
ETH Library

Railway Delay Management
Exploring its Algorithmic Complexity

Report

Author(s):
Gatto, Michael; Glaus, Björn; Jacob, Riko; Peeters, Leon; Widmayer, Peter

Publication date:
2004-10

Permanent link:
https://doi.org/10.3929/ethz-a-006742052

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical reports 441

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006742052
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Railway Delay Management:

Exploring its Algorithmic Complexity

Technical Report 441.

Michael Gatto, Björn Glaus, Riko Jacob, Leon Peeters, Peter Widmayer

Institure of Theoretical Computer Science, ETH Zurich

October 7, 2004

Abstract

We consider delay management in railway systems. Given delayed trains, we want to find

a waiting policy for the connecting trains minimizing the weighted total passenger delay. If

there is a single delayed train and passengers transfer at most twice along fixed routes, or if

the railway network has a tree structure, the problem can be solved by reduction to min-cut

problems. For delayed passenger flows on a railway network with a path structure, the problem

can be solved to optimality by dynamic programming. If passengers are allowed to adapt their

route to the waiting policy, the decision problem is strongly NP-complete.

1 Introduction

In recent years, there has been an increasing focus on delays in railway systems, and many railway
companies focus on reducing delays in an effort to increase customer satisfaction. The possibility
that one train gets delayed is always present. In order to allow passengers to transfer from a
delayed feeder train, it can be beneficial to deliberately delay a connecting train. This can save
delayed passengers from having to wait for the next train. In this case, some of the feeder’s delay
is knocked on to the connecting train, and all passengers already in the connecting train also
face a delay. Moreover, these passengers may miss their connection if they wish to transfer in a
subsequent station.

In general, it might thus be beneficial to propagate the delays in the network, and one
should decide on a set of waiting trains. Even today, such waiting policy decisions are usually
taken by a human dispatcher. Ideally, a modern railway decision support system should enable a
dispatcher to easily evaluate the impact of his decisions, or even propose a good waiting policy.
This naturally leads to the algorithmic problem of determining an optimal waiting policy that
minimizes the overall passenger delay.

Although delay management problems have been studied for some years, not much is known
about the computational complexity of minimizing total passenger delay in general models. In
this paper, we analyze restricted variants of the event-activity network model presented in [Nac98],
which was analyzed in [Sch02]. In this graph representation, vertices represent arrival and departure
events at stations. Directed edges represent driving and waiting activities for trains, as well as
transfer activities for passengers. Trips of passenger are modeled as paths in the network. Each
path has a weight representing its importance. One of the models considered in [Sch02] is based
on a bi-criterial objective function. The goal is to simultaneously minimize the perturbation of
the timetable and the total weight of paths that miss a connection. This version of the problem
is known to be weakly NP-hard [Sch02]. The total delay can be efficiently minimized if the
“never-meet-property” holds, which basically forbids two delayed vehicles meeting at a station.

1

The general model can be solved to optimality through an ILP-based branch-and-bound algorithm
[Sch01, Sch02]. Other theoretical models consider on-line versions with unknown delays at one
bus stop [APW02] or the influence of buffer times for delays with exponential distribution for one
transfer [Gov98, Gov99]. A fair amount of work was done using simulations [Man01, HHW99,
OW99]. However, these last studies are less related to this paper.

As the complexity of the general event-activity network is still unknown, we focus on a
restricted setting, as formalized below. The basic element of our model is a direct link between
two stations and each such link is operated by a single train. Further, we assume that the original
timetable is tight, so there is no possibility for a train to catch up on a delay. In the same spirit
we assume that all the transfers at one station happen instantaneously. Hence, there is only one
amount of delay necessary. Obviously this is a fairly strong restriction of the original model.
Nevertheless, we are convinced that the key combinatorial structure remains. As soon as the
decision on which passengers to drop are taken, it is easy to produce a modified timetable that
minimizes the remaining delays. The general model as well as this model are easily solvable as soon
as we know how many passengers use a certain transfer. The problem seems to be that dropping
passengers somewhere has a significant effect on these numbers throughout the network. Our
model singles out this particular phenomenon. As we cannot even analyze this restricted model
in its entirety, it appears that we did not strip away all of the complication of the event-activity
network.

For simplicity, we include the externally caused delay of passengers in the objective function.
Clearly, such delays cannot be optimized, and their contribution in the objective function is known
a priori. As long as we focus on optimal solutions, this offset has no impact on the complexity.
Note, however, that this offset can make a considerable difference for approximation ratios and
competitive analyses. For example, in our hardness result in Section 6, this offset shifts the optimal
solution to zero, and hence rules out any approximation ratio.

We analyze three different cases of our model: (i) a single delayed train in the network with
passenger following a predefined path; (ii) origin-destination paths for passenger flows which can
have primary unit delays on a railway corridor; (iii) a single delayed train and origin-destination
pairs for the passengers, who can adapt their route according to the delays in the network. The
primary path delays in the second model may seem unusual, but they should be interpreted as
passengers arriving at a station on a delayed train and wishing to transfer. Note that an instance
of (ii) can be mapped to an instance of (i) by introducing some additional connections and infinite
weight passenger paths. However, this usually obscures the graph structure of the original problem.
Hence, we analyze these two models separately.

In this paper, we present the following results. We show that (i) can be solved efficiently
if passengers transfer at most twice, or if the railway network has a tree structure. We further
describe some extensions to more complicated models. For model (ii) we present a polynomial
time algorithm for railway corridors. Finally, we show that problem (iii) is strongly NP-hard.

2 General Problem Statement

This section describes the characteristics common to our three models. The specific characteristics
of each model are described in the corresponding sections.

