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Abstract. Given a pair of graph G1 = (V, E1), G2 = (V, E2) on the
same vertex set, a set S ⊆ V is a maximal common connected set of G1

and G2 if the subgraphs of G1 and G2 induced by S are both connected
and S is maximal the inclusion order. The maximal Common Connected
sets Problem (CCP for short) consists in identifying the partition of V

into maximal common connected sets of G1 and G2. This problem has
many practical applications, notably in computational biology.

Let n = |V | and m = |E1| + |E2|. We present an O((n + m) log n)
worst case time algorithm solving CCP when G1 and G2 are two inter-
val graphs. The algorithm combines maximal clique path decompositions
of the two input graphs together with an Hopcroft-like partitioning ap-
proach.

1 Introduction

Let G = (V, E) be a loopless undirected graph. The degree of a vertex x ∈ V in
the graph G is denoted by dG(x). Let X be a subset of vertices of G, we denote
G[X ] the subgraph induced by X : the set of vertices of G[X ] is X and its edge
set is EX = E ∩ {(u, v) | u ∈ X, v ∈ X}. We denote by mX = |EX | the number
of edges in G[X ] and by |G[X ]| = |X | + mX the size of the induced subgraph.
A set X of vertices is connected in G if G[X ] is a connected graph.

Let F be a non empty family of graphs on (or restricted to) the same vertex
set3, say F = {G1 = (V, E1), . . . Gk = (V, Ek)}. A set S of vertices (S ⊆ V ) is
said connected in F if X is connected in all Gi ∈ F .

Definition 1. A set S ⊆ V of vertices is a maximal common connected set of
a family F = {G1 = (V, E1), . . . Gk = (V, Ek)} of graphs if S is a connected set
in F and no other set X ⊃ S is connected in F .

? Resarch supported by the CNRS Action spéficique ”Nouveaux modèles et algorithmes
de graphes pour la biologie”.

3 Or equivalently the vertices could be considered uniquely labeled.
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Trivially, the maximal common connected sets of F form a partition of the
vertex set. If F only contains a single graph, a maximal common connected set
reduces to the classical notion of connected component. Well-known linear time
algorithms that identify the connected components partition of a single graph
exist. However, when |F| > 2, the problem becomes much harder. In [8], the
problem of finding maximal common connected sets of two graphs, namely the
CC-Problem (CCP for short), was addressed. If |F| > 2, the problem is named
gen-CCP (see Section 2).

CC-Problem:
Input: two graphs G1 = (V, E1) and G2 = (V, E2).

Output: the partition of V into the maximal common connected sets
of {G1, G2}.

Before we continue with the discussion, let us define some notations: the
number of vertices will be denoted by n = |V |, while m will design the total
number of edges in the two graphs G1 and G2, i.e. m = m1 = m2 with m1 = |E1|,
m2 = |E2|.

A natural approach to solve CCP is to first search the maximal connected
components of G1. Then, in each of these components, search the connected
components of G2. In each such new connected component of G2, search the
maximal connected components of G1, and repeat this process until the two
sets of components on G1 and G2 are similar. A simple example on which this
approach yields to Ω(n) steps is given in [8], where the two graphs are in fact
interval graphs. Since each step consists in a search on a subgraph whose size
may decrease one by one, the complexity of this method is Ω(n(n + m)) worst
case time. The algorithm proposed in [8] runs in O(n log n + m log2 n) for gen-
eral graphs. Their algorithm mixes dynamical connectivity maintenance with a
partitioning approach.

However, obtaining faster algorithms for solving CCP is a real challenge,
since the graphs currently considered in many applications, like computational
biology, are huge: comparing graphs with more than 250000 vertices becomes
frequent (see for instance the TERAPROT project [14]).

This paper improves the practical and theoretical complexity of CCP for a
restricted graph family, that of interval graphs. A graph is an interval graph iff
there is a one-to-one mapping between its vertices and a set of intervals on the
real line such that two vertices are adjacent iff their corresponding intervals in-
tersect [13]. This family of graphs represents a large part of the graphs involved
in applications of CCP in computational biology, because a chromosome is nat-
urally represented by construction as the interval graph of smaller sequences
(cDNA, ESTs, etc). For instance, comparing the longest “common” contigs of
two chromosomes built on the same cDNA database requires solving CCP on
interval graphs.

