were studied ifl [1] (see
also [7]) and have also been shown to increase the filtraficsiemcy considerably.

In this paper, we study an extension of the lossless siregéd-diltration technique[][1].
The extension is based on usisged familiesrather than individual seeds. The idea of
simultaneous use of multiple seeds for DNA local alignmeanswlready envisaged if] [4]
and applied in RrTERNHUNTER |l software [1§]. The problem of designing efficient seed

families has also been studied ih][17]. Ih][18], multiple dedave been applied to the

protein search. However, the issues analysed in the presget are quite different, due to
the proposed requirement for the search to be lossless.

The rest of the paper is organized as follows. After formafiyroducing the concept
of multiple seed filtering in Sectiof]ll, Section]lll is deedt to dynamic programming
algorithms to compute several important parameters of &eadies. In Sectiorf TV, we first
study several combinatorial properties of families of seeohd, in particular, seeds having a
periodic structure. These results are used to obtain a mdtroconstructing efficient seed
families. We also outline a heuristic genetic programmifgpathm for constructing seed
families. Finally, in Sectiofi V, we present several seedilfamwe computed, and we report
a large-scale experimental application of the method taatjwal problem of oligonucleotide

selection.

[I. MULTIPLE SEED FILTERING

A seed() (called alsospaced seedr gappedg-gram) is a list{p;, ps, ..., pq} Of positive
integers, callednatching positionssuch thaip; < p; < ... < pg. By convention, we always
assumep; = 0. The spanof a seed®, denoteds(Q), is the quantityp, + 1. The number
d of matching positions is called thgeight of the seed and denoted(()). Often we will
use a more visual representation of seeds, adoptdd in [1§peds of lengths(Q) over the
two-letter alphabef{#,- }, where# occurs at all matching positions andat all positions in
between. For example, seéd, 1,2, 4,6,9,10, 11} of weight8 and span2 is represented by
word ###- #- #- - ###. The character is called gjoker. Note that, unless otherwise stated,
the seed has the charactemt its first and last positions.

Intuitively, a seed specifies the set of patterns that, ifesthdoy two sequences, indicate
a possible similarity between them. Two sequences are ainfilthe Hamming distance
between them is smaller than a certain threshold. For exgnsglquence€ACTCGT and
CACACTT are similar within Hamming distance 2 and this similaritydistected by the seed
##- # at position 2. We are interested in seeds that detkctimilarities of a given length
with a given Hamming distance.

Formally, agapless similarityhereafter simplsimilarity) of two sequences of length is
a binary wordw € {0, 1}™ interpreted as a sequence of matchies) @nd mismatches){s)

of individual characters from the alphabet of input seqesn@ seed?) = {p1,ps,...,pa}

matchesa similarity w at positioni, 1 < i < m — p; + 1, iff for every j € [1..d], we have
wli + p;] = 1. In this case, we also say that se@dhas an occurrencén similarity w at
positioni. A seed(is said todetect a similarityw if) has at least one occurrenceun

Given a similarity lengthvn and a number of mismatcheés consider all similarities of
lengthm containingk 0's and (m — k) 1's. These similarities are calle@n, k)-similarities.

A seed(solves the detection problefm, k) (for short, the(m, k)-problem) iff all of (’Z)
(m, k)-similaritiesw are detected by). For example, one can check that sefedt#- - #- ##
solves the(15, 2)-problem.

Note that the weight of the seed is directly related to skkectivityof the corresponding
filtration procedure. A larger weight improves the seldatfjvas less similarities will pass
through the filter. On the other hand, a smaller weight reglute filtration efficiency.
Therefore, the goal is to solve &m, k)-problem by a seed with the largest possible weight.

Solving (m, k)-problems by a single seed has been studied by Burkhardt ankk&nen
[M. An extension we propose here is to usdamily of seedsinstead of a single seed,
to solve the(m, k)-problem. Formally, a finite family of seeds =< @; >, solves an
(m, k)-problemiff for any (m, k)-similarity w, there exists a see@, € I’ that detectsv.

Note that the seeds of the family are used in the compleme(dadisjunctive) fashion, i.e.

a similarity is detected if it is detected lmne of the seedF his differs from the conjunctive
approach of[[[7] where a similarity should be detected by teedssimultaneously

The following example motivates the use of multiple seeds[fl], it has been shown
that a seed solving thé25, 2)-problem has the maximal weight 12. The only such seed
(up to reversal) iSt##- #- - ###- #- - ###- #. However, the problem can be solved by the
family composed of the following two seeds of weight ¥####- ##- - - #####- ## and
H#- ##- - - HHHH- 717 - - - #HHH

Clearly, using these two seeds increases the selectivitheosearch, as only similarities
having 14 or more matching characters pass the filter vs 1Zmmaf characters in the
case of single seed. On uniform Bernoulli sequences, tlgsltsein the decrease of the
number of candidate similarities by the factor|dfi? /2, where A is the input alphabet. This
illustrates the advantage of the multiple seed approachliatvs to increase the selectivity

while preserving a lossless search. The price to pay forgdiis in selectivity is multiplying

the work on identifying the seed occurrences. In the casargklsequences, however, this is
largely compensated by the decrease in the number of falséves caused by the increase

of the seed weight.

[1l. COMPUTING PROPERTIES OF SEED FAMILIES

Burkhardt and Karkkainerj][1] proposed a dynamic programgnalgorithm to compute the
optimal thresholdof a given seed — the minimal number of its occurrences ovegraaisible
(m, k)-similarities. In this section, we describe an extensiothif algorithm for seed families
and, on the other hand, describe dynamic programming &hgasi for computing two other
important parameters of seed families that we will use interlaection.

Consider an(m, k)-problem and a family of seeds =< Q; >F ;. We need the following
notation.

o S = maz{s(Q)) ey, Smin = min{s(Qp)} ey,

for a binary wordw and a seed);, suff (Q;,w)=1 if @, matchesw at position(|w|—

s(@Q;)+1) (i.e. matches a suffix ofv), otherwisesuff (Q;, w)=0,

last(w) = 1 if the last character ofv is 1, otherwiselast(w) = 0,

zeros(w) is the number of)’'s in w.