Let G = (V,E) be a directed acyclic graph with the vertices in V are topologically sorted.
Each vertex of the graph represents a station. An edge e = (u, v) ∈ E represents a direct link
from station u to station v operated by a single train. At every station v ∈ V the outgoing
edges (v, u) represent the possible connections for all incoming edges (w, v). Thus, a directed path
within G corresponds to a journey a passenger can undertake by transferring to other trains at
each intermediate station.

We distinguish between externally caused primary delays, and secondary delays, which are
introduced by the waiting policy. We study the case in which all primary delays are identical and
of size δ. All transfers at a station take place instantaneously, so the passengers of a delayed train

2

miss their connection unless it waits for them. Observe that a connecting train must wait for
the entire delay δ of the delayed feeder train in order to maintain a connection. In this case, all
transfers to the connecting train are maintained, and the entire delay δ propagates. Additionally,
we assume that a delayed train cannot catch up on its delay.

All trains are operated according to a periodic timetable with period T , and we assume that
delays do not propagate to the next period. So, if a person misses a train, she continues her journey
with the next trains traveling along the same route. Since there are no further disturbances in the
next period, her arrival is thus delayed by T time units. Our analyses below do not depend on
the fact that all passengers face the same period T . Indeed, our results can be extended to models
where passengers missing a connection incur a delay depending on their route, and on the station
where they miss their connection.

We consider passenger flows in the railway network as a set of paths P in G. For each
passenger path P ∈ P, we are given a source vertex s(P) and a target vertex t(P). For a pair of
vertices u, v ∈ V , we allow multiple paths in P. Each path P ∈ P is defined as the ordered set of
edges leading from s(P) to t(P). Further, each path P ∈ P has a weight w(P), which represents
the number of passengers, or the path’s importance in a more abstract sense.

Our objective is to minimize the total weighted delay for all passenger paths in the network,
given the primary delays δ. A path P ∈ P contributes to the objective function as follows: 0 if P
arrives as scheduled, δ ·w(P) if P arrives with a delay of δ, and T ·w(P) if P misses a connection.
We refer to paths P with zero delay as on time paths, to those facing a delay of δ ·w(P) as delayed
paths, and to paths facing a delay of T · w(P) as dropped paths.

3 Minimum Cut Reductions for Single Primary Delays

In this section, we consider the previously described model for the case in which there is a single
train e0 with primary delay. The passenger paths P are assumed as given. We stress that these
paths are fixed, and will be followed by the passengers whatever delays will be introduced by the
delay policy. We assume that the vertex u of the primary delayed edge e0 = (u, v) has in-degree
zero, as every instance can be transformed to an equivalent instance having this quality. Let
∆ ⊆ E, e0 ∈ ∆ be the set of delayed trains, Ω = E \∆ the on-time trains.

We define the single source delay management problem: given an instance (G, e0,P, w, δ, T),
find a set ∆ ⊆ E of waiting trains minimizing the total weighted delay on the network.

In the following, we show how we can transform this restricted problem to a minimum cut
problem. We introduce the method for passenger paths with at most one transfer and then extend
it to two transfers. Thus, the single source delay management problem can be efficiently solved if
passengers switch trains at most twice, i.e. if they use at most three different trains.

The key idea is to build a new graph N in which every s− t-cut [S, S̄] represents the delay
policy ∆ = S,Ω = S̄. To do this, the trains (edges) of the original graph G are mapped to vertices
in the graph N ; forward and backward edges are added to N between vertices e and f if in the
original graph passengers can connect from e to f . More edges are added, and the weights are
defined such that the cost of a cut will correspond to the total delay occurring if trains in S are
delayed and trains in S̄ depart on time.

Given the train network (G = (V,E), e0,P, w, δ, T), the equivalent directed minimum s− t-
cut network N = (H = (U,F), s, t, c), s, t ∈ U, c : F → N is built as follows. Set U =
E ∪ {t}, s = e0; let F = F1 ∪ F2, where F1 = {(e, f), (f, e)|e, f ∈ E, e = (u, v), f = (v, w)} and
F2 = {(e, t)|e ∈ E}. Let P = {e, f}, e, f ∈ E be an arbitrary passenger path of length 2, from
source station s(P) to target station t(P). The passengers in P change train exactly once. Let
P(ei) be the set of paths using edge ei. We define the edge costs in N as (see Figure 1 for an

3

f

(T − δ)w(P2)

δ(w(P1) + w(P2))
S S̄

t
e

e

f

te

f

S S̄

t

S S̄

δ(w(P1) + w(P2))
e

S S̄

f

δw(P2) t

Figure 1: The four possible cuts for two connecting trains with paths P1 = {e} and P2 = {e, f} of
weight w(P1) and w(P2), respectively.

∆ Ω Total weighted delay
{e, f} ∅ δ · (w(P1) + w(P2))
{e} {f} δ · w(P1) + T · w(P2)
{f} {e} δ · w(P2)
∅ {e, f} 0

Figure 2: The four possible delay policies
for two connecting trains with paths P1 =
{e} and P2 = {e, f}, with weight w(P1) and
w(P2), respectively.

t

∞

∞

∞

f

e

g

vP

(T − δ)w(P)

(T − δ)w(P)
δw(P)

Figure 3: Reduction for a path P = {e, f, g}

example):

c(e, f) =

(T − δ) · w(P) if P = {e, f} ∈ P;

δ · w(P) if P = {f, e} ∈ P;

δ ·
(

∑

P∈P(e) w(P)
)

∀e ∈ U, f = t

Let G′ = (V ′, E′) be a directed graph, c : E′ 7→ N a weight function and let {s′, t′} ⊂ V ′. A
directed cut is a partition of V ′ into two sets S′ and S̄′ = V ′ \S′, such that s′ ∈ S′, t′ ∈ S̄′. Letting
E′c = {(e, f) ∈ E′ : e ∈ S′, f ∈ S̄′}, the cost of the cut is defined as C(S ′, S̄′) =

∑

(e,f)∈Ec
c(e, f).

