Getting the Best Response for Your Erg

Kirk Pruhs'*, Patchrawat Uthaisombut!, and Gerhard Woeginger?

! Department of Computer Science, University of Pittsburgh, USA
{kirk,utp}@cs.pitt.edu
2 Department of Mathematics, University of Twente, The Netherlands
g.]j.woeginger@math.utwente.nl

Abstract. We consider the bi-criteria problem of minimizing the aver-
age flow time (average response time) of a collection of dynamically re-
leased equi-work processes subject to the constraint that a fixed amount
of energy is available. We assume that the processor has the ability to
dynamically scale the speed at which it runs, as do current microproces-
sors from AMD, Intel, and Transmeta. We first reveal the combinatorial
structure of the optimal schedule. We then use these insights to devise a
relatively simple polynomial time algorithm to simultaneously compute,
for each possible energy, the schedule with optimal average flow time
subject to this energy constraint.

1 Introduction

Since the early 1970’s the power consumption of the most common micropro-
cessors has increased by a factor of 3 approximately every 10 years [1]. Power
consumption has always been a critical issue in portable platforms such as cell
phones and laptops with limited batteries (as anyone who has taken their laptop
on a long flight knows). Now power consumption has become a critical issue in
more traditional settings. A 1998 estimate by the Information Technology In-
dustry Council is that computers consume 13% of the electrical power generated
in the United States [I]. Further, recent estimates are that energy costs are 25%
of the total cost of operating a server farm [5]. Limiting power consumption has
become a first-class architectural design constraint in almost all settings [5].
Several strategies have been proposed to limit power consumption in micro-
processors. Here we focus on the highest profile strategy: dynamic scaling of
speed (or voltage or power). Currently the dominant component of microproces-
sor power usage is switching loss [2]. The switching loss is roughly proportional
to V2f, the voltage squared times the frequency. But V and f are not inde-
pendent. There is a minimum voltage required to drive the microprocessor at
the desired frequency. This minimum voltage is approximately proportional to
the frequency [2]. This leads to the well known cube-root rule that speed (and
equivalently, frequency) is roughly proportional to the cube-root of the power,

* Supported in part by NSF grant CCR-0098752, NSF grant ANIR-0123705, and NSF
grant ANI-0325353.

T. Hagerup and J. Katajainen (Eds.): SWAT 2004, LNCS 3111, pp. 14-[Z8 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Getting the Best Response for Your Erg 15

or equivalently, that the power is proportional to the speed cubed (or frequency
cubed) [2]. Current microprocessors from AMD, Intel and Transmeta allow the
speed of the microprocessor to be set dynamically. For example, a Pentium-III
processor uses 9 Watts when run at 500 megahertz but uses 22 Watts when run
at 650 megahertz [3]. Note this roughly comports with what is predicted by the
cube-root rule. The speed of the microprocessor can generally be controlled by
the microprocessor, the operating system, or a user application.

One natural question is then what policy should be used to set the speed,
say by the operating system. The speed setting policy is symbiotically related to
the scheduling policy for determining which process to run. This is a bi-criteria
optimization problem. The OS wants to both optimize some Quality of Service
(QoS) measure that it provides to the applications, and to minimize the energy
that it uses. The way in which this problem has been formalized in the literature
[14] is to assume that the processes have deadlines, and then find the minimum
energy schedule where all deadlines are met. However, in general computational
settings, most processes do not have natural deadlines associated with them,
which is why operating systems like Unix and Windows do not have deadline
based schedulers. By far the most commonly used QoS measure in the computer
systems literature is average flow time (average response time), which is the
average over all processes, of the time that that process has to wait between
when it is released until the time that is was completed.