A. Optimal threshold

Given an (m, k)-problem, a family of seed$” =< @, >, has theoptimal threshold
Tr(m, k) if every (m, k)-similarity has at least’»(m, k) occurrences of seeds &f and this
is the maximal number with this property. Note that overlagmccurrences of a seed as well
as occurrences of different seeds at the same position ardgezbseparately. For example,
the singleton family{###- ##} has threshold 2 for thél5, 2)-problem.

Clearly, F' solves an(m, k)-problem if and only ifl'z(m, k) > 0. If Tx(m, k) > 1, then one
can strengthen the detection criterion by requiring sévaad occurrences for a similarity
to be detected. This shows the importance of the optimatkimle parameter.

We now describe a dynamic programming algorithm for conmmuthe optimal threshold
Tr(m, k). For a binary wordw, consider the quantity»(m, k,w) defined as the minimal
number of occurrences of seeds Bfin all (m, k)-similarities which have the suffix.

By definition, Tr(m, k) = Tr(m,k,c). Assume that we precomputed valués(j, w) =

Tr(Smaz, J,w), for all 7 < max{k, Spmaz}, |W| = Smee- The algorithm is based on the

following recurrence relations ofg (i, j, w), for i > s,,4z-

(

Tr(j,w), if i = Smaz,
Tr(i—1,7—1,w[l.n—1]), if w[n]=0,
Tr (i, j,w[l.n]) = Tp(i—1,j, w[l.n—1)) + [Sor, suff(Qn,w)], if n==Smna,

min{7x(7, j, L.w), Tp(i, j, 0.w)}, if zeros(w) <7,

\ Tr(i, 5, 1w), if zeros(w)=7.

The first relation is an initial condition of the recurrendéhe second one is based on
the fact that if the last symbol ab is 0, then no seed can match a suffix of(as the last
position of a seed is always assumed to be a matching posifitee third relation reduces
the size of the problem by counting the number of suffix seemiwences. The fourth one
splits the counting into two cases, by considering two gmdestharacters occurring on the
left of w. If w already containg 0’s, then only1 can occur on the left ofv, as stated by
the last relation.

A dynamic programming implementation of the above recueeallows to compute
Tr(m,k,e) in a bottom-up fashion, starting from initial valugs(j,w) and applying the
above relations in the order in which they are given. A strdigyward dynamic programming
implementation require® (m-k-2(*me=+1)) time and space. However, the space complexity can
be immediately improved: if values ofare processed successively, then anly: - 2(sma=t1)
space is needed. Furthermore, for eaand j, it is not necessary to consider affma=+1
different stringsw, but only those which contain up tp 0's. The number of thosev is
9(7, Smaz) = izo (8”;““'). For eachi, j ranges from0 to k. Therefore, for each, we need
to store f(k, smaz) = Y50 9(js Smaz) = Y_5—p (*"7%) - (k — j + 1) values. This yields the
same space complexity as for computing the optimal threstusl one seed[]1].

The quantityZlL:1 suff(Q;,w) can be precomputed for all considered wotdsn time
O(L- g(k, Syaz)) @and spac@(g(k, s,qz)), Under the assumption that checking an individual
match is done in constant time. This leads to the overall tomaplexityO(m - f(k, Spmaz) +

L - g(k, smaz)) With the leading termm - f(k, s;ma.) (@S L is usually small compared to

and g(k, Smaz) 1S smaller thanf (k, smaz))-

B. Number of undetected similarities

We now describe a dynamic programming algorithm that coeganother characteristic
of a seed family, that will be used later in Sectjon TV-D. Cides an(m, k)-problem. Given a
seed familyF' =< Q; >, we are interested in the numb&f.(m, k) of (m, k)-similarities
that are not detected b. For a binary wordw, defineUr(m, k,w) to be the number of
undetectedm, k)-similarities that have the suffiw.

Similar to [I0], let X (F') be the set of binary words such that(i) |w| < 4., (ii) for
any Q; € F, suff (Q;, 1°me==I*ly) = 0, and (i) no proper suffix ofw satisfies(ii). Note that
word 0 belongs toX (F'), as the last position of every seed is a matching position.

The following recurrence relations allow to compute (i, j,w) for i < m, j < k, and

|w| S Smaz -

(j_i;»‘é‘;'(w))a if @ < Smin,
0, if 3l e [1..L], suff (Q,w) =1,
Up(i,j,w[l.n]) = SUp(i — 1,5 — last(w), w[l.n — 1)), if we X(F),

Ur(i,j,1.w) + Up(i, j, 0.w), if zeros(w) < 7,

\Up(i,j, 1.w), if zeros(w) = j.
The first condition says that if < s,,;,, then no word of length will be detected, hence the
binomial coefficient. The second condition is straightfard: The third relation follows from
the definition of X (/') and allows to reduce the size of the problem. The last two itiond
are similar to those from the previous section.

The setX(F) can be precomputed in tim@(L - g(k, Sma.)) and the worst-case time

complexity of the whole algorithm remai8(m - f(k, Smaz) + L - 9(k, Smaz))-

C. Contribution of a seed

Using a similar dynamic programming technique, one can ade)for a given seed of
the family, the number ofm, k)-similarities that are detected only by this seed and not by
the others. Together with the number of undetected sirtidarithis parameter will be used
later in Sectior{ TV-D.

Given an(m, k)-problem and a familyf’ =< Q; >[,, we defineSr(m, k,) to be the

number of (m, k)-similarities detected by the see&g exclusively (through one or several

occurrences), anflr(m, k, [, w) to be the number of those similarities ending with the suffix
w. A dynamic programming algorithm similar to the one desaxdilin the previous sections
can be applied to computg-(m, k, (). The recurrence is given below.

(0 if i <Sin O A suff (Quow)=1
Sp(i—1,j—1,,w[l.n—1]) if wn]=0
Sp(i—1,j,l,w[l.n—1]) if n=|Q; and suff (Q;,w) =0
Sp(i—1,j,l,w[l.n—1]) if n = s andsuff (Q,w) =1
+ Up(i—1,j,w[l.n—1]) andVl' # [, suff (Qp,w) =0,
Sr(i, 7,1, 1.w[l..n])

Sr(i,j,l,w[l..n]) =

+ Sk(i, 4,1, 0w[l..n]) if zeros(w) < j

(SF(i, 7,1, L.w[l..n]) if zeros(w) = j

The third and fourth relations play the principal role:()f does not match a suffix of
wl1..n], then we simply drop out the last letter.dfy matches a suffix ofv[1..n], but no other
seed does, then we count prefixes matche@pgxclusively (termSx(i—1, j, 1, w[l..n—1]))
together with prefixes matched by no seed at all (téfpti — 1, j, w[l..n — 1])). The latter
is computed by the algorithm of the previous section.