Lemma 3.1. The cost of a minimum directed s− t-cut [S, S̄] in N is equal to the minimum total

weighted delay in G for the delay policy ∆ = S,Ω = S̄ \ {t}, given that passengers connect at most
once.

Proof. It is sufficient to prove that each path is penalized correctly for all waiting policies. It
then follows that the complete solution (∆,Ω) has the correct weight, and that the cost of the
cut corresponds to the weighted delay occurring on the railway network. Because of the bijection
between them, the cost of the minimum cut corresponds to the minimum weighted delay in G.

Because of the construction of H, the edges influenced by one path of length two are limited.
We concurrently analyze two paths, P1 = {e} of length one and P2 = {e, f} of length two. There
are four waiting policies for the trains e, f , which are shown in Figure 2, and four cuts for the
involved vertices e, f and t, shown in Figure 1. It is easy to verify that the costs of the cuts are
equal to the costs of the paths for the corresponding waiting policies. As this holds for all paths,
it is also true for the whole network N . Hence, the cost of a cut [S, S̄] corresponds to the total
delay of the waiting policy ∆ = S,Ω = S̄ \ {t}. ¥

This approach can be extended to passenger paths changing trains twice. The key idea
is to build an additional structure for each path P of length three. Basically, we use the same
construction as in the previous reduction for accounting the (T − δ) weight which delayed paths
experience when they are dropped. For paths using three trains at most one such edge can traverse
the cut. As for the δ delay, we cannot maintain the previous reduction, as two edges weighted with
δ · w(P) could traverse the cut. This problem can be solved by introducing an additional vertex

4

for each path. The weights of the edges connecting it will be such that it will be in S as soon as
one vertex of the path is in S. Finally, we can add an edge connecting the vertex to t, with weight
δ ·w(P): this edge will be in the cut as soon as P is delayed, providing the correct weight for being
delayed. So, we extend the previous reduction for paths P composed by three edges, implying a
double transfer, as follows (see Figure 3). For each such path P = {e1, e2, e3}, we add a vertex vP .
The vertices ei ∈ P are connected to vP through edges (ei, vP) of weight c(ei, vP) = ∞. Further,
we add edges (e1, e2), (e2, e3), w(e1, e2) = w(e2, e3) = (T − δ) ·w(P), and an edge (vp, t) of weight
w(vp, t) = δ · w(P).

Lemma 3.2. The cost of every directed s − t-cut [S, S̄] in N is equivalent to the total delay on

the network G when applying the policy ∆ = S−,Ω = S̄−, where S− = S \ {vP : P ∈ P, |P | =
3}, S̄− = S̄ \ ({t} ∪ {vP : P ∈ P, |P | = 3}), given that passengers transfer at most twice. Hence,
the minimum directed s− t-cut in N is equivalent to the minimum delay strategy on G, given that

passengers transfer at most twice.

Proof. We analyze what happens for a path P = {e1, e2, e3} of length three with weight w(P), as
we have proved before that the lemma applies for shorter paths. The minimality argument then
directly follows.

First, we note that due to the infinite weights of the edges (ei, vP), as soon as at least one
of the vertices {e1, e2, e3} is in S, vP will be in S, contributing δ · w(P) to the cut’s cost, which
is correct. Second, it is only possible for P to miss a train either when changing from e1 to e2 or
from e2 to e3. In both cases, only one edge with weight (T − δ) ·w(P) will be in the cut, bringing
the total cost of the cut to T · w(P), i.e. the cost of missing a connection. ¥

Theorem 3.3. The minimum delay policy for (G, e0,P, w, δ, T) where paths do not transfer more
than twice can be found efficiently by reduction to a polynomial size directed minimum s − t-cut

problem.

Proof. When building the graph N , we introduce a vertex for each train and for each path of length
three, i.e. O(|E|+|P|) vertices. Similarly, we introduce one edge (e, t) for each train and O(1) edges
for each path, i.e. O(|E|+ |P|) edges in total. A minimum directed cut on a graph with n vertices
and m edges can be found in O(nm log n) time[ST83]. Hence, we need O((|E|+ |P|)2 log(|E|+ |P|))
to find a minimum delay policy. ¥

4 Minimum Cut Reductions for Special Cases

Next, we show how the min-cut approach can be extended to tree-like networks with arbitrary
paths as well as to trains with intermediate stops with passengers transferring at most once.

4.1 Out-Trees

The proposed reduction can be adapted straight forwardly to paths with arbitrary length, given
that the graph G is an out-tree, i.e. a directed tree where all edges are directed from the root node
to the tree’s leaves. [Sch02] showed that the “never-meet-property” applies to out trees, hence the
delay management problem can be solved efficiently. Our reduction is another method to solve
this special network structure by a purely combinatorial algorithm.

We transform (G = (V,E), e0,P, w, δ, T) into the graph N = (H = (U,F), s, t, c), s, t ∈
U, c : F → N. As before, all edges E are mapped to vertices U ; we add a vertex t to U , and set
s = e0, the train with primary delay. For each path P = {f1, . . . , fl}, fi ∈ E, we add the following
edges and edge weights: (f1, t) with weight c(f1, t) = δ · w(P), which accounts for the cost of a
path if it is delayed; (fi, fi+1),∀i ∈ {1, . . . , l − 1} with weight c(fi, fi+1) = (T − δ) · w(P), which
account for the additional cost of a path if, once delayed, it is dropped.

5

Lemma 4.1. The cost of the minimum s − t-cut [S, S̄] on N equals the total weighted delay of

the minimum delay waiting policy for (G, e0,P, w, δ, T), given that G is an out tree. One optimal
policy is ∆ = S,Ω = S̄ \ {t}.