We present an algorithm for solving CCP on interval graph in O((n+m) log n)
worst case time. The algorithm is both faster and simpler than the algorithm
solving CCP on general graphs. It combines an Hopcroft-like partitioning frame-
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work together with a kind of dynamical maintenance of a spanning separator for-
est. Interval graphs are represented through a forest of clique paths that roughly
captures all the possible separators of the graphs. This forest is “dynamically”
maintained, in the sense that we are able to quickly compute the new clique
representation after extracting a set of vertices. Sets of vertices are extracted
following an Hopcroft-like partitioning framework, inspired by the gene teams
identification algorithm [1] that has later been proved to resemble a simplified
Hopcroft partitioning approach [4].

This article is organized as follows. Section 2 explains the whole framework
of a recursive partitioning algorithm to solve CCP. Section 3 presents data-
structures and algorithms that allow us to improve the time complexity for
interval graphs. Finally the whole algorithm and its complexity are explained
and proved.

2 A Recursive Partitioning Algorithm

Solving CCP on two graphs G1 and G2 on the same vertex set V consists in
computing a partition of V whose parts are the maximal common connected
sets. A partition P of a set V is a set of disjoint subsets {X1, . . .Xk}, whose
union is exactly V . Our partitioning algorithm is based on the following simple
lemma.

Lemma 1. Let G1 and G2 be graphs on the same vertex set V and let C be a
maximal connected component of G1 distinct from V . Then

CCP(G1, G2) = CCP(G1[C], G2[C]) ∪ CCP(G1[V \C], G2[V \C])

Proof. Let S be a maximal common connected set of the pair G1 and G2. By
definition S is connected in G1. Since C is a maximal connected component, S is
either included in C or in V \C. It follows that any maximal common connected
set of G1 and G2 is either a maximal common connected set of G1[C] and G2[C]
or of G1[V \C] and G2[V \C]. 2

A simple paradigm for a recursive algorithm derives from Lemma 1. The
inputs are two graphs G1 and G2 on the same vertex set V and a partition P
of V . Initially, P is set to the trivial partition {V }. Then, it first searches for
a connected component of G1 or G2 distinct from V . If such a component C
exists, according to Lemma 1, two recursive calls are launched on the subgraphs
induced respectively by C and V \C. A sketch of this algorithm, named CCP-
Algorithm, is given in Figure 1.

Lemma 2. CCP-Algorithm computes the maximal common connected set par-
tition of a pair of graphs.

Proof. The algorithm ends since (a) the recursive calls are launched on strict
subgraphs and (b) it stops the recursive calls when both graphs are connected.
The correctness of the algorithm directly derives from Lemma 1. 2
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CCP-Algorithm(G1 = (V, E1), G2 = (V, E2))
1. If G1 and G2 are both connected Then
2. Return P = {V }
3. Else
4. If G1 is not connected Then
5. Let C be a connected component of G1

6. Else
7. Let C be a connected component of G2

8. End of if
9. Let P ′ =CCP-Algorithm(G1[C], G2[C])
10. Let P ′′ =CCP-Algorithm(G1[V \C], G2[V \C])
11. Return P = P ′ ∪ P ′′

12. End of if

Fig. 1. Recursive algorithm computing the maximal common connected sets partition
of the vertex set V of a pair of graphs G1 and G2

Generalization to an arbitrary number of graphs One can also consider
the gen-CC Problem of computing the maximal common connected sets of an
arbitrary number of graphs (i.e. CCP applied to a family of k ≥ 2 graphs).
Lemma 1 can be generalized and the algorithm modified.

Lemma 3. Let F = {G1, . . . , Gk} be a family of graphs on the same vertex set
V and let C 6= V be a connected component of G1. Then gen-CCP(G1 . . . Gk) =
gen-CCP(G1[C] . . . Gk[C]) ∪ gen-CCP(G1[V \C] . . . Gk[V \C])

Proof. Let S be a maximal common connected set of the k graphs. By definition
S is connected in G1. Since C is a connected component of G1, S is either
included in C or in V \C. It follows that any maximal common connected set of
F is either a maximal common connected set of the family {G1[C], . . . , Gk[C]}
or of the family {G1[V \C], . . .Gk[V \C]}. 2

It is straightforward to modify the algorithm in order to handle an arbibrary
number of graphs. The connected component C has just to be a connected
component of an arbitrary graph among G1, . . .Gk. The generalized algorithm
is depicted in Figure 2.