The complexity of computindr(m, k,) for a givenl is the same as the complexity of

dynamic programming algorithms from the previous sections

IV. SEED DESIGN

In the previous Section we showed how to compute variousilskéracteristics of a given
family of seeds. A much more difficult task is to find an effidciseed family that solves a
given (m, k)-problem. Note that there exists a trivial solution where fdmily consists of all
(’}j) position combinations, but this is in general unacceptableractice because of a huge
number of seeds. Our goal is to find families of reasonable @igpically, with the number
of seeds smaller than ten), with a good filtration efficiency.

In this section, we present several results that contribaitthis goal. In Sectiof TV-A,
we start with the case of single seed with a fixed number ofrpk@ad show, in particular,
that for one joker, there exists one best seed in a sense ithdiewdefined. We then show

in Section[IV-B that a solution for a larger problem can beadi#d from a smaller one

by a regular expansion operation. In Sectjon |V-C, we focnsseeds that have a periodic
structure and show how those seeds can be constructed agnitesome smaller seeds. We
then show a way to build efficient families of periodic seefimally, in Section[TV-ID, we

briefly describe a heuristic approach to constructing efficiseed families that we used in

the experimental part of this work presented in Secfipn V.

A. Single seeds with a fixed number of jokers

Assume that we fixed a class of seeds under interest (e.gs e€adjiven minimal weight).
One possible way to define the seed design problem is to fix gasity length m and find
a seed that solves then, k)-problem with the largest possible value/afA complementary
definition is to fixk and minimizem provided that thém, k)-problem is still solved. In this
section, we adopt the second definition and present an dpsiohation for one particular
case.

For a seed? and a number of mismatchés define thek-critical length for) as the
minimal valuem such that) solves the(m, k)-problem. For a class of seedsand a value
k, a seed ig-optimal inC if Q has the minimak-critical length among all seeds 6t

One interesting class of seedsis obtained by putting an upper bound on the possible
number of jokers in the seed, i.e. on the numpgr)) — w(Q)). We have found a general
solution of the seed design problem for the clés8:) consisting of seeds of weightwith
only one joker, i.e. seedg? - #".

Consider first the case of one mismatch, k.e= 1. A 1-optimal seed fron@, (d) is#* - #"
with » = |d/2]. To see this, consider an arbitrary se@d= #”- #7, p + ¢ = d, and assume
by symmetry thap > ¢. Observe that the longegtn, 1)-similarity that is not detected bg
is 1771017 of length (2p + ¢). Therefore, we have to minimiz& + ¢ = d + p, and since
p > [d/2], the minimum is reached fqr = [d/2], ¢ = |d/2].

However, fork > 2, an optimal seed has an asymmetric structure describecligltowing
theorem.

Theorem 1:Let n be an integer and = [d/3] ([x] is the closest integer to). For every
k> 2, seedQ(d) = #47"- #" is k-optimal among the seeds 6f(d).

Proof: Again, consider a see@ = #"- #9, p+ ¢ = d, and assume that > ¢. Consider

the longest wordS(k) from (1*0)¥1*, k > 1, which is not detected bg) and letL(k) is the

10

length of S(k). By the above remark$(1) = 17-1017*% and L(1) = 2p + q.

It is easily seen that for every, S(k) starts either withi?=10, or with 177901¢-10. Define
L'(k) to be the maximal length of a word frof*0)*1* that is not detected bg) and starts
with 19710. Since prefix19-10 implies no additional constraint on the rest of the word, we
have L' (k) = ¢+ L(k — 1). Observe thaf/(1) = p + 2¢ (word 177'017*%). To summarize,

we have the following recurrences fér> 2:

L'(k) = q+L{k—1), (1)
L(k) = max{p+L(k—1),p+q+1+L'(k-1)} (2)
with initial conditionsL'(1) = p +2¢, L(1) = 2p +q.
Two cases should be distinguishedpl® 2¢+ 1, then the straightforward induction shows

that the first term in[{2) is always greater, and we have
L(k) = (k+1)p +q, (3)
and the corresponding longest word is
S(k) = (1P~ 'o)k1rte, (4)
If ¢ <p<2¢+ 1, then by induction, we obtain

1 k ¢ if k=20,
L(k) = +1Dp+(k+1)g+ i 2)

(L+2)p+kqg+ 1t if k=20+1,
and

(1Pta019-10) 1P +a if k=2,
S(k) = (6)
1P-10(17+t9019710) 1Pt if k=20 + 1.

By definition of L(k), seed#”- #¢ detects any word froni1*0)*1* of length (L(k) + 1)
or more, and this is the tight bound. Therefore, we have to findwhich minimize L(k).
Recall thatp + ¢ = d, and observe that fgr > 2¢ + 1, L(k) (defined by|[(3)) is increasing on
p, while for p < 2¢+ 1, L(k) (defined by [(B)) is decreasing gn Therefore, both functions
reach its minimum whep = 2¢ + 1. Therefore, ifd = 1 (mod 3), we obtaing = |d/3] and

p=d—q.If d=0 (mod 3), a routine computation shows that the minimum is reached at

11

q=4d/3,p=2d/3,and ifd =2 (mod 3), the minimum is reached at= [d/3|, p = d —q.
Putting the three cases together resultg i [d/3], p = d — q. [|
To illustrate Theorenf]1, seed###- ## is optimal among all seeds of weightwith
one joker. This means that this seed solves (the2)-problem for allm > 16 and this
is the smallest possible bound over all seeds of this classila8ly, this seed solves the

(m, 3)-problem for allm > 20, which is the best possible bound, etc.

B. Regular expansion and contraction of seeds

We now show that seeds solving larger problems can be obt&iom seeds solving smaller
problems, and vice versa, using regular expansion andaegahtraction operations.

Given a seed) , its i-regular expansion ®) is obtained by multiplying each matching
position by:. This is equivalent to inserting — 1 jokers between every two successive
positions along the seed. For exampleQif= {0,2,3,5} (or #- ##- #), then the2-regular
expansion of) is 2® Q) = {0,4,6,10} (or #- - - #- #- - - #). Given a familyF’, its ;-regular
expansion @ F' is the family obtained by applying theregular expansion on each seed of
F.