Thus, in this paper we initiate the study of the bi-criteria problem of min-
imizing average flow time and minimizing energy usage. Note that these two
criteria are in opposition, that is, increasing energy usage will decrease average
flow time. The simplest way to formalize a bi-criteria optimization problem is
to fix one parameter and to optimize the other parameter. For this problem it
seems logical to us to initially fix the available energy, and then to minimize
average flow time. This is certainly most logical in a setting such as a laptop
where energy is provided by a battery. In this paper, we restrict our attention
to the case that all processes have the same amount of work. The most impor-
tant reason for our adoption of this restriction is that it lets us decouple the
scheduling policy from the speed setting policy, and lets us concentrate our ef-
forts on understanding speed scheduling. In the case of equi-work jobs, it is easy
to see that the optimal scheduling policy is First-Come-First-Served. We assume
that power is proportional to the speed to some power «, which generalizes the
cube-root rule.

We first reveal the combinatorial structure of the optimal schedule. This
structure has some surprising aspects to it. For example, intuitively the less en-
ergy available, the slower that jobs should be run in the optimal schedule. But we
show that in fact this intuition is not always correct, that is, as energy decreases
some jobs will actually be run at a higher speed in the optimal schedule. So none
of the obvious properties (speed, energy used, etc.) of a job are monotone func-
tions of energy. Fortunately, we are saved by the fact that essentially everything,
including the underlying schedules, is a continuous function of energy. It also
helps that over all possible amounts of available energy, that there are only lin-

16 K. Pruhs, P. Uthaisombut, and G. Woeginger

early many possible structurally different schedules. Using these facts we obtain
an O(n?log L) time algorithm to find all of these schedules, as well as the energy
range where each schedule is optimal. Here L is range of possible energies divided
by the precision that we desire. Because this problem is highly non-linear, we
can get solutions where the variables are not only irrational, but don’t appear
to have any simple short representation. In this paper, we will brush this finite
precision issue under the carpet. Handling this issue is rather orthogonal to the
combinatorial issues in which we are interested. Also as a side product, these
schedules can also be used to compute the schedule that optimizes energy usage
subject to a constraint on average flow time.

One of our students, Aleksandar Ivetic, implemented a variation of our al-
gorithm in Mathematica, and created a GUI in Java. The GUI lets you enter
an arbitrary instance. The GUI also has a slider that lets change the available
energy, and view the resulting optimal schedule. By moving the slider, you essen-
tially get a movie of the evolving optimal schedule. The software can be found
at http://www.cs.pitt.edu/~utp/energy.

We believe that this paper should be viewed as an initial investigation into a
research area where there appear to be many combinatorially interesting prob-
lems with real application. We discuss this further in the conclusion.

1.1 Related Results

The way in which this problem has been formalized in the literature [7/4] is to
assume that the processes have deadlines, and then find the minimum energy
schedule where all deadlines are met. In [7] a polynomial-time offline algorithm
for computing the optimal schedule is presented. Further [7] gives an online
algorithm with constant competitive ratio. In 4] a variation on this problem is
considered. There it is assumed that the processor can be put into a lower-power
sleep state, and that bringing the processor back to the on state requires a fixed
amount of energy. The paper [4] gives a polynomial-time offline algorithm with
an approximation ratio of 3, and an online algorithm with a constant competitive
ratio.

2 Definitions, Notation, and Preliminaries

The input consists of n jobs, referenced by the integers from 1 to n. The jobs
will be processed on one machine. We normalize the unit of work so that each
job has unit work. Job ¢ arrives at its release time r;. We will assume that the
jobs are labeled so that ;1 < ro < ... < r,. Note that we assume no pair of
jobs have identical release dates to ease the exposition. At the end we’ll explain
how the result can be easily generalized to the case that jobs can have identical
release dates. A schedule specifies, for each time, the job that is run, and the
speed at which that job is run. If a job 7 is run at speed s for ¢ units of time,
then s - ¢ units of work are completed from 7. The job i is completed at the time
C; when all of its work has been completed. Let F; = C; — r; be the flow time

Getting the Best Response for Your Erg 17

of job i, and F = Y"1 ,(C; — r;) be the total flow time. There is a bound A on
the amount of available energy. If a job 7 is run at speed s then we assume the
power (energy used per unit time) is s®. We assume throughout the paper that
a > 1. A schedule is feasible at energy level A if it completes all jobs, and the
total amount of energy used is no more than A. We say that a feasible schedule
is optimal for energy level A if it has minimum total flow time (or equivalently,
minimum average flow time) among all feasible schedules at energy level A.