Proof. Observe that on a tree, an optimal waiting policy has the following structure: a train e may
wait only if its feeder train f did also wait. Were this not the case, i.e. a train e waited although
its feeder train f did not, such policy would introduce some delay, namely at least the delay of all
paths starting with the newly delayed train. On the other hand, if we transformed this solution
and let e and all its direct and indirect successors depart on time, we would cause zero delay for
that branch of the tree, whilst causing no additional delay to the rest of the tree. The same applies
for the cut: as soon as a vertex v is in S̄, all vertices which can be reached from v through the
directed edges remain in S̄. There are in fact no edges connecting vertices in S to them, whereas
there are some connecting them to t ∈ S̄ (which would cause additional costs were they in S).

Given a path P = {f1, f2, . . . , fl}, if {f1, f2, . . . , fi} ⊂ S (the path is delayed) the edge
(f1, t) is in the cut and accounts for δ · w(P) delay, which is correct. If i = l, the whole path is
delayed; no other edge related to P will traverse the cut, either. If i < l, {fi+1, . . . , fl} ⊂ S̄, the
path is dropped. In this case, the edge (fi, fi+1) traverses the cut, contributing to its cost with
(T−δ) ·w(P). In total, T ·w(P) cost is in the cut for path P , which is correct. Finally, if S∩P = ∅,
the path is not delayed. Accordingly, no edge traverses the cut. ¥

4.2 Train Lines

The minimum cut approach can also be extended to train networks where trains have intermediate
stops, given that the passengers transfer at most once. We assume the passenger paths are given
as in the single source delay management problem. The set R of trains with intermediate stops
are represented as non-empty, edge disjoint paths, R = {f1, . . . , fr}, fi ∈ E, 1 ≤ i ≤ r. All edges
in the graph are direct train connections. By restricting |R| = 1,∀R ∈ R, we get the single source
delay management problem. Since we assume tight timetables, all subsequent edges in a train’s
path are delayed as soon as some edge delays.

Similarly to the previous reductions, we map the edges E to vertices U , add a vertex t to
U and set s = e0. For each train R = {f1, f2, . . . , fr} we introduce edges (fi, fi+1), 1 ≤ i < r with
weight w(fi, fi+1) = ∞. As soon as fi ∈ S, such edges prevent the vertices fk, i < k ≤ r from
being in S̄, providing the required consistency that delayed trains cannot catch up their delay.
Hence, each train in R can become delayed, but it will never be on time again.

The edges and their weights are defined as follows. For all the paths P = {f1, . . . , fl}, fi ∈ R

using only train R, and which hence do not connect, we introduce the edges (f1, t), (fl, f1) with
weights w(f1, t) = w(fl, f1) = δ ·w(P). For the paths P = {f1, . . . , fl, g1, . . . , gm}, fi ∈ R1, gi ∈ R2,
which use two trains and thus need to connect, we must extend the single train reduction above.
As before, we introduce (f1, t), (fl, f1), w(f1, t) = w(fl, f1) = δ ·w(P). These edges account for the
delay that can be accumulated on the first train. Additionally, we introduce (fl, g1), w(fl, g1) =
(T−δ)·w(P); such edges account for the additional dropping delay passengers experience if the first
train is delayed and the second departs on time. Finally, (gm, fl), w(gm, fl) = δ · w(P) accounts
for the delay passengers experience if they get delayed on the second train.

Lemma 4.2. The cost of the minimum s − t-cut [S, S̄] on N equals the total weighted delay of

the minimum delay waiting policy for (G, e0,P,R, w, δ, T), given that passengers transfer at most
once.

Proof. The proof is done by case analysis, by distinguishing passengers that use only one train from
passengers which connect. Consider a path P = {f1, . . . , fl}, fi ∈ R using only train R. Notice
that such paths can be delayed, but never dropped. Assume the path starts delayed: then, f1 ∈ S.
Accordingly, (f1, t), w(f1, t) = δ ·w(P) will be in the cut. As all the following vertices for this train
will also be in S, the edge (fl, f1) will not traverse the cut. On the other hand, if the path gets

6

delayed during its journey, f1 ∈ S̄, fl ∈ S. In this case, only the edge (fl, f1), w(fl, f1) = δ · w(P)
will be in the cut. If the train is not delayed, no edge is in the cut.

Consider a path P = {f1, . . . , fl, g1, . . . , gm}, fi ∈ R1, gi ∈ R2 using two trains, R1 and R2.
We have already shown that we account the delays accumulated on the first train correctly, and
thus extend these cases. Assume the first train is delayed. We have already accounted for the
weight δ · w(P). If the second train R2 departs on time, the path is dropped. As g1 ∈ S̄, the cut
is additionally traversed by the edge (fl, g1) having weight (T − δ) ·w(P). This gives, in total, the
correct weight T ·w(P) for the path. If P is dropped and R2 delays before or at gm, then gm ∈ S.
In this case as well, no additional edge traverses the cut, as fl ∈ S. On the other hand, if the
second train is delayed when passengers transfer to it, the passengers do not miss their connection
and arrive at their target station with delay δ. As in this case {g1, . . . , gm} ⊂ S, no other edge
related to P traverses the cut, and the total delay for the path is δ ·w(P). Assume the first train is
on time. We have not accounted for any weight in the cut yet, and {f1, . . . , fl} ⊂ S̄. If the second
train R2 eventually delays during the path, then gm ∈ S. Thus, the edge (gm, fl) traverses the
cut, providing the weight δ · w(P). Note that if g1 ∈ S, the edge (fl, g1) traverses the cut in the
wrong direction, and will not be accounted for. ¥

5 Multiple Path Delays on a Railway Corridor

This section describes a model for multiple primary delays on a railway corridor. For this model,
we present an enumeration tree, and show that equivalent subtrees of that enumeration tree can
be pruned. This observation leads to a polynomial time algorithm for the minimum total weighted
passenger delay objective. Finally, we show that the pruned enumeration tree algorithm boils down
to a dynamic programming algorithm.