Observations on the complexity Notice that the main difficulties of the
above algorithms are first to compute a connected component C of one input
graph if it exists and then to extract the subgraphs induced by C and V \C.
However, without ad-hoc data-structures, such a recursive approach may yield
to a Θ(n(n + m)) worst case time algorithm. In [8], using a sophisticated data-
structure to maintain dynamic connectivity [11], an O(n log n + m log2 n) algo-
rithm for CCP on general graphs was proposed.

For simplicity, in the rest of the paper, we restrict the study to the case of
2 graphs. The main difference between CPP and gen-CCP consists in managing



Common Connected Sets of Interval Graphs 5

gen-CCP-Algorithm(G1 = (V, E1), . . . Gk = (V, Ek))
1. If all Gi (1 6 k) is connected Then
2. Return P = {V }
3. Else
4. Let Gi be a non connected graph among G1, . . . Gk

5. Let C be a connected component of Gi

6. Let P ′ =gen-CCP-Algorithm(G1[C], . . . Gk[C])
7. Let P ′′ =gen-CCP-Algorithm(G1[V \C], . . . Gk[V \C])
8. Return P = P ′ ∪ P ′′

9. End of if

Fig. 2. Recursive algorithm to compute the maximal common connected sets partition
of the vertex set V of a family F = {G1, . . . , Gk} of k graphs

the connected graphs and the non-connected graphs. It will clearly appear below
that the data-structures we use, enable us to run the test of line 1 of algorithm
CCP-Algorithm (Figure 1) in O(1) time. It follows that the complexity of gen-
CCP differs from the complexity of CCP only by a factor k. The remainder of
the article focuses on improving the worst case complexity of CCP-Algorithm
on two interval graphs.

Section 3 presents two algorithms that retrieve the connected components of
the subgraphs G1[C], G2[C], G1[V \C], G2[V \C] after having extracted C. These
algorithms strongly rely on interval graph structural properties. Their complex-
ities are both O(|C| + d(C)) where d(C) =

∑
x∈C

d(x), which is proportional,
not exactly to the size of their induced subgraph, but close to.

However, even if an arbitrary connected component C can be extracted in
O(|C|+d(C)), it would not be enough to reach the announced O((n+m) log(n))
complexity. It could still lead to Θ(n(n + m)) operations. To lower the whole
complexity, we combine the extraction scheme with an Hopcroft’s partitioning
approach [12]. Only small connected components have to be considered. Small
means that the size of the connected component considered has to be less than
or equal to the half of the size of the original graph. Such a connected component
always exists if the graph is not connected, but it is quite complicated to retrieve
it efficiently. This is the purpose of the SIS algorithm of subsection 3.3. The whole
partionning approach is presented in section 4.

3 Clique Path Representation of Interval Graphs

This section presents the material for managing the interval graphs. We first
introduce some well-known properties and the data-structures used in the algo-
rithms. Then two algorithms that update the data-structures for induced sub-
graphs are developed. These algorithms allow efficient recursive calls. Finally, the
last SIS algorithm searches for a small connected component of a given interval
graph.
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3.1 Preliminaries and Data-structures

Let G = (V, E) be a graph and G[X ] be the subgraph induced by X . We set
d(X) =

∑
x∈X

dG(x). Notice that the definition of interval graphs (see the in-
troduction) directly implies that this family of graphs is hereditary: any induced
subgraph of an interval graph is an interval graph. A clique is a complete induced
subgraph (not necessarily maximal for the inclusion).