It is easy to see that the optimal schedule runs jobs in First-Come-First-
Served order. Thus, without loss of generality, we may only consider schedules
where C7 < Cs < ... < C,,. Further, there is always an optimal schedule that runs
each job at a fixed speed. This was noted in [7], and immediately follows from
the convexity of the speed to power function. Therefore, to specify an optimal
schedule for this problem, it suffices to specify a speed s; for each job i. Let
x; = 1/s; be the time that job i is processed, p; = s be the power for job i,
and e; = x;p; = sf‘_l be the energy used by the ith job. Let E =" | e; be the
total energy used.

Let p = s be the power of the nth job, which we will see will play an im-
portant role in our results. To refer to a particular schedule S when the schedule
in question is not clear from context, we append (S) to our notation, so F(S) is
the total flow time for schedule S.

If the problem is not yet clear to the reader, we refer him/her to the example
instance that we use to illustrate our results in Section Bl

3 Our Results

3.1 Expressing the Problem as a Convex Program

We note that the problem of minimizing total flow time subject to an energy
constraint can be expressed as the following convex program C'P:

n
minimize C = Z C; subject to
i=1

1
Z a—1 <A
i—1 Vi
x; = Cy —max{r;,C;_1} fori=1,...,n

Ci>r; fori=1,...n
C; < Ci+1 for i = 1,...n

We assume that there are dummy variables Cy = 0 and C}, 11 = co. While CP is
not strictly speaking convex, it can be made convex by introducing new variables
t;, and the constraints t; > r;, t; > C;_1, v; = C; — t;, and x; > 1/A. Thus this
problem can be solved in polynomial time by the Ellipsoid algorithm since the
gradients of the constraint and objective functions are efficiently computable [6].
However, this would only solve the problem for one energy bound, would be quite
complex, and is not guaranteed to run in lower order polynomial time.

18 K. Pruhs, P. Uthaisombut, and G. Woeginger

3.2 Configuration Curves

The program C'P prompts us to define what we call configurations. A configu-
ration ¢ maps each job i, 1 <i < n—1, to a relation in {<,=,>}. A schedule is
in configuration ¢ if C; ¢(i) ;41 for all jobs i. So for example if ¢(i) is <, then
C; < riy1. Define a configuration curve Mg(A) to be a function that takes as
input an energy bound A and outputs the optimal schedule (or polymorphically
the total flow time for this schedule), among those schedules in configuration ¢
that use less than A units of energy. Note that My(A) may not be defined for
all A. Let @ be the set of all configurations. Define M(A) as

M(A) = min M, (A).

Our goal is to compute M (A), which is the lower envelope of the exponentially
many configuration curves. The problem is non-trivial because (1) it is non-
trivial to determine the optimal configuration for a given amount of energy, and
(2) even if the optimal configuration is known, it is non-trivial to determine how
the energy should be distributed to the n jobs to minimize total flow time.

As an example, consider the 3 job instance with release times 0, 1 and 3, and
« = 3. There are five configuration curves that are part of M(A). The configu-
ration curves for the configurations >><, ><< and <<< are shown in Figure
[[] from left to right in this order. Note that configuration curves are in general
only defined over a subrange of possible energies. The superposition of all five
configuration curves that make up M(A) are show in Figure 2] We recommend
viewing these figures in color. The corresponding configurations/schedules are
shown in Figure[3 Note that in Figure [that the job released at time 1 is run
at faster speeds as energy decreases from 1.282 to 1.147.