Lemma 1:If a family F' solves an(m, k)-problem, then théim, (i + 1)k — 1)-problem is
solved both by familyF” and by itsi-regular expansiot; = i ® F.

Proof: Consider an(im, (i + 1)k — 1)-similarity w. By the pigeon hole principle, it
contains at least one substring of lengthwith £ mismatches or less, and therefdresolves
the (im, (i + 1)k — 1)-problem. On the other hand, considedisjoint subsequences af
each one consisting of. positions equal modula. Again, by the pigeon hole principle, at
least one of them contairksmismatches or less, and therefore the, (i + 1)k — 1)-problem
is solved by; ® F. [|

The following lemma is the inverse of Lemnjf 1, it states thiateleds solving a bigger
problem have a regular structure, then a solution for a @mploblem can be obtained by
the regular contraction operation, inverse to the regutparsion.

Lemma 2:If a family F; = i ® F' solves an(im, k)-problem, thenF' solves both the
(¢m, k)-problem and thém, |k/i])-problem.

Proof: One can even show that' solves the(im, k)-problem with the additional

restriction for F' to match inside one of the position intervals.m|, [m + 1..2m], ..., [(i —

12

1)m+ 1..sm]. This is done by using the bijective mapping from Lemtha 1egian(im, k)-
similarity w, consider: disjoint subsequences; (0 < j < ¢ — 1) of w obtained by picking
m positions equal tg modulo:, and then consider the concatenation= w;ws . . . w;_ wy.

For every (im, k)-similarity «’, its inverse imagev is detected byF;, and thereforeF'
detectsw’ at one of the interval§l..m], [m +1..2m],...,[(i — 1)m+ 1..im]. Futhermore, for
any (m, | k/i])-similarity v, considerw’ = v and its inverse image. As v’ is detected by
F;, v is detected byF'. [|

Example 1:To illustrate the two lemmas above, we give the followingrapée pointed out
in [[]. The following two seeds are the only seeds of weighthat solve th&50, 5)-problem:
H-H-H---H----- H-H#-H---H----- #- #- #- - - # and###- #- - ###- #- - ###- #. The
first one is the2-regular expansion of the second. The second one is the eaty af weight
12 that solves the€25, 2)-problem.

The regular expansion allows, in some cases, to obtain aneeffisolution for a larger
problem by reducing it to a smaller problem for which an ogtiror a near-optimal solution

is known.

C. Periodic seeds

In this section, we study seeds with a periodic structuré ¢ha be obtained by iterating
a smaller seed. Such seeds often turn out to be among maximailjhted seeds solving a
given (m, k)-problem. Interestingly, this contrasts with the lossynfeavork where optimal
seeds usually have a “random” irregular structure.

Consider two seed®;,(), represented as words ové# - }. In this section, we lift the
assumption that a seed must start and end with a matchintignodVe denotd@,,Q,]’ the
seed defined ag),Q,) Q.. For example[###- # .- - |> =##t#- #- - ##H#- #- - #H#H#- #.

We also need a modification of thie:, k)-problem, whergm, k)-similarities are consid-
ered modulo a cyclic permutation. We say that a seed famsyplves ecyclic (m, k)-problem
if for every (m, k)-similarity w, F' detects one of cyclic permutations of Trivially, if F
solves an(m, k)-problem, it also solves the cyclign, k)-problem. To distinguish from a
cyclic problem, we call sometimes dm, k)-problem alinear problem.

We first restrict ourselves to the single-seed case. Thewoilly lemma demonstrates

that iterating smaller seeds solving a cyclic problem afide obtain a solution for bigger

13

problems, for the same number of mismatches.

Lemma 3:1If a seed(solves acyclic (m, k)-problem, then for every > 0, the seed
Qi = [Q,—"*@)]" solves the lineam - (i + 1) + s(Q) — 1, k)-problem. Ifi # 0, the
inverse holds too.

Proof: = Consider an(m - (i + 1) + s(Q) — 1, k)-similarity . Transformu into a
similarity ' for the cyclic (m, k)-problem as follows. For each mismatch positioof «,
set(at position(/ mod m) in «’. The other positions of’ are set tol. Clearly, there are
at mostk 0’s in u. As) solves the(m, k)-cyclic problem, we can find at least one position
j, 1 <7 < m, such that)) detectsu’ cyclicly.

We show now that); matches at position of « (which is a valid position ag < j <m
and s(Q;) = im + s(Q)). As the positions ofl in u are projected modula: to matching
positions ofQ, then there is n® under any matching element &f;, and thus); detectsu.

< Consider a see@); = [Q, —™*@)]* solving the(m - (i + 1) + s(Q) — 1, k)-problem.
As i > 0, consider(m - (i+ 1)+ s(Q) — 1, k)-similarities having all their mismatches located
inside the intervalm, 2m — 1]. For each such similarity, there exists a positjon < j < m,
such that(); detects it. Note that the span &f; is at leastm + s(Q), which implies that
there is either an entire occurrence @finside the windowm, 2m — 1], or a prefix of@
matching a suffix of the window and the complementary suffixofnatching a prefix of
the window. This implies thaf) solves the cyclidm, k)-problem. [|

Example 2: Observe that the sed#it#- # solves the cycli¢7, 2)-problem. From Lemm§ 3,
this implies that for every > 0, the (11 + 71, 2)-problem is solved by the seé#i##- #, - - |
of spanb + 7i. Moreover, fori = 1, 2, 3, this seed is optimal (maximally weighted) over all
seeds solving the problem.

By a similar argument based on Lemifja 3, the periodic Sg&d##- ##,- - - |* solves
the (18 + 114, 2)-problem. Note that its weight grows q7§m compared to‘%m for the seed
from the previous paragraph. However, when— oo, this is not an asymptotically optimal
bound, as we will see later.

The (18 + 114, 3)-problem is solved by the seddé##- #- - #,- - -)', as seedt##- #- - #
solves the cyclic(11, 3)-problem. Fori = 1,2, the former is a maximally weighted seed

among all solving thé18 + 114, 3)-problem.

14

One question raised by these examples is whether iteratimg seed could provide an
asymptotically optimal solution, i.e. a seed of maximalmpyotic weight. The following
theorem establishes a tight asymptotic bound on the weigahmptimal seed, for a fixed
number of mismatches. It gives a negative answer to thistipmesas it shows that the
maximal weight grows faster than any linear fraction of thmilarity size.