Definition 2. Let G = (V, E) be a connected interval graph. A clique decom-
position path of G is a path P = (C, F ) such that:

1. any set C ∈ C is a set of vertices and
⋃

C∈C
C = V ;

2. any (u, v) ∈ E is contained in some C ∈ C;

3. the set Cu = {C ∈ C | u ∈ C} induces a subpath Pu of P

4. any C ∈ C is a clique;

A clique decomposition path will be denoted hereafter by CDP. Notice that
a CDP gives an interval intersection model of the interval graph: the underlying
path P and the family of subpaths Pu that contains the vertex u. If the condition
4 is not required, a decomposition path can be defined for arbitrary graphs and
this is the basis of the pathwidth theory (see [2]).

Dealing with interval graphs, we usually define the Maximal Clique decom-
position Path (shorten as MCP) where any clique C ∈ C has to be a maximal
clique.

A separator is a set S of vertices whose removal disconnects the graph in two
or more connected components. A separator S is minimal if there exists a pair
of vertices u, v, which are separated by S and such that no subset of S separates
u and v in different connected components. Since interval graphs are chordal
(graphs with no induced cycle of length larger than 3), any minimal separator
is a clique [7]. The following lemma gives some hints on the structure of the set
of minimal separators of an interval graph.

Lemma 4 (e.g. [9]).

Let P be a MCP of an interval graph G. A set of vertices S is a minimal separator
iff it is the intersection S of some consecutive cliques C1 and C2 in P .

For our purposes, we label the edges of a CDP by the intersection of the
corresponding cliques. A non-connected interval graph clearly enjoys a CDP:
the edges between two cliques of different paths are labelled by the empty set
since these cliques belong to different connected components and are disjoint.
The number of cliques in a CDP P is denoted |P |. We say that the set of paths
defines a linear forest denoted CPF for Clique Path Forest. When all the paths
are maximal, the forest is denoted MCPF.

Lemma 5 (e.g. [9]). Let G be an interval graph with n vertices and m edges.
Any MCP is of size O(n + m).
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Fig. 3. An interval graph with two CDPs. The second is maximal.

Many linear-time interval graphs recognition algorithms exist. The first is due
to Booth and Lueker in 1976 [3]. Most recent ones [10, 6] are much simpler than
the original. All these algorithms can be easily modified to output in O(n + m)
a maximal clique path decomposition.

For algorithmic settings, in the case of non-connected interval graphs, the
set of paths of a CPF is stored in a list F . The cliques of a CDP are stored
in a doubly linked list and the CDP are rooted at one of their extremities. A
given clique C stores a pointer to its father f(C) and to its child s(C); its set of
vertices is stored in a doubly linked list and its size is denoted nC . Moreover, each
edge is assigned to a record containing: (a) its two extremities; (b) the label of
its minimal separator (see lemma 4) whose vertices are stored in a doubly linked
list; (c) the size nS of this separator. In addition, two lists, namely LS and LC ,
are associated to any vertex x. The list LS (resp. LC) contains pointers to the
copies of x in each separator (resp. clique) containing x.

3.2 Dynamic Clique Decomposition Path

Lemma 6. Let P = (C, F ) be a CDP of G = (V, E) and X ⊆ V . Then P ′ =
(C′, F ′) defined as follows is a CDP of G[V \X ].

– C′ = {f(C) | C ∈ C}, where f(C) = C\X;

– (f(C1), f(C2)) ∈ F ′ iff (C1, C2) ∈ F ;

– (f(C1), f(C2)) is labelled by f(C1) ∩ f(C2) = (C1 ∩ C2)\X.

Proof. Let us consider two vertices u and v belonging to V \X . The proof directly
derives from the definition. First any f(C) is a clique and

⋃
C∈C

f(C) = V \X .
If u and v are adjacent, there exists a clique C ∈ C containing both u and
v. Clearly f(C) also contains both u and v. Since the set Cu ⊂ C of cliques
containing u ∈ V \X occurs consecutively in P , the set C′

u ⊂ C′ also occurs
consecutively in P ′. 2

Notice that some separators may be empty after the extraction of X , in which
case the resulting CDP is in fact a CPF.
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For complexity issues, the above operation is implemented by two different
algorithms. Given a CDP, the first one removes the vertices of a given set from
each clique: it is called REMOVE. The second, in contrast, computes the intersec-
tion of any clique with a given set: it is called EXTRACT.