5.1 The model

The model in this section has two specific characteristics. First, we consider a corridor in the
railway network, and deal with the primary delays that enter that corridor through delayed feeder
trains. Since a corridor corresponds to a path in the railway network, this implies that G is a path.
Second, each passenger path P ∈ P has a primary delay δ(P) ∈ {0, 1}. Such a delayed passenger
path should be interpreted as having arrived with some delayed feeder train. The primary path
delay can take only two values, either one time unit or zero time units. However, our analysis
below only uses the fact that all non-zero primary delays are identical. As before, this implies that
a connecting train either departs as scheduled, or it waits for all delayed passengers.

In this case, we denote the ordered vertex set by V = (v1, . . . , vm+1), with v1 < . . . < vm+1,
and the edge set by E = (e1, . . . , em), with ei = (vi, vi+1). The decision whether a connecting
train waits for delayed passengers or not is modeled by the following wait-depart decision variable:

xi =

{

1 if train ei delays its departure from station vi by one time unit,

0 if train ei departs from station vi as scheduled.

As before, the objective function of the model is to minimize the total weighted path arrival
delay over all possible vectors (x1, . . . , xm) ∈ {0, 1}m.

5.2 Binary enumeration tree

This section describes an m–level binary enumeration tree H for the values of the decision variables
xi. In H, branching between the levels i−1 and i represents choosing a value for the variable xi. A
node at level i in H has a label 〈x1, . . . , xi〉, where x1, . . . , xi are the decisions taken on the unique
path from the root node to that node. The root node itself has the empty label 〈〉. So, the label
〈x1, . . . , xi〉 immediately contains the partial solution at the node, and a leaf node 〈x1, . . . , xm〉 at
level m represents a solution to the model.

7

At node 〈x1, . . . , xi〉, wait-depart decisions have been taken for the trains e1, . . . , ei. We
keep track of the impact of these decisions through the following functions of the nodes (we omit
the node label brackets here to improve readability):

A(x1, . . . , xi) =
{

P ∈ P
∣

∣

∣
s(P) ≤ vi < t(P), P not dropped by x1, . . . , xi

}

,

D(x1, . . . , xi) =
∑

P∈P
dropped by x1,...,xi

T · w(P) +
∑

P∈P:t(P)≤vi

delayed by x1,...,xi

w(P),

Dm(x1, . . . , xm) = D(x1, . . . , xm) +
∑

P∈A(x1,...,xm)

w(P) · xm.

The set of active passenger paths A(x1, . . . , xi) contains all paths P that are traveling in train ei,
given the decisions at node 〈x1, . . . , xi〉. In a sense complementary, D(x1, . . . , xi) contains the
already accumulated weighted delay caused so far by the decisions at node 〈x1, . . . , xi〉. So, at
any level i in H, each path P ∈ P with s(P) ≤ vi is either contained in A(x1, . . . , xi), or its
weighted arrival delay is accounted for in D(x1, . . . , xi). Note that A(x1, . . . , xi) contains paths P

with t(P) = vi+1, although the arrival delay for such paths is known when the decisions x1, . . . , xi

have been taken. In particular, this means that the active path set A(x1, . . . , xm) at a leaf node
may be non-empty. Therefore, Dm(x1, . . . , xm) accounts for the weighted arrival delay at vm+1 of
all passenger paths P on train em, given the decisions at node 〈x1, . . . , xm〉. An optimal solution
to our model is then represented by a leaf node 〈x1, . . . , xm〉

∗ that attains a minimum value
Dm(x1, . . . , xm).

For the root node 〈〉, we set D() = 0, A() = ∅. Below, we specify the initialization for the
child nodes 〈0〉 and 〈1〉 of the root node 〈〉. Next, we describe a general child node 〈x1, . . . , xi, xi+1〉
with parent node 〈x1, . . . , xi〉. Since the values of A(x1, . . . , xi+1) and D(x1, . . . , xi+1) depend on
the parent’s values and on the values of the decisions xi+1 and xi, we distinguish between the four
possible combinations for a child node 〈. . . , xi, xi+1〉.

Initialization of 〈0〉 and 〈1〉

A(0) = {P ∈ P|s(P) = v1, δ(P) = 0}, A(1) = {P ∈ P|s(P) = v1},

D(0) =
∑

P∈P:
s(P)=v1,δ(P)=1

T · w(P), D(1) = 0.

〈. . . ,0,0〉 nodes

A(x1, . . . , xi, xi+1) = A(x1, . . . , xi) \ {P ∈ P|t(P) = vi+1} ∪ {P ∈ P|s(P) = vi+1, δ(P) = 0},

D(x1, . . . , xi, xi+1) = D(x1, . . . , xi) +
∑

P∈P:
s(P)=vi+1,δ(P)=1

T · w(P).

〈. . . ,0,1〉 nodes

A(x1, . . . , xi, xi+1) = A(x1, . . . , xi) \ {P ∈ P|t(P) = vi+1} ∪ {P ∈ P|s(P) = vi+1},

D(x1, . . . , xi, xi+1) = D(x1, . . . , xi).

〈. . . ,1,0〉 nodes

A(x1, . . . , xi, xi+1) = {P ∈ P|s(P) = vi+1, δ(P) = 0},

D(x1, . . . , xi, xi+1) = D(x1, . . . , xi) +
∑

P∈A(x1,...,xi):
t(P)>vi+1

T · w(P) +
∑

P∈P:
s(P)=vi+1,δ(P)=1

T · w(P) +
∑

P∈A(x1,...,xi):
t(P)=vi+1

w(P).