Theorem 2:Consider a constant. Let w(m) be the maximal weight of a seed solving
the cyclic (m, k)-problem. Thenm — w(m)) = O(m "=).

Proof: Note first that all seeds solving cyclic (a, k)-problem can be considered as
seeds of spam. The number of jokers in any se€glis thenn = m — w(Q). The theorem
states that the minimal number of jokers of a seed solving(ihek)-problem is©(m "+)
for every fixedk.

Lower boundConsider a cyclig(m, k)-problem. The numbeD(m, k) of distinct cyclic
(m, k)-similarities satisfies

(&) < D(m, k), (7)

as every linearm, k)-similarity has at mostn cyclicly equivalent ones. Consider a seed
Q). Let n be the number of jokers iy and Jg(m, k) the number of distinct cycli¢m, k)-
similarities detected by). Observe that/p(m, k) < (}) and if Q solves the cycliqm, k)-

problem, then

D(m, k) = Jo(m, k) < (Z) ®)

) (Z) ©)

k-1

Using the Stirling formula, this gives(k) = Q(m +).

From (T) and [[8), we have

Upper boundTo prove the upper bound, we construct a séethat has no more then
k-m's joker positions and solves the cyclig:, k)-problem.

We start with the seed), of spanm with all matching positions, and introduce jokers
into it in k£ steps. After step, the obtained seed is denotéd, and(@Q = Q.

Let B = (mﬂ. (), is obtained by introducing int@, individual jokers with periodicityB
by placing jokers at positions B+1,2B+1,.... At step 2, we introduce intQ; contiguous
intervals of jokers of length3 with periodicity B2, such that jokers are placed at positions

[1...B],[B*+1...B*+ B],[2B*+1...2B>+ B],....

15

step1l [N TN TN TN N BN Y BN B
> 3

11 . 3

Co i . :
S B : :

: : 3

stepi [I TN
— 3

H i-1 0 .]

'B . :

3 m A R

stepk [
: ‘ :

: k-1 : ‘

3 B 3

Q ##-##----##-##

Fig. 1
CONSTRUCTION OF SEEDS$); FROM THE PROOF OFTHEOREME. JOKERS ARE REPRESENTED IN WHITE AND

MATCHING POSITIONS IN BLACK.

In general, at step (i < k), we introduce inta); intervals of B*~! jokers with periodicity
B' at positions[1... B! [B'+1...B"+ B"!|,... (see Figurd]1).

Note thatQ); is periodic with periodicity3‘. Note also that at each stepwe introduce at
most |m!~# | intervals of B! jokers. Moreover, due to overlaps with already added jokers
each interval add¢éB — 1)""! new jokers.

This implies that the total number of jokers added at stispat mostm!~# - (B —1)i~! <
ml=t . m# =D = ™. Thus, the total number of jokers i@ is less thank - m"%.

By induction oni, we prove that for anym, i)-similarity u (i < k),); detectsu cyclicly,
that is there is a cyclic shift of); such that al; mismatches of. are covered with jokers
introduced at steps, . . ., .

For i = 1, the statement is obvious, as we can always cover the singdmatch by
shifting @; by at most(B — 1) positions. Assuming that the statement holds (for 1),
we show now that it holds foi too. Consider ar{m, i)-similarity «. Select one mismatch
of w. By induction hypothesis, the othér— 1) mismatches can be covered gy ;. Since
Q;_1 has periodB*~! and @, differs from Q,;_, by having at least one contiguous interval
of Bi~! jokers, we can always shi); by j - B! positions such that the selected mismatch

falls into this interval. This shows thdp; detectsu. We conclude that) solves the cyclic

16

(m, i)-problem. u

Using Theorenf]2, we obtain the following bound on the numigokers for thelinear
(m, k)-problem.

Lemma 4:Consider a constarit. Let w(m) be the maximal weight of a seed solving the
linear (m, k)-problem. Then'm — w(m)) = @(mk%l).

Proof: To prove the upper bound, we construct a séethat solves the lineam, k)-
problem and satisfies the asymptotic bound. Consider gome: that will be defined later,
and let P be a seed that solves the cyclit k)-problem. Without loss of generality, we
assumes(P) = 1.

For a real numbee > 1, define P¢ to be the maximally weighted seed of span at nibst
of the form P’ - P-.- P - P”, where P’ and P” are respectively a suffix and a prefix 6f
Due to the condition of maximal weight;(P¢) > e - w(P).

We now set) = P°¢ for some reak to be defined. Observe thatdf- [< m — [, then(@

l

solves the lineafm, k)-problem. Therefore, we set= ™.

From the proof of Theorerf] 2, we have- w(P) < k- 1"+ . We then have

w(Q):e-w(P)zT‘.(z—k-z%). (10)
If we set
= m%, (11)
we obtain
m—w(Q) < (k+ 1)mFT — kmie (12)
and ask is constant,
m—w(Q) = O(mkiﬂ) (13)

The lower bound is obtained similarly to Theordin 2. Ii¢tbe a seed solving a linear

(m, k)-problem, and lek = m — w(Q). From simple combinatorial considerations, we have

(7:) < (Z) (m—5(Q)) < (Z) . (14)

which impliesn = Q(mk%) for constantk. u

The following simple lemma is also useful for constructirfficeent seeds.

17

Lemma 5: Assume that a family’ solves ar(m, k)-problem. LetF” be the family obtained
from F' by cutting out/ characters from the left andcharacters from the right of each seed
of F'. Then F’ solves the(m — r — [, k)-problem.

Example 3:The (9 + 7i,2)-problem is solved by the seé###, - #- -]* which is optimal
for i = 1,2,3. Using Lemma[]5, this seed can be immediately obtained froensied
[###- #,- -]' from Example[R, solving théll + 74, 2)-problem.

We now apply the above results for the single seed case toae @f multiple seeds.

For a seed) considered as a word ovg¥#,- }, we denote byQy; its cyclic shift to the
left by i characters. For example,(f = ####- #- ##- - , thenQ5) = #- ##- - ####- . The
following lemma gives a way to construct seed families savbigger problems from an
individual seed solving a smaller cyclic problem.