Fig. 1. The configuration curves for the configurations >><, ><< and <<<

Getting the Best Response for Your Erg 19

5| T

Fig. 2. The superposition of the five configuration curves that make up M (A).

more energy S| L
<<<{ d 1 1+ 3 3+d
E=3 oo
=<< 1 2 3 4
E=2.260 ——— T o]
e { 1 2260 3 4.260
E=1.282 __ T T 000
oee 1.328 3 4.673
E=1.147 —— W T OO0
. { 1.399 3 5.017
less energy N e T e e e @) @] i
d 2.145d 3.587d time

Fig. 3. Optimal schedules at different amounts of available energy

3.3 Basic Algorithmic Strategy

We are now ready to describe our basic algorithmic strategy. Intuitively we trace
out the lower envelope M (A) of the configuration curves. We start with A being
large and then continuously decrease A. When A is sufficiently large then it is
easy to see that in the optimal schedule C; < r; 41 for all 4, and that all jobs are
run at the same speed. As we decrease A we need to explain:

— how to compute My(A) for any given configuration ¢,

— how to recognize when the optimal configuration changes from a configura-
tion ¢ to a configuration ¢’, and

— how to find the new optimal schedule when we switch configurations.

If we can accomplish there goals then we could trace out M (A) by continuously
decreasing A, or equivalently ¢.

20 K. Pruhs, P. Uthaisombut, and G. Woeginger

Actually, rather than working with the energy bound A, it will prove more
convenient to work with the power p of job n. We will eventually show in Lemma
Rlthat moving continuously from a high p to a low p is equivalent to continuously
moving from a high A to a low A. Eventually we will explain how to make this
algorithm efficient by discretely changing A and p.

3.4 How to Find the New Optimal Schedule When We Switch
Configurations

We tackle this last goal first by showing that the optimal schedule is unique for
each energy. Thus when two configuration curves intersect on the lower envelope
for some energy A, we know that the underlying schedules are identical. Thus the
optimal schedule for the new configuration is the same as the optimal schedule
for the old configuration.

Lemma 1. The optimal schedule is unique given that ov > 1.

Proof. Assume to reach a contradiction that you have two different optimal
schedules S and T. Consider a third schedule U where for all jobs i, 2;(U) =
(2;(S)+x;(T))/2. We now claim that F(U) < (F(S)+ F(T))/2 = F(S) = F(T)
and E(U) < (E(S)+E(T))/2. From this it follows that neither S or T is optimal
since one can get a better schedule by reinvesting A — E(U) energy into job n
in U to get a schedule with better flow time than F(U). This contradicts the
optimality of S and T

To see that F(U) < (F(S) + F(T))/2 = F(S) = F(T) consider a particular
job b. Then there exists some job a such that Cy,(U) = raJrZz 2 Zi(U). Therefore
by the definition of U, C,(U) = r, + Zi:a(xl(S) + z;(T))/2. But in S it must
be the case that Cy,(S) > r, + Zf:a x;(S) since S must process jobs a through b
between time 7, and Cy(S). Similarly, Cyp(T) > 7, + Z'li):a z;(T). By averaging
these two equations, (Cy(S) + Co(T))/2 > 74 + Zf:a(xi(S) + z;(T))/2. We
know the righthand side of this inequality is exactly Cy(U). Hence, (Cy(S) +
Cy(T))/2 > Cy(U). Since b was arbitrarily chosen, it follows by summing that
FU) < (F(S)+ F(T))/2.

Note that the function f(z) = —L+ is a convex function when o > 1, and
F(&E2) < (f(a) + f(b))/2. It then immediately follows that E(U) < (E(S) +
E(T))/2 on a job by job basis since e;(U) = ((zi(S)+a:i1(T))/2)°‘*1’ and (e;(S) +

ei(T))/2 = (5=t + 79==1)/2.

3.5 How to Compute My(A)

We now consider our second goal. That is, the problem of, given an energy A,
and a fixed configuration ¢, finding the optimal schedule among those schedules
with configuration ¢ and energy at most A. Actually, we restate this problem as:
given a power p, and a fixed configuration ¢, finding the optimal schedule among
those schedules with configuration ¢ and power p on job n. We define a group

Getting the Best Response for Your Erg 21

as a maximal substring of jobs where ¢ (i) is >. More precisely a,a + 1,...,b is
a group if

—a=1,o0r ¢(a—1) is not >, and
— for i =a,...,b—1it is the case that ¢(i) is >, and
— b=mn, or ¢(b) is not >.