〈. . . ,1,1〉 nodes

8

A(x1, . . . , xi, xi+1) = A(x1, . . . , xi) \ {P ∈ P|t(P) = vi+1} ∪ {P ∈ P|s(P) = vi+1},

D(x1, . . . , xi, xi+1) = D(x1, . . . , xi) +
∑

P∈A(x1,...,xi):
t(P)=vi+1

w(P).

As an example, and since it is a special case, we briefly discuss the case of a 〈. . . , 1, 0〉 node.
Because xi = 1 and xi+1 = 0, all paths in A(x1, . . . , xi) not ending in vi+1 cannot transfer to train
ei+1 and are dropped, facing a weighted arrival delay of T ·w(P). Train ei+1 is also missed by all
paths P ∈ P starting at vi+1 with primary delay δ(P) = 1, so these paths also face a weighted
arrival delay of T · w(P). Further, since xi = 1, all paths P ∈ A(x1, . . . , xi) ending at vi+1 arrive
with a weighted arrival delay of w(P). Finally, the only paths P that do depart with train ei+1

are those starting at vi+1 and having δ(P) = 0.

5.3 Pruning equivalent subtrees

A 〈. . . , 1, 0〉 enumeration tree node implies that all passengers wanting to transfer from train ei
to train ei+1 will miss their connection, so none of the paths in A(x1, . . . , xi) will make it into
A(x1, . . . , xi, xi+1). Therefore, the subtree rooted at node 〈x1, . . . , xi+1〉 is in a sense independent
of the decisions x1, . . . , xi taken before. The following Lemmas show that this independence allows
us to prune the enumeration tree significantly.

Lemma 5.1. For an enumeration subtree rooted at node 〈x1, . . . , xi〉, let

D〈x1,...,xi〉(xi+1, . . . , xi+k) := D(x1, . . . , xi+k)−D(x1, . . . , xi),

that is, the accumulated weighted delay in the subtree node 〈xi+1, . . . , xi+k〉. Any two enumeration
subtrees rooted at 〈x1, . . . , xi−1, xi〉 and 〈x

′
1, . . . , x

′
i−1, x

′
i〉 with xi−1 = x′i−1 = 1 and xi = x′i = 0

are equivalent in the sense that

D〈x1,...,xi〉(xi+1, . . . , xi+k) = D〈x′

1
,...,x′

i〉
(xi+1, . . . , xi+k), for k = 1, . . .m− i.

Proof. Note that the subtree root 〈x1, . . . , xi〉 plays the role of the empty labeled root 〈〉 in the orig-
inal tree. We use the shorthand notation 〈. . . , 1, 0〉 for some node with a label 〈x1, . . . , xi−2, 1, 0〉.
From the construction of 〈. . . , 1, 0〉 nodes, it is clear that

A(. . . , 1, 0) = {P ∈ P|s(P) = vi, δ(P) = 0}.

So, A(. . . , 1, 0) is the same for each node 〈. . . , 1, 0〉. Therefore, both the enumeration subtrees
rooted at 〈x1, . . . , xi〉 and 〈x

′
1, . . . , x

′
i〉 start with the same path set A(. . . , 1, 0), and will thus have

accumulate the same weighted delay until subtree node 〈xi+1, . . . , xi+k〉. ¥

Lemma 5.2. Of all subtrees rooted at 〈x1, . . . , xi+1〉, with xi = 1, xi+1 = 0, it suffices to explore
the single subtree with root

〈x1, . . . , xi+1〉
∗ = argmin

〈x1,...,xi+1〉

{

D(x1, . . . , xi+1)
∣

∣

∣
xi = 1, xi+1 = 0

}

(1)

Proof. Lemma 5.1, with k = m − i, implies that the minimum of D(x1, . . . , xi+1, xi+2, . . . , xm)
and D(x′1, . . . , x

′
i+1, xi+2, . . . , xm) is determined by the minimum value of D(x1, . . . , xi+1) and

D(x′1, . . . , x
′
i+1). ¥

5.4 Analysis of the algorithm

Because of the pruning described in Lemma 5.2, the number of nodes in the enumeration tree can
be reduced significantly from O(2m) to O(m3), as is stated by the following Lemma. Moreover, this
leads to an overall worst case running time of O(m5) for the pruned enumeration tree algorithm.

9

Lemma 5.3. The pruned enumeration tree has O(m3) nodes.

Proof. In order to count the number of nodes in the enumeration tree, we define the following
variables:

N0(i) The number of nodes 〈x1, . . . , xi−1, 0〉 at level i.
N1(i) The number of nodes 〈x1, . . . , xi−1, 1〉 at level i.

From the definition of the initialization phase, it follows that N 0(1) = N1(1) = 1. At level i+1, a
child node 〈. . . , 1〉 is created for every parent node 〈. . . , 0〉, and also for every parent node 〈. . . , 1〉.
Therefore, N1(i+ 1) = N0(i) +N1(i). Further, for every parent node 〈. . . , 0〉, a child node . . . , 0〉
is created. But, by Lemma 5.2, one single child node 〈. . . , 0〉 is created for all parent nodes 〈. . . , 1〉.
This yields N0(i+ 1) = N0(i) + 1. Solving the recurrences

N0(1) = 1, N1(1) = 1,

N0(i+ 1) = N0(i) + 1, N1(i+ 1) = N0(i) +N1(i),

gives N0(i) = i and N1(i) = 1
2 i

2− 1
2 i+1. So, the total number of nodes at level i is O(m2). With

m levels, the pruned enumeration tree has O(m3) nodes in total. ¥

Theorem 5.4. The railway delay management problem on a corridor with multiple {0, 1} primary
passenger path delays can be solved in O(m5) time.