Lemma 6: Assume that a seed solves a cycli¢m, k)-problem and assume th&t)) = m
(otherwise we pady on the right with (m — s(Q)) jokers). Fix somei > 1. For some
L > 0, consider a list ofL integers0 < j; < --- < j;, < m, and define a family of
seedsF =< [|(Qp;,)]l >t,, where||(Qy;))’|| stands for the seed obtained fri®;,))’ by
deleting the joker characters at the left and right edgeBnBé&(!) = ((j,—1—7j;) mod m) (or,
alternativelyd(1) = ((ji—ji—1) mod m))foralll,1 <1< L. Letm' = max{s(|[(Q;,)"|l)+
§(1)}, — 1. Then I solves the(m/, k)-problem.

Proof: The proof is an extension of the proof of Lemfipa 3. Here, theseéthe family
are constructed in such a way that for any instance of thatifie’, k)-problem, there exists
at least one seed that satisfies the property required inrtad pf Lemma[B and therefore
matches this instance. [|

In applying Lemmd[]6, integerg are chosen from the intervd, m] in such a way that
valuess(||(Q[7])!|])+4(1) are closed to each other. We illustrate Len{ina 6 with two exesnp
that follow.

Example 4:Letm = 11, k = 2. Consider the see@ = ####- #- ##- - solving the cyclic
(11,2)-problem. Choosé= 2, L = 2, j; =0, j» = 5. This gives two seed9; = ||(Q)?|| =
- #- - - HHH- #- 1 and Qy = ||(Qp))?|| = #- ##- - #HH- #- ##- - Of span
20 and 21 respectively(1) = 6 and6(2) = 5. max{20 + 6,21 + 5} — 1 = 25. Therefore,
family F' = {Q1, Q2 } solves the(25, 2)-problem.

18

Example 5:Letm = 11, k = 3. The seed) = ###- #- - #- - - solving the cyclic(11, 3)-
problem. Choose = 2, L = 2, j; = 0, j» = 4. The two seeds ar€), = ||(Qy)?| =
HHtH- #- - #- - - ###- #- - # (Spanl9) and Qs = ||(Quu)?|| = #- - #- - - ##t#- #- - #- - - #H##
(span21), with 6(1) = 7 and 6(2) = 4. max{19 + 7,21 + 4} — 1 = 25. Therefore, family
F ={Q,Q-} solves the(25, 3)-problem.

D. Heuristic seed design

Results of Sectior[s TVJA-TVAC allow one to construct effitieseed families in certain cases,
but still do not allow a systematic seed design. Recenthgdr programming approaches to
designing efficient seed families were proposed[ifj [19] an{fIB], respectively for DNA
and protein similarity search. However, neither of theséhmds aims at constructing lossless
families.

In this section, we outline a heuristic genetic programnalygprithm for designing lossless
seed families. The algorithm will be used in the experimeptat of this work, that we
present in the next section. Note that this algorithm usesyc programming algorithms
of Section[Tl). Since the algorithm uses standard genetigg@mming techniques, we give
only a high-level description here without going into alttaiés.

The algorithm tries to iteratively improve characteristwf a populationof seed families
until it finds a small family that detects dlin, k)-similarities (i.e. is lossless). The first step of
each iteration is based on screening current families agaiset ofifficult similaritiesthat
are similarities that have been detected by fewer familiégs set is continually reordered
and updated according to the number of families that dorigéaehose similarities. For this,
each set is stored in a tree and the reordering is done usirgstias-a-treeprinciple [20]:
each time a similarity is not detected by a family, it is mowedards the root of the tree
such that its height is divided by two.

For those families that pass through the screening, the aumibundetected similarities
is computed by the dynamic programming algorithm of SecflbB] The family is kept if
it produces a smaller number than the families currentiywkmoAn undetected similarity
obtained during this computation is added as a leaf to tredfdifficult similarities.

To detect seeds to be improved inside a family, we computedhé&ibution of each seed

by the dynamic programming algorithm of Sect[on T]I-C. Tteeds with the least contribution

19

are then modified with a higher probability. In general, tlopydation of seed families is
evolving bymutatingandcrossing overaccording to the set of similarities they do not detect.
Moreover, random seed families are regularly injected th# population in order to avoid
local optima.

The described heuristic procedure often allows efficieneven optimal solutions to be
computed in a reasonable time. For example, in ten runs oglidparithm, we found 3 of
the 6 existing families of two seeds of weight 14 solving tR6, 2)-problem. The whole
computation took less than 1 hour, compared to a week of ctatipn needed to exhaustively
test all seed pairs. Note that the randomized-greedy apipr@acremental completion of the
seed set by adding the best random seed) applied a dozen e tonthe same problem
yielded only sets of three and sometimes four, but never ®eals, taking about 1 hour at

each run.

V. EXPERIMENTS

We describe two groups of experiments that we made. The firstconcerns the design
of efficient seed families, and the second one applies a +sedtd lossless filtration to the

identification of unique oligos in a large set of EST sequence

Seed design experiments

We considered severéi, k)-problems. For each problem, and for a fixed number of seeds
in the family, we computed families solving the problem amedlizing the largest possible
seed weight (under a natural assumption that all seeds imdyfaave the same weight).
We also kept track of the ways (periodic seeds, genetic progring heuristics, exhaustive
search) in which those families can be computed.

Tables]]l and]I summarize some results obtained for(#%2)-problem and the25, 3)-
problem respectively. Families of periodic seeds (that banfound using Lemm@ 6) are
marked with?, those that are found using a genetic algorithm are markéd4viand those
which are obtained by an exhaustive search are marked“wi@imly in this latter case, the
families are guaranteed to be optimal. Families of pericdieds are shifted according to

their construction (see Lemnjj 6).

