
Ontology-Driven Automated Generation Of Data Entry Interfaces
To Databases

to appear in BNCOD21 Proceedings (2004)

Alan Cannon1 , Jessie B. Kennedy1, Trevor Paterson1 and Mark F. Watson2

1School of Computing, Napier University, Edinburgh, EH10 5DT, U.K.
{ a.cannon, j.kennedy, t.paterson}@napier.ac.uk

2Royal Botanic Garden, Edinburgh, EH3 5LR, U.K.
m.watson@rbge.org.uk

Abstract. This paper discusses an ontology based approach for the automatic generation of data
entry interfaces to databases. An existing domain ontology is mapped to a system domain model,
which a domain expert can then specialise using their domain expertise, for their data entry needs
as required for individual projects. Based on this specialised domain knowledge, the system
automatically generates appropriate data entry interfaces with the aid of a presentation model. By
constraining the data entered to a term definition ontology and utilising appropriate defined domain
terminology the quality of the collected data can be improved. Compared with traditional model-
based user automatic interface development environments, this approach also has the potential to
reduce the labour requirements for the expert developer, as the applied ontology provides initial
domain knowledge to the system.

1. Introduction

Designing Data Entry Interfaces (DEI) which allow the capture of high quality data to databases
without overburdening users remains a significant challenge in database and user interface research. It
is common to present forms-based user interfaces to allow data entry to the database. These forms,
whilst often automatically generated, are generally simplistic, being designed to conform to the
structure of database tables (or views) and at best can only constrain data entered to conform to the
system data type associated with the particular table attributes. In most databases many attributes are
stored as character strings, for which it is difficult to ensure consistent use or data quality, especially in
terms of their semantics related to the domain of the attribute. In order for data to be meaningful in the
long term and to allow data integration across databases, it is important that the semantics of the data
are captured along with the actual data. However, achieving this without placing undue requirements
on users has proven difficult. In this paper we present a semi-automatic data entry interface generation
tool to help improve the quality of data entry to databases, the system generates an interface that
reflects the semantics of the data as captured in a domain ontology.

A domain in which the problem of capturing semantically well-defined data is important is that of
biological taxonomy, the branch of biology concerned with the classification of organisms into an
ordered hierarchical system of groups reflecting their natural relationships and similarities. In the
Prometheus projects we are investigating tools and techniques to aid plant taxonomists to capture and
interact with their data. In particular we have developed database models for storing multiple
classifications [1, 2] and data visualisation tools for exploring multiple overlapping classifications [3].
Currently we are developing tools for allowing plant taxonomists to describe the specimens used during
the classification process. This classification process is based upon the identification and description of
variation between different plant specimens. A key task for taxonomic projects therefore involves
describing the characteristics of a number of specimens. Currently taxonomists capture these specimen
descriptions using paper forms (proformas) that are designed specifically for particular projects, to
reflect the characteristics of importance for differentiating specimens in the plant group under study.
These characteristics will vary between plant groups. Some electronic data formats have been
developed for capturing taxonomic characteristic data [4, 5, 6], but do not address the semantic
standardisation and quality of data stored [7].

During our research it became apparent that there was no agreed vocabulary used by taxonomists when
describing their specimens. This meant that although specimen descriptions were comparable within
one project, it was impossible to compare descriptions across projects undertaken by different
taxonomists and possibly even by the same taxonomist at different times. This led us to develop a data

model of plant descriptions and an associated ontology which defines the terms used in describing
plants [7]. Taxonomy, as a traditional discipline, is resistant to changing working practices, where extra
time requirements to record higher quality data would be imposed on the individual taxonomist. This is
particularly emphasised by the fact that any improvement in data, tends not to benefit the taxonomist
capturing it, as much as other taxonomists who interpret it later. We therefore wanted to improve the
semantics and rigour of the recorded data whilst minimizing the burden of data capture and still
allowing taxonomists to adequately describe their specimens. Although we describe our work in the
context of plant taxonomy, we believe our approach is applicable to any domain where the capture of
the semantics of the data in the database is important.

Creating appropriate, good quality data entry interfaces (DEIs) for databases is traditionally a difficult
and time-consuming process for a user interface expert. This mirrors the situation in graphical user
interface development in general. In addition, creating appropriate DEIs specifically for the needs of
complex databases is a neglected field of research. Two relevant strands of research do however
continue to address the problem of improving the generation of UI. In one strand, research into model
based user interface development environments [e.g. 8, 9, 10] and other development environments
[e.g. 11] attempt to combine abstract modelling with a more systematic approach to interface
development. In these methods the UI developer investigates and models their understanding of the
domain (as well possibly as the task, presentation and layout models), to specialise the interface design
for that domain. Abstraction in itself does not free the UI developer of the need to select appropriate
interaction objects (although they may only be selecting abstract versions of them, with the details of
the concrete coding being done automatically [12]). A convergent strand of research concerns
automatic UI generation. Automatic UI generation is often based upon some form of model based
solution or abstract design, which uses a presentation model to control the selection and layout of DEIs,
based on the modelled tasks and/or domain (e.g. Janus [8], and Mecano [13] primarily use a domain
model whereas Trident [14], and Modest [15] primarily use a task model). These approaches still
require substantial investment by a UI developer, particularly if they are to be successful in creating a
useful domain specific interface, and Novak has observed that. ‘Nobody will create applications using
specifications (models), if they can do it faster directly editing’[16]. This is doubtless one of the
reasons that model based approaches have so far failed to achieve widespread commercial adoption,
despite their strong research base [17].