This group is open if ¢(b) is <, and this group is closed if ¢(b) is =.
Lemmas 21 3, and [4] establish a relationship between speed s; and speed ;41
depending on whether C; > 1,41, C; < riy1, or C; = 1ri11.

Lemma 2. Ifiis a job in the optimal schedule for energy A such that C; > 141,
then s = p+ s, ;.

Proof. Let € be a small number such that C; +¢ > ;1. Note that e is allowed to
be either positive or negative. Consider the result of increasing x; by €, decreasing
xiy+1 by €, and decreasing x,, by e. This does not change the total completion
time as C; increases by ¢, C), decreases by ¢, and C;y; and all other C}’s remain
unchanged. The change in the energy used, AE(e), is

1 1 L)a—l_’_(1)a—l_(i

— a_l_
xr; + € X Tijg1 — € Tig1 Ty — € Ty

a—l_(_

—1
() (1)
Since the optimal schedule is unique (Lemma), AE(e) must be positive. Oth-
erwise, we could reinvest the energy saved by this change to obtain a schedule
with a better total completion time. Hence the derivative AE’(e) evaluated at
€ = 0 must be 0.

—(a—1 a—1 a—1
(a-1) .

AB(e) = (ite)* (zig1—€)* (zp—¢€)"

Substituting € = 0 and solving for AE’(0) = 0 we get that mla = wla + wal or
i n it+1

equivalently, s§ = s; + s{', ;.

Lemma 3. Ifi is a job in the optimal schedule for energy A such that C; < 11,
then s = p.

Proof. Let € be a small number such that C; 4+ ¢ < r;;1. Note that € is allowed
to be either positive or negative. Consider the result of decreasing x; by e,
and increasing x,, by €. This does not change the total completion time as C;
decreases by € and (), increases by ¢, and all other C;’s remain unchanged. The
change in the energy used, AE(e), is

1 a—1 1 a—1 1
xi—e) (xz) +(xn+e Ty

(

Since the optimal schedule is unique (Lemma), AE(e) must be positive. Oth-
erwise, we could reinvest the energy saved by this change to obtain a schedule

22 K. Pruhs, P. Uthaisombut, and G. Woeginger

with a better total completion time. Hence the derivative AE’(e) evaluated at

e = 0 must be 0.) (D
o — —(a—
AE'(e) = + 4
(€) (z; —€)* (zp+e)™)
Substituting € = 0 and solving for AE’(0) = 0 we get that Tla = L or equiva-

a
Tn

o _ o
& =50

lently, s
Lemma 4. Ifiis a job in the optimal schedule for energy A such that C; = 1;41,
then p < s < p+ s, ;.

Proof. First we show that s§* < sy + 57 ; Assume to reach a contradiction that
there is an optimal solution with —sf + s ; + s;; < 0. Consider the transfor-
mation that increases x; by a small € > 0, and that decreases z;1 by ¢, and
decreases z,, by €. This does not change the total completion time. We now argue
that this decreases the energy used. This is sufficient because one could then get
a contradiction by reinvesting this saved energy into the last job to improve the
total completion time. Note that the transformation will bring us into a new
configuration because C; 4+ € > C; = r;41. The change in energy used, AFE(e),
is then given by Equation (), and its derivative, AE’(¢), is given by Equation
[@). Substituting € = 0 we get that

AE’(O):—ail a—-1 a-1

b T = @ D i) <0
where the inequality follows from the assumption above. Thus, we have a con-
tradiction as claimed.

Next we show that s < s&. Assume to reach a contradiction that there is an
optimal solution with s — sf; < 0. Consider the transformation that decreases
x; by a small € > 0, increases x,, by €. This does not change the total completion
time. We now argue that this decreases the energy used. This is sufficient because
one could then get a contradiction by reinvesting this saved energy into the last
job to improve the total completion time. Note that the transformation will bring
us into a new configuration because C; — ¢ < C; = r; 1. The change in energy
used, AE(e), is then given by Equation [B]), and its derivative, AE’(e), is given
by Equation (@l). Substituting e = 0 we get that

a—1+—(a—1)

« [e%
x5 i

AE'(0) =

=(a—1)(sf —s55) <0
where the inequality follows from the assumption above. Thus, we have a con-
tradiction as claimed.