20
TABLE |

SEED FAMILIES FOR (25, 2)-PROBLEM

size weight family seeds 6

1 129P:9 ###- H#- - H#H#- #- - #H#H-# 5.96-10~8

2 14P:9 #H##- #- H#- - #7H#H- #- #H# 7.47-107°
#- ##- - #HHH- #- #H#- - #HEH

3 15P #- - #it- #- HHAHBH- - #H7- #- H# 2.80-107°

Ho HHHHHI - - - 1 HHRH
HHHEH - - #it- - HHEHHE -
4 16P HEHHE- B H- B - R 9.42-10~10
Hit- - HitH- - U - #
HiH- - - #HE- #- B
HHHHEE - HHE- #- - -
6 177 Hi- - HH- - BB - - # 3.51-10~10
#- HiE- - HHHHE $HHE #- 2
HHHHHHE - B #- #1- -
Hith- - #- 1 - B
HitHH- #- #H- - B $iH
- - B S 3 - - #

TABLE 1l

SEED FAMILIES FOR (25, 3)-PROBLEM

size weight family seeds 6
1 8P I HHH-He - - - - #HHHE- # 1.53-107°
2 10”7 HittHE- e Wt - - - - HH 1.91-10-6
Hit- - #- - - B #- H1
3 117 He - - HHHHE H- - - He - - 7.16 - 1077
HitH- #- Hit- - #- - - B
Hit- - #- - - B - - - #
4 127 He - - HHHHE He - - He - - HHHE 2.39-10~7
HitH- #- Hit- - #- - - R #
He e - e - - R H- B - #
Hit- - #- - - B - - - H- - - #

Moreover, to compare the selectivity of different familsgsdving a given(m, k)-problem,
we estimated the probability for at least one of the seeds of the family to match at a
given position of a uniform Bernoulli four-letter sequendéis has been done using the
inclusion-exclusion formula.

Note that the simple fact of passing from a single seed to aswenl family results in a

considerable gain in efficiency: in both examples shown ent#ibles there a change of about

21

one order magnitude in the selectivity estimador

Oligo selection using multi-seed filtering

An important practical application of lossless filtratianthe selection of reliable oligonu-
cleotides for DNA micro-array experiments. Oligonuclees (oligos) are small DNA se-
guences of fixed size (usually ranging frof to 50) designed to hybridize only with a
specific region of the genome sequence. In micro-array expets, oligos are expected to
match ESTs that stem from a given gene and not to match thos¢hef genes. As the
first approximation, the problem of oligo selection can thenformulated as the search for
strings of a fixed length that occur in a given sequence butalaaocur, within a specified
distance, in other sequences of a given (possibly very Jagmple. Different approaches
to this problem apply different distance measures andréifealgorithmic technique$ JP1],
[E]. [E3], [24]. The experiments we briefly present here daestrate that the multi-seed
filtering provides an efficient computation of candidategohiucleotides. These should then
be further processed by complementary methods in ordekéoittaio account other physico-
chemical factors occurring in hybridisation, such as thdtingetemperature or the possible
hairpin structure of palindromic oligos.

Here we adopt the formalization of the oligo selection peoblas the problem of identi-
fying in a given sequence (or a sequence database) all swssof lengthm that have no
occurrences elsewhere in the sequence within the Hammsigndiek. The parameters:
andk were set ta32 andb5 respectively. For th€32, 5)-problem, different seed families were
designed and their selectivity was estimated. Those arensuired in the table in Figurg 2,
using the same conventions as in Taljles | ghd Il above. Th#yfaomposed of 6 seeds of
weight 11 was selected for the filtration experiment (showifrigure[R).

The filtering has been applied to a database of rice EST seqaazomposed of 100015
sequences for a total length of 42,845,242f[bjsubstrings matching other substrings with
5 substitution errors or less were computed. The computdtohk slightly more than one
hour on a Pentiuft'4 3GHz computer. Before applying the filtering using the fgrfor the
(32,5)-problem, we made a rough pre-filtering using one spaced ceeeight 16 to detect,

source :ht t p: // bi oserver. nyongji.ac. kr/ricenac. ht nl , The Korea Rice Genome Database

22

family size | weight 1)
{ ##HH- -t H-- - #- - U

1 7¢ 6.10 - 10~°

HEth- - H- - Bl oo - - #- HHH#H
2 8¢ 3.05-107°

HEtHH- - - - #- - H- - HH- HE#H
3 9¢ 1.14-10~5

HiH- - H- - - #H- - HERHY
4 109 3.81-10~6

Hit- #H- H#i- - #- B B
6 119 1.43-10—6

HHH- Hi- #- HHHHE)
10 129 5.97-10"7

Fig. 2

COMPUTED SEED FAMILIES FOR THE32, 5)-PROBLEM AND THE CHOSEN FAMILY (6 SEEDS OF WEIGHTL1)

with a high selectivity, almost identical regions. 65% oé tthatabase has been discarded by
this pre-filtering. Another 22% of the database has beenddi®ut using the chosen seed

family, leaving the remaining 13% as oligo candidates.

VI. CONCLUSION

In this paper, we studied a lossless filtration method basednolti-seed families and
demonstrated that it represents an improvement compatée gingle-seed approach consid-
ered in [1]. We showed how some important characteristiceeetl families can be computed
using the dynamic programming. We presented several catdsial results that allow one to
construct efficient families composed of seeds with a peristtucture. Finally, we described
a large-scale computational experiment of designingbkdialigonucleotides for DNA micro-
arrays. The obtained experimental results provided ecilehthe applicability and efficiency
of the whole method.

The results of Sectior[s T}A-TVC establish several comalbamial properties of seed fam-
ilies, but many more of them remain to be elucidated. Thectire of optimal or near-
optimal seed families can be reduced to number-theoretstepns, but this relation remains
to be clearly established. In general, constructing anrdhgo to systematically design seed
families with quality guarantee remains an open problemmé&aomplexity issues remain
open too: for example, what is the complexity of testing ifiagke seed is lossless for
given m, k? Section[T]l implies a time bound exponential on the numbfejokers. Note
that for multiple seeds, computing the number of detectedlaiities is NP-complete[]16,
Section 3.1].

Another direction is to consider different distance measuespecially the Levenstein

23

distance, or at least to allow some restricted insertidefa errors. The method proposed
in [29] does not seem to be easily generalized to multi-saeedlies, and a further work is
required to improve lossless filtering in this case.

Acknowledgementss. Kucherov and L. Noé have been supported by the Frexation
Specifique “Algorithmes et &uences’of CNRS. A part of this work has been done during a
stay of M. Roytberg at LORIA, Nancy, supported by INRIA. M.\Rberg has been supported
by the Russian Foundation for Basic Research (project r$94049469, 02-07-90412) and
by grants from the RF Ministry for Industry, Science, andhiredogy (20/2002, 5/2003) and
NWO.