Proof. The pruned enumeration tree has O(m3) nodes, and at each node at most |P| = O(m2)
paths have to be evaluated to compute the functions A(.) and D(.). ¥

5.5 A dynamic programming view

This section shows that the pruned enumeration tree algorithm can also be written as a dynamic
program. The dynamic program is stated with the following two partial solution value functions:

z10(i, k) = min
(x1,...,xi)

{

D(x1, . . . , xi)
∣

∣

∣
xk−1 = 1, xk, . . . , xi = 0

}

∀ k ≤ i,

z101(i, j, k) = min
(x1,...,xi)

{

D(x1, . . . , xi)
∣

∣

∣
xk−1 = 1, xk, . . . , xj−1 = 0, xj , . . . , xi = 1

}

∀ k < j ≤ i.

The function z10(i, k) denotes the minimum value of all partial solutions where anything can have
happened until train ek−2, train ek−1 departs delayed, and all subsequent trains ek, . . . , ei depart
as scheduled. Similarly, the function z101(i, j, k) denotes the minimum value of all partial solutions
where anything can have happened until train ek−2, train ek−1 departs delayed, the next trains
ek, . . . , ej−1 depart as scheduled, and all subsequent trains ej , . . . , ei depart delayed again. The
subscripts for the functions z10 and z101 stand for the structure of the last significant events in the
function’s partial solutions.

Similar to A(x1, . . . , xi), we define the set of paths P ∈ P that are active in the best partial
solution represented by z101(i, j, k) as follows:

A(i, j, k) =
{

P ∈ P
∣

∣

∣
s(P) ≥ vk, t(P) > vi, P not dropped in z101(i, j, k)

}

,

Using A(x1, . . . , xi), the recursion formulas for the dynamic program are expressed as

z10(i+ 1, k) =

z10(i, k) +
∑

P∈P:
s(P)=vi+1,δ(P)=1

T · w(P) if i+ 1 > k,

min
j,k′

{

z101(i, j, k
′) +

∑

P∈A(i,j,k′):
t(P)>vi+1

T · w(P) +
∑

P∈P:
s(P)=vi+1,δ(P)=1

T · w(P) +
∑

P∈A(i,j,k′):
t(P)=vi+1

w(P)

}

if i+ 1 = k,

10

and

z101(i+ 1, j, k) =

z101(i, j, k) +
∑

P∈A(i,j,k):
t(P)=vi+1

w(P) if i+ 1 > j,

z10(i, k) if i+ 1 = j.

These recursions uniquely correspond to the four cases for the updates of the functions
D(x1, . . . , xi+1) for the enumeration tree node 〈x1, . . . , xi+1〉. In particular, the case i+ 1 = k for
z10(i+1, k) corresponds to the pruning of the enumeration tree when only a single 〈. . . , 1, 0〉 node
is created at level i+ 1.

5.6 Extensions of the algorithm

From the analysis above, it is clear that the algorithm also works for primary path delays in {0, δ}.
Moreover, the same approach can be applied to an out-tree graph G. A closer inspection of the
dynamic program’s recursion formulas discloses that it can also be carried out backwards. Indeed,
the pruned enumeration tree algorithm also functions backwards, after some adjustment of the
functions A(.) and D(.). From this, it follows that the same approach can also be applied to
in-trees.

Finally, the dynamic programming algorithm can be extended for the case of K primary
delay categories, that is, δ(P) ∈ {δ1, . . . , δK}. However, this extension comes at the cost of a worst
case running time of mO(K).

6 Hardness Results for Dynamic Path Choices

[Sch02] showed that the bi-criterial delay management problem (BDM) is weakly NP-complete.
The reduction schema can easily be ported to the single source delay management problem for
bi-criterial objectives. We omit these reductions, which are all from knapsack [GJ79, Problem
MP9].

To our knowledge, no hardness result is yet known for the non-constrained single source
delay management problem. In the following, we show that the decision version of the dynamic
path choice delay management problem described hereafter is strongly NP-complete. To our
knowledge, it is the first strong hardness result shown for a delay management problem.

The dynamic path choice delay management problem considers a set S of commodities.
Each commodity (s, t) ∈ S represents a source s ∈ V a the destination t ∈ V of passengers on the
network. Passengers choose their route dynamically, according to the connections causing them
the least delay. As we assume infinite passenger capacity on trains, it is clear that given some
delays on the network, all passengers of a commodity (s, t) can be routed from s to t along the
same minimum cost path. As in the single source delay management problem, we assume a single
primary delayed train e0. We analyze the case of all commodities having weight one. It is clear
that allowing arbitrary weights does not make the problem easier.

We define the dynamic path choice delay management problem: given an instance (G, e0,S,
δ, T) find the set ∆ ⊂ E of waiting trains and PS , the routes for each commodity (s, t) ∈ S, such
as to minimize the total delay of the paths.
Definition: Decision dynamic path choice delay management problem
Instance: A dynamic path choice delay management problem instance (G, e0,S, δ, T), k ∈ N.
Question: Does a delay policy exist, such that the total path delay is less than or equal to k?

Theorem 6.1. The decision version of the dynamic path choice delay management problem is

NP-complete

Proof. Obviously, the decision problem is in NP . We show that it is NP-hard by a reduction from
3-SAT [GJ79, Problem LO2].