Database interface research tends to lag in regard to general database research [18] so whilst there have
been advances in database applications and data modelling to effectively store complex data, there has
not been equivalent advances in approaches which promote the ability to capture rigorous data for such
applications. Ontologies are increasingly used to describe and define complex data. Using an ontology
to control the data entry for a database has the potential for ensuring that better quality data is captured
and that data from differing data providers will be compatible. It may also allow a DEI to be developed
which allows domain users to enter data using terms with which they are familiar but which are clearly
defined semantically. Existing ontology based approaches for data entry are, however, generally still
limited to using automatically generated forms-based data entry interfaces, unless manual editing is
used (e.g. Protege [19]). These systems are designed to populate a knowledge base describing
relationships between described instance items of interest, rather than regulate the capture of the
description of a complex concept. An alternative approach for UI generation involves using an
ontology to provide domain knowledge to a system which can automatically generate a user interface
based on a presentation model to capture data. An ontology-based approach of this kind has been
proposed in regard to universal UI design [20] but the approach has not been widely investigated, nor
has it addressed the needs of rigorous data entry.

This paper presents an ontology-based approach to semi-automatically generate data entry interfaces to
databases. The remainder of the paper is organised as follows: section 2 provides an overview of the
conceptual approach and introduces the specific domain of biological taxonomy. The models used
during the process of defining the data requirements for the data entry interface are described in section
3. Section 4 considers the models and processes involved in generating the data entry interface.
Finally, section 5 concludes the paper.

2. Overview of the ontology driven automatic data entry interface generation
approach

In the design of our system for generating data entry interfaces to databases we have adopted a model
based approach in that we have task, domain and presentation models. Figure 1 shows the basic
ontology driven approach for generating data entry interfaces for the capture of descriptive data about
concepts of interest.

Figure 1: Ontology Driven Automated Generation Of Data Entry Interfaces To Databases Approach. In taxonomy, the
domain expert and the domain actors are usually the same individual, though that is not a requirement of the approach.

2.1 Task Model
The task model is pre-determined to be the general task of data entry for a database. The Data Entry
Task Model (see figure 1) is encapsulated within the system. The only aspect related to the task model
which is modifiable is the order in which the data entry task is completed (see Section 3).

2.2 Domain Modelling
We use a series of domain models to represent domain knowledge (see figure 1). The Abstract Domain
Model is transformed into a Concrete Domain Model by mapping an existing Domain Ontology to it. A
Domain Expert specialises this Concrete Domain Model to create a Specialised Domain Model (see
Section 3 for a discussion of specialisation).

2.2.1 Abstract Domain Model
Our system is designed to capture data concerning any high level concept that may be sub-divided into
a hierarchy of defined constituent sub-concepts (‘Description Objects’) that are themselves described
by instantiating Attributes that they possess. Each Attribute of a Description Object can be instantiated
within the limits of its value constraints. These value constraints might restrict entered data (such as the
data type or numerical range of entered data), or define selection from a limited set of Value Objects.
A Value Object represents a defined concept which can be used to instantiate an Attribute. Additional
entities (modifiers and units of measurement) allow more detailed description of Attributes and their
value constraints. This data format is captured in an Abstract Domain Model (see figure 1). This data
format should be widely applicable and could represent physical or abstract concept domains (such as a
control system process or an academic department).

Figure 2: Abstract Domain Model. This is the conceptual model for controlling domain knowledge in the system. The
hierarchy of Description Objects is formed using the Hierarchy Relationship. Some additional non-fundamental details, such as
synonym relationships are not shown for clarity.

2.2.2 Domain Ontology - The Angiosperm Domain Ontology

Initially, in order to instantiate the Abstract Domain Model with actual domain knowledge, we map an
appropriate existing domain ontology to it1, to create a Concrete Domain Model (see figure 1). Our
approach assumes the existence of an appropriate domain ontology which does not necessarily have to
be created solely for use by this system. Ontology is a widely used term, with a variety of nuances of
meaning, even within the IT field [21]. The commonly quoted ontology definition ‘a specification of a
conceptualisation’ [22] is generally appropriate for our usage. Specifically, in this system, we use
ontology to mean a semi-formal, constrained and structured form of natural description language, with
defined terms and possible relationships between them. Even so defined, ontologies can contain many
different objects and relationships with various semantics.

In our example domain, an ontology to control the description of a set of plant specimens is being used
as a domain ontology. Classical plant taxonomists describe plant specimens in terms of their observable
characteristics, and interpret patterns of shared characteristics to evaluate relatedness between
specimens in order to define taxonomic groups and compose a hierarchical tree (taxonomy) of
relationships between these groups. As part of a project to attempt to standardize the composition of
taxonomic descriptions a defined terminology