Lemma [H states how to compute the speeds of the jobs in a group given the
speed of the last job of the group.

Lemma 5. Ifa,a+1,...,b arejobs in a group in the optimal schedule for energy
level A, then s = s + (b—1i)p fori=a,..,b.

Getting the Best Response for Your Erg 23

Proof. This is an immediate application of Lemma [2.

It should now be clear how to compute the speeds/powers of the jobs a,a +
1,...,b in an open group. The power of the last job in the group is p, and the
powers of the earlier jobs in the group are given by Lemma Bl To compute the
speeds of the jobs in a closed group is a bit more involved. Lemma [establishes
a relationship between the speed of the speeds of the jobs in a closed group and
the length of the time period when the jobs in this group are run.

Lemma 6. Ifa,a+ 1,...,b are jobs in a closed group in the optimal schedule

b 1 _
for energy level A, then Y, . Goro=na7e = b+~ Ta

Proof. From the definition of closed group, jobs a,a + 1,...,b run back-to-back,
job a starts at time r,, and job b completes at time r,41. Thus,

b b4 b 1
Th4l = Ta = ;wi :;57 B ; (sp + (b= i)p)t/

where the last equality follows from Lemma [

Lemma [6] gives an implicit definition of s, as a function of p and hence
of the other s;’s in this closed group (using Lemma [). However, it is hard,
if at all possible, to determine the closed form for s;,. Lemma [7] tells us that
Zb L is strictly increasing as a function of s;. Therefore, one can

i=a (sg+(6-)p) /™ S & b: v

determine s, from p by binary search on s,. We can then compute the speed of
other jobs in this closed group using Lemma [l

. b 1 .
Lemma 7. When p is fized, >, _, Gero-0p7~ decreases as sy increases.
Proof. Fori = a,...,b, as s, increases, (s{ + (b—i)p)'/* increases. Thus, 1/(s{ +

(b—14)p)"/ decreases, and so does Zi-’:a W

Finally, we show that continuously decreasing p is equivalent to continuously

decreasing the energy bound A in the sense that they will trace out the same
schedules, albeit at a different rate.

Lemma 8. In the optimal schedules, then energy bound A is a strictly increasing
continuous function of p, and similarly, p is a strictly increasing continuous
function of A.

Proof. We first prove that there is a bijection between p and A in the optimal
schedules, as well as in the optimal schedules restricted to a particular configu-
ration. The fact that a fixed p is mapped into a unique energy should be obvious
from our development to date. That two different p’s can not map to optimal
schedules with the same energy follows from Lemma [Tl

Since the function from p to A is obviously continuous, it then follows that
the function from p to A is either strictly increasing or strictly decreasing. The
fact that function is strictly increasing then follows from looking at the extreme
points. If A is very large, then the optimal configuration is all <, and p is large.
If A is very small, then the optimal configuration is all >, and p is small.

24 K. Pruhs, P. Uthaisombut, and G. Woeginger

3.6 How to Recognize When the Optimal Configuration Changes

We now tackle the second of our three goals: how to recognize when the optimal
configuration changes from a configuration ¢ to a configuration ¢’. The formulas
for computing the speeds of the jobs in the previous section may not yield a con-
figuration equal to ¢. In particular, this could happen if one of the < constraints
is violated, or if there is a last job b in some closed group with si* > si | + p. In
a non-degenerate case, the configuration obtained from p will be different from
¢ by exactly one constraint ¢(i). The next configuration ¢’ is obtained from ¢
by changing ¢(i). If ¢(i) is <, it should be changed to =. If ¢(i) is =, it should
be changed to >. In a degenerate case, all violating ¢(7)’s need to be changed.