REMOVE(P, X)
1. Let F be a linear forest containing P

2. For any x ∈ X Do
3. For any clique C st x ∈ C Do
4. Remove x from C

5. Decrease nC by 1
6. End of for
7. For any separator S between cliques C and C′ st x ∈ S Do
8. Remove x from S

9. Decrease nS by 1
10. If nS = 0 Then
11. Let (P, Cr) be the CDP containing the edge (C, C′)

labeled by S

12. Remove the edge (C, C′) from P (C is the father of C′)
13. Create in F the new CDP (P ′, C′)
14. Else
15. If nS = nC Then
16. Remove C from P

17. Connect s(C) and f(C) with the edge labelled by
s(C) ∩ f(C)

18. End of if
19. If nS = nC′ Then
20. Remove C′ from P

21. Connect s(C′) and f(C′) with the edge labelled by
s(C′) ∩ f(C′)

22. End of if
23. End of if
24. End of for
25. End of for
26. Return F

Fig. 4. Maintaining a MCPF of a graph after removing a set of vertices X from an
interval graph represented by a MCP P .

The pseudo-code of algorithm REMOVE(P, X) is given in Figure 4. Lemma 7
states its validity and time complexity.

Lemma 7. Let P be a MCP of the connected interval graph G = (V, E). The
algorithm REMOVE(P, X) (Figure 4) computes in O(|X | + d(X)) time a linear
forest of G[V \X ] where each path is a MCP of the corresponding connected
component.
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Proof. First, notice that by lemma 6, when the vertices of X have been removed
(lines 4 and 8), F is a CDP of G[V \X ] (but no longer a maximal one). Let S
be the intersection between two consecutive cliques C and C′ of a given path
P ∈ F (w.l.o.g. C = f(C′)).

– S = ∅ (S is no longer a separator since it is empty): Since P is a CDP C
and C′ belongs to different connected components, the path P can be split
into two CDPs. The first one contains the clique from the root to C while
the second one is rooted at C′ and contains the clique derivating from C′

(lines 10-13).
– nS = nC (the case nS = nC′ is similar): C is no longer a maximal clique (it

is included in C′). Therefore we can remove C from P (lines 15-22).

It follows that when F has been cleaned up, any clique is a maximal clique
and each new CDP is therefore a MCP. For complexity issue, since the number
of copies of elements of X is O(|X | + d(X)) and since each copy is touched
once, removing X cost O(|X | + d(X)). The cleaning can be done within the
same complexity since (a) removing a separator or a clique costs O(1); (b) the
number of removing operations is bounded by the number of copies of elements
of X . 2

We now consider the maximal clique path decomposition of the induced sub-
graph G[X ]. The pseudo-code of algorithm EXTRACT(P, X) is given in Figure 5.
The next lemma 8 states its validity and time complexity.

Lemma 8. Let F be a MCP of the connected interval graph G = (V, E). The
algorithm EXTRACT(F, X) (Figure 5) computes in O(|X |+ d(X)) time a MCPF
of G[X ].

Proof. A similar proof than that of lemma 7 shows that a linear forest of G[X ]
can be computed in O(|X | + d(X)). 2

3.3 Smaller Induced Subgraph (SIS) Algorithm

The SIS algorithm on two MCPs P1 and P2 allows us to find the smallest of
the two induced subgraphs in time proportional to the size of this smallest
subgraph. The difficulty comes from that the sizes of the two paths are not
necessarily representative of the sizes of their induced subgraphs. It may happen
that |P1| < |P2|, but that |G[V1]| > |G[V2]|, where V1 (resp. V2) is the set of
vertices contained in the cliques of P1 (resp. P2).

To overcome this obstacle, we use a trick. We perform simultaneously a Depth
First Search (DFS) on the two paths. We read a new clique (or path node) of
each MCP alternatively, until we reach the end of one of the paths. During this
search, we compute for each path the sums S1 and S2 of the sizes of the cliques
we encountered.