REFERENCES

[1] S. Burkhardt and J. Karkkainen, “Better filtering wig@ppedg-grams,” Fundamenta Informaticaerol. 56, no. 1-2,
pp. 51-70, 2003, preliminary version in Combinatorial @attMatching 2001.

[2] G. Navarro and M. Raffinotf-lexible Pattern Matching in Strings — Practical on-lineaseh algorithms for texts and
biological sequences Cambridge University Press, 2002.

[3] S.Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhawg,Miller, and D. Lipman, “Gapped BLAST and PSI-BLAST:
a new generation of protein database search progravosfeic Acids Researchol. 25, no. 17, pp. 3389-3402, 1997.

[4] B. Ma, J. Tromp, and M. Li, “PatternHunter: Faster and engensitive homology searchBioinformatics vol. 18,
no. 3, pp. 440-445, 2002.

[5] S. Schwartz, J. Kent, A. Smit, Z. Zhang, R. Baertsch, Rrditon, D. Haussler, and W. Miller, “Human—mouse
alignments with BLASTZ,"Genome Researckol. 13, pp. 103-107, 2003.

[6] L. Noé and G. Kucherov, “Improved hit criteria for DNA dal alignment,”"BMC Bioinformatics vol. 5, no. 149,
october 2004.

[7] P. Pevzner and M. Waterman, “Multiple filtration and amgmate pattern matching,Algorithmicg vol. 13, pp.
135-154, 1995.

[8] A. Califano and I. Rigoutsos, “Flash: A fast look-up atgbm for string homology,” inProceedings of the 1st
International Conference on Intelligent Systems for Molac Biology, July 1993, pp. 56—64.

[9] J. Buhler, “Provably sensitive indexing strategies iiwsequence similarity search,” Proceedings of the 6th Annual
International Conference on Computational Molecular Bgy (RECOMBO02), Washington, DC (USAACM Press,
April 2002, pp. 90-99.

[10] U. Keich, M. Li, B. Ma, and J. Tromp, “On spaced seeds fonikrity search,”Discrete Applied Mathematicsol.
138, no. 3, pp. 253-263, 2004.

[11] J. Buhler, U. Keich, and Y. Sun, “Designing seeds forikinty search in genomic DNA,” inProceedings of the
7th Annual International Conference on Computational Malar Biology (RECOMBO03), Berlin (Germany) ACM
Press, April 2003, pp. 67-75.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

24

B. Brejova, D. Brown, and T. Vinar, “Vector seeds: anendion to spaced seeds allows substantial improvements in
sensitivity and specificity,” ifProceedings of the 3rd International Workshop in Algorithim Bioinformatics (WABI),
Budapest (Hungary)ser. Lecture Notes in Computer Science, G. Benson and Re, Eats., vol. 2812. Springer,
September 2003, pp. 39-54.

G. Kucherov, L. Nog, and Y. Ponty, “Estimating seedsstivity on homogeneous alignments,” Rroceedings of the
IEEE 4th Symposium on Bioinformatics and BioengineerinddE2004), May 19-21, 2004, Taichung (Taiwasgr.
the IEEE 4th Symposium on Bioinformatics and BioenginegHBIBE'2004. |IEEE Computer Society Press, April
2004, pp. 387-394.

K. Choi and L. Zhang, “Sensitivity analysis and effidienethod for identifying optimal spaced seed3durnal of
Computer and System Sciencesl. 68, pp. 22—40, 2004.

M. Csuros, “Performing local similarity searchesthvivariable lenght seeds,” iRroceedings of the 15th Annual
Combinatorial Pattern Matching Symposium (CPM), Istanfllirkey) ser. Lecture Notes in Computer Science,
S. Sahinalp, S. Muthukrishnan, and U. Dogrusoz, Eds., id93 Springer Verlag, 2004, pp. 373-387.

M. Li, B. Ma, D. Kisman, and J. Tromp, “PatternHunter Highly sensitive and fast homology searctigurnal of
Bioinformatics and Computational Biologyol. 2, no. 3, pp. 417-440, September 2004.

Y. Sun and J. Buhler, “Designing multiple simultaneaeeds for DNA similarity search,” iRroceedings of the 8th
Annual International Conference on Research in Computalid/olecular Biology (RECOMB 2004) ACM Press,
March 2004, pp. 76-84.

D. G. Brown, “Multiple vector seeds for protein alignmi¢ in Proceedings of the 4th International Workshop
on Algorithms in Bioinformatics (WABI), September 2004tgBe (Norway) ser. Lecture Notes in Bioinformatics,
I. Jonassen and J. Kim, Eds., vol. 3240. Springer Verlag42pp. 170-181.

J. Xu, D. Brown, M. Li, and B. Ma, “Optimizing multiple siged seeds for homology search,” Pmoceedings of
the 15th Symposium on Combinatorial Pattern Matching,ngtal (Turkey) ser. Lecture Notes in Computer Science,
S. Sahinalp, S. Muthukrishnan, and U. Dogrusoz, Eds., id932004, pp. 47-58.

J. Oommen and J. Dong, “Generalized swap-with-parehemmes for self-organizing sequential linear lists,” in
Proceedings of the 1997 International Symposium on Algorit and Computation (ISAAC’97), Singapaer. Lecture
Notes in Computer Science, vol. 1350. Springer, Decembet917997, pp. 414-423.

F. Li and G. Stormo, “Selection of optimal DNA oligos fgene expression arraysBioinformatics vol. 17, pp.
1067-1076, 2001.

L. Kaderali and A. Schliep, “Selecting signature olgleotides to identify organisms using DNA arrays,”
Bioinformatics vol. 18, no. 10, pp. 1340-1349, 2002.

S. Rahmann, “Fast large scale oligonucleotide salrctising the longest common factor approachgurnal of
Bioinformatics and Computational Biologyol. 1, no. 2, pp. 343-361, 2003.

J. Zheng, T. Close, T. Jiang, and S. Lonardi, “Efficieglestion of unique and popular oligos for large EST datahase
in Proceedings of the 14th Annual Combinatorial Pattern MatghSymposium (CPM), 2003, Morelia (Mexicggr.
Lecture Notes in Computer Science, vol. 2676. Springeraggr2003, pp. 273-283.

S. Burkhardt and J. Karkkainen, “One-gappgdram filters for Levenshtein Distance,” Proceedings of the 13th
Symposium on Combinatorial Pattern Matching (CPM;0&)l. 2373. Springer, 2002, pp. 225-234.