11

vt
x2

v
¬x2
x2

x2
v

x2
x2

vs
x2

vt
x1

x1
v

x1
x1

v
¬x1
x1

vs
x1

x4 x5

vs
cj

cj = (x1 ∨ ¬x2 ∨ ¬x3)
ckvt

cj

v
¬x3
x3x3

vs
x3

vt
x3

v
x3
x3

v0
s

v1
s

Figure 4: Reduction from 3-SAT to decision dynamic path choice delay management problem: we
show the gadget for each variable xi, as well the construction for one literal of a generic clause
cj = (x1 ∨ ¬x2 ∨ ¬x3), and a sketch for ck = (x3 ∨ ¬x4 ∨ ¬x5).

Given a 3-SAT formula C with m clauses cj over n variables xi, we build the dynamic path
choice delay management problem instance (G, e0,S, δ, T) as follows (see Figure 4): We set δ = 1,
T = 2, k = n. These delay values enforce additional delay for delaying on-time commodities and
for dropping primary delayed commodities. We choose k such that it is used entirely by the delayed
commodities we introduce.

We build the vertex set V and the edge set E of G as follows: first, we introduce two
vertices v0

s and v1
s , which we connect through an edge e0 = (v0

s , v
1
s), the primary delayed train.

For each variable xi ∈ C we introduce four vertices, vsxi
, vtxi

, vxi
xi
, v¬xi

xi
and a commodity (v0

s , v
t
xi
).

The vertices are interconnected through four edges, such as to build two edge disjoint directed
paths from vsxi

to vtxi
: (vsxi

, vxi
xi
), (vxi

xi
, vtxi

) and (vsxi
, v¬xi

xi
), (v¬xi

xi
, vtxi

). The vertex v1
s is connected

to vsxi
. The commodities have primary delay, and exactly exhaust the value of k. The goal of the

construction is the following: if the variable xi in the 3-SAT formula is set to true, the commodity
(v0

s , v
t
xi
) is routed through the vertex vxi

xi
; if it is false, through v¬xi

xi
.

For each clause cj we introduce two vertices, vscj
, vtcj

and a commodity (vscj
, vtcj

). For each

literal ` in the clause, we add the edges (vscj
, v¬xi

xi
), (vtxi

, vtcj
) if ` = xi, or (vscj

, vxi
xi
), (vtxi

, vtcj
) if

` = ¬xi. That is, we build a path through the literal’s variable xi gadget, using the vertex ¬`.
The idea of the commodity is the following: it will be routed through the variable gadget of the
literal satisfying the clause.

First, note that the reduction is linear in the problem size: we introduce O(n+m) vertices,
paths and edges. Second, we claim that 3-SAT is a yes instance if and only if the constructed
decision dynamic path choice delay management problem is a yes instance.

We remark that the decision dynamic path choice delay management problem is a yes
instance if and only if it is possible to route the primary delayed commodities through delayed
edges and the on-time commodities through non-delayed edges.

Assume 3-SAT is satisfiable. We route the delayed commodities through the vertex corre-
sponding to the truth value the variable assumes. For each clause, we route the on-time commodity
through the vertex corresponding to a variable satisfying the clause. These routes cause no addi-
tional delay.

Assume there is a delay policy. To each variable, we assign the value of the corresponding
vertices the delayed commodities are routed through. By construction, the clause is satisfied at
least by the variable corresponding to the vertex the clause-commodity is routed through. ¥

This reduction actually is also an inapproximability result. This is obvious for the objective
function accounting only for the additional delay, as we compare a zero-valued optimal solution
with a non-zero approximate solution. The same holds for the considered objective: we can
set an arbitrarily large period T and arbitrarily many parallel clause-commodities. Such choices

12

arbitrarily penalize the approximate solution dropping a variable-commodity or delaying one set
of parallel clause-commodities.

7 Future Research

This paper discussed the algorithmic complexity of three variants of the event-activity model for
railway delay management.

On the other hand, delay management is also an on-line problem. In such a setting, not the
entire structure of the primary delays is known to the algorithm. On-line approaches are probably
of particular interest to practical users. We have some preliminary results for on-line models on a
path. Extensions to general graphs with multiple delays are of great interest, and decision policies
for such models could be useful in real-life as well.

References

[APW02] L. Anderegg, P. Penna, and P. Widmayer. Online train disposition: to wait or not to
wait? In Dorothea Wagner, editor, Electronic Notes in Theoretical Computer Science,
volume 66. Elsevier, 2002.

[GJ79] M. Garey and D. Johnson. Computers and Intractability – A Guide to the Theory of
NP-Completeness. Freeman and Company, New York, 1979.

[Gov98] R. Goverde. Optimal scheduling of connections in railway systems. Technical report,
TRAIL, Delft, The Netherlands, 1998.

[Gov99] R. Goverde. Transfer stations and synchronization. Technical report, TRAIL, Delft,
The Netherlands, 1999.

[HHW99] D. Heimburger, A. Herzenberg, and N. Wilson. Using simple simulation models in
the operational analysis of rail transit lines: A case study of the MBTA’s red line.
Transportation Research Record, 1677:21–30, 1999.

[Man01] S. Mansilla. Report on disposition of trains. Technical report, ETH Zurich, 2001.

[Nac98] K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilita-
tion Thesis, Braunschweig, Germany, 1998.

[OW99] S. O’Dell and N. Wilson. Optimal real-time control strategies for rail transit operations
during disruptions. In Computer-Aided Transit Scheduling, pages 299–323. Lecture Notes
in Economics and Math. Sys., Springer-Verlag, 1999.

[Sch01] A. Schöbel. A model for the delay management problem based on mixed-integer-
programming. In Christos Zaroliagis, editor, Electronic Notes in Theoretical Computer
Science, volume 50. Elsevier, 2001.

[Sch02] A. Schöbel. Customer-oriented optimization in public transportation. Habilitation The-
sis, Universität Kaiserslautern, 2002. To appear.

[ST83] D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26(3):362–391, 1983.

13