At the end of these simultaneous DFS, the smallest MCP, say P1, has been
totally covered, and S1 is the size of its induced subgraph. If S1 ≤ S2, the
simplest case (a), the subgraph induced by P1 is smaller than that induced by
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EXTRACT(P,X)
1. Let F be an empty linear forest
2. For any x ∈ X Do
3. For any clique C containing x Do
4. If C has not been already duplicated Then
5. Create a copy C′ = {x} in F in a new singleton CDP
6. nC′ ← 1
7. Else
8. Let C′ the existing copy of C

9. C′ ← C′ ∪ {x}
10. nC′ ← nC′ + 1
11. End of if
12. End of for
13. For any separator S containing x Do
14. Let (C1, C2) be the edge labeled by S in P (wlog C1 = f(C2))
15. If (C1, C2) has not been duplicated Then
16. Create a new edge (C′

1, C
′

2) labelled by x

17. nS′ ← 1
18. Else
19. Let S′ the label of the edge (C′

1, C
′

2)
20. S′ ← S′ ∪ {x}
21. nS′ ← nS′ + 1
22. End of if
23. End of for
24. End of for
25. Remove from F any non maximal clique as in lines 15-22 of REMOVE

(see Figure 4)
26. Return F

Fig. 5. Maintaining a MCPF of the induced subgraph of G[X] when extracting X from
G.

P2, and SIS returns P1. Otherwise, if S1 > S2 we continue the DFS of the second
path P2, computing the new sum S′

2
for each new clique encountered. Figure 6

illustrates this search. The process goes on, until, case (b), either the whole MCP
P2 has been visited, in which case S′

2
≤ S1 and SIS returns P2, either, case (c),

S′
2

becomes greater than S1 and SIS returns P1. Figure 7 illustrates these two
last cases.

It is obvious that SIS returns the MCP which represents the smallest induced
graph. We prove in Lemma 9 that its complexity only depends on the size of
this smallest induced subgraph.

Lemma 9. Given two MCP’s, Algorithm SIS returns the one that represents
the smallest induced subgraph, say G[X ] in time O(|X | + mX).

Proof. Let c1 (resp. c2) be the number of cliques visited in P1 (resp c2) at the
end of SIS algorithm. The total number of cliques visited is c1 + c2.
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S 2

S 1

S’2

P 1

P 2

Fig. 6. Continuing the Depth First Search in the longest MCP P2 if S1 > S′

2 while
until either S′

2 ≥ S1 or P2 is completely covered.

In case (a), P1 represents the smallest subgraph G[X ] of size S1 = |X |+mX .
The number c1 + c2 is in this case 2c1. As c1 ≤ S1 (lemma 5), the complexity of
SIS is O(|X | + mX).

In case (b), S′
2
≤ S1. The path P1 represents the smallest subgraph G[X ]

of size S′
2

= |X | + mX . Therefore SIS returns P2. As the first DFS stopped
first w.l.o.g on P1, c2 > c1, and, as c2 ≤ S′

2
(lemma 5), c1 + c2 < 2S′

2
and the

complexity of SIS is O(|X | + mX).
In case (c), the path P1 represents the smallest subgraph G[X ] of size S1 =

|X | + mX . As c2 ≤ S1 + 1, c1 + c2 ≤ 2S1 + 1 and the complexity of SIS is
O(|X | + mX). 2

S’2

S 1

P 1

P 2

(b) The longest MCP P2 is
totally covered by continuing
the DFS.

S 1

S’2

P 1

P 2

(c) The longest MCP P2 is not
totally covered by the DFS

Fig. 7. Two ending cases when continuing the DFS on the longest MCP P2. In the
first case (a), the DFS covers all the vertices of P2. Then as S′

2 ≤ S1, SIS returns P2.
In the second case, at most S1 vertices of P2 have been visited by the DFS without
exploring all the tree. Then SIS returns P1.

4 The Whole CCP Algorithm For Interval Graphs

The whole CCP algorithm for interval graphs (CCPI-Algorithm) is shown on
Figure 8. The algorithm takes as input two lists L1 and L2 that are respectively
the clique forest decompositions of the two graphs G1 and G2. It outputs a
partition of the vertex set. At lines 5 and 7, it searches for a connected component
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C whose size is at most half of the size of the corresponding graph. By lemma 9,
it can be done in time proportional to that connected component. Let P be the
MCP of C. W.l.o.g. we assume that C is a connected component of G1 and P is
the first MCP of L1. Lines 11 and 12 compute the four subgraphs on which the
recursive calls are launched. Using EXTRACT(L2,P ) and REMOVE(L2,P ) we
compute the subgraphs of G2 induced respectively by the vertices VP belonging
to the cliques of P and V \ VP . As seen in Lemmas 8 and 7, it can be done in
O(|VP | + d(VP )).