3.7 Implementation Details and Time Complexity

To construct an efficient implementation of this algorithm we need to change
p in a discrete fashion. This can be accomplished using binary search to find
the next value for p when the optimal configuration changes. The condition
for determining whether the current configuration is optimal for a particular
p, described in the last subsection, can be computed in linear time. Thus in
something like time O(nlog L) we can find the next configuration curve on the
lower envelope, where L is something like the range of possible values of p divided
by our desired accuracy. It is easy to see that there are only 2n — 1 configuration
curves on the lower envelope as the only possible transitions are from < to =,
or from = to >. Thus we get a running time of something like O(n?log L).

If there are jobs with equal release dates then the only change that is required
is that in the initial configuration all jobs with equal release dates are in one
open group with speeds given by Lemmas [3] and

4 Conclusions and Future Directions

We believe that paper suggest several interesting algorithmic and combinato-
rial research directions. The two most obvious directions are to consider offline
algorithms for arbitrary length jobs, and to consider online algorithms.

First let us consider offline algorithms for arbitrary length jobs. A simple
exchange argument shows that all optimal schedules maintain the invariant that
they run a job with minimal remaining work. Note that this does not uniquely
define the job ordering as the remaining work depends on the speed at which
the jobs were run in the past. While many of our statements carry to the case
of arbitrary job lengths, many do not. In particular,

— The most obvious mathematical programs corresponding to C'P are no longer
convex.

— When a job is broken into multiple pieces due to preemptions, our notion of
configurations breaks down. See Figure [l

— It is not clear that the lower envelope is of polynomial size.

Getting the Best Response for Your Erg 25

more energy

NN\

77 MMM

less energy

Fig. 4. Optimal configurations at different amounts of available energy when jobs have
unit work (left) and arbitrary amount of work (right)

— There will be transitions on the lower envelope corresponding to reordering
of jobs and preemptions. Further optimal schedules can change in a non-
continuous fashion at these transitions. See Figure[dl.

Of course any algorithm implemented in an operating system must be on-
line. Although an analysis of online algorithms seems at least a little tricky for
several reasons. Firstly, it is not quite clear how to most reasonably formalize
the problem. Secondly, the fact that energy is very non-local makes dealing with
equal energy schedules a bit messy. Hopefully our revelation of the structure of
the optimal schedule in this paper will prove useful in this regard.

Acknowledgments. We thank Mahai Anitescu for pointing out that the math-
ematical program C'P could be made convex, and for several helpful discussions.
We thank Aleksandar Ivetic for implementing our algorithm.

References

1. K. Azar. Managing power requirements in the electronics industry. Electronics
Cooling Magazine, 6(4), 2000.

2. D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu, J. Well-
man, V. Zyuban, M. Gupta, and P. Cook. Power-aware microarchitecture: design
and modeling challenges for next generation microprocessors. IEEE Micro, 20(6),
2000.

3. D. Grunwald, P. Lewis, and K. Farkas. Policies for dynamic clock scheduling. In
USENIX Symposium on Operating Systems Design and Implementation, 2000.

4. S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Symposium on
Discrete Algorithms, 2003.

5. T. Mudge. Power: A first-class architectural design constraint. IEEE Computer
Magazine, 34(4):52-58, 2001.

6. 1. Nesterov and Nemirovski. Interior Point polynomial algorithms in convex pro-
grammang. Society for Industrial and Applied Mathematics, 1994.

7. F. Yao, A Demers, and S. Shenker. A scheduling model for reduced cpu energy. In
IEEE Symposium on Foundations of Computer Science, pages 374-382, 1995.

	Introduction
	Related Results

	Definitions, Notation, and Preliminaries
	Our Results
	Expressing the Problem as a Convex Program
	Configuration Curves
	Basic Algorithmic Strategy
	How to Find the New Optimal Schedule When We Switch Configurations
	How to Compute $M_phi (A)$
	How to Recognize When the Optimal Configuration Changes
	Implementation Details and Time Complexity

	Conclusions and Future Directions