CCPI-Algorithm(L1, L2)
1. If |L1| = 1 and |L2| = 1 Then
2. Return P = {V } /* G1 and G2 are both connected */
3. Else
4. If |L1| ≥ 2 Then
5. P ← SIS(L1[1], L1[2]) /* G1 is not connected */
6. Else
7. P ← SIS(L2[1], L2[2]) /* G2 is not connected */
8. End of if
9. /* we assume below w.l.o.g that P = L1[1] */
10. L′

1 ← P ; L′′

1 ← L1\P
11. L′

2 ← EXTRACT(L2, V [P ]); L′′

2 ← REMOVE(L2, V [P ])
12. Let P ′ =CCPI-Algorithm(L′

1, L
′

2)
13. Let P ′′ =CCPI-Algorithm(L′′

1 , L′′

2 )
14. Return P = P ′ ∪ P ′′

15. End of if

Fig. 8. Recursive algorithm to compute the partition of the vertex set into maximal
common connected sets of two interval graphs G1 and G2 represented respectively by
the MCPF L1 and L2.

Theorem 1. The CCPI-algorithm applied on MCPF(G1) and MCPF(G2) cor-
rectly identifies the common connected components of G1 and G2.

Proof. The CCPI-Algorithm fully respects the general algorithm framework de-
scribed in section 2. Indeed lemmas 8 and 7 ensures that the recursive calls are
done on the right subgraphs. The only difference is that we now choose which
maximal component we extract first. 2

To analyse its complexity, we use an amortized argument that is common to
many Hopcroft-like approaches, but did not appear in the original paper [12].
To our knowledge, it is due to [5].

Theorem 2. The CCPI-Algorithm is worst case O((n + m) log n) time .

Proof. We first focus on the number of times a vertex x and a transition (y, z)
may participate to EXTRACT and REMOVE. W.l.o.g., let S1 be the size of the



Common Connected Sets of Interval Graphs 13

subgraph of G1 at the beginning of a recursive call of CCCIA. If a connected
component of G1 is extracted through its MCP P , then the size of the induced
subgraph of P is less than or equal to S1/2. This is straightforward since P
has been isolated through SIS as the smallest of the two induced subgraphs.
By induction, if x and (y, z) participate to many EXTRACT and REMOVE,
they are contained in subgraphs whose sizes are divided by at least two at each
recursive call. Therefore, they may only participate to log(n + m) EXTRACT
and REMOVE calls.

Secondly, we amortized the cost of each EXTRACT and REMOVE of a path
P on all the vertices and edges of the induced subgraph of P . The complexity
of EXTRACT and REMOVE (lemmas 8 and 7)) for extracting a set X out
of a graph G is |X | + d(X). We amortize the cost |X | over each vertex of X ,
and therefore a vertex x ∈ X participates for a constant amount of time. The
term d(X) is amortized over the edges. As an edge (x, y) may be visited when
considering x and when considering y, an edge can be visited only twice and
therefore participates for a constant amount of time.

In consequence, each vertex or each edge costs at most log(n + m). This
leads to an overall complexity of O((n + m) log(n + m)). As in the worst case,
m = O(n2), the final complexity is O((n + m) log n) worst case time. 2

The space complexity is O(n + m), since the two MCPFs are space linear in
n + m and that the recursive call of CCCIA algorithm can be managed with a
list of at least O(log(n + m)) pointers on the MCPFs.

5 Conclusion

We presented an O((n+m) log n) worst case time and O(n+m) space algorithm
for solving CCP on interval graphs. For this kind of graph, our algorithm is both
faster and simpler than the actual best algorithm for general graphs, running in
O(n log n + m log2 n) [8]. Our algorithm combines an Hopcroft partitioning ap-
proach with a maintenance of a spanning clique forest decomposition of the two
graphs. Designing faster algorithms or proving a lower bound for CCP remains
open, on interval and general graphs. It is also worthwhile to notice that even
on chordal graphs the general upper bound can still not be improved.
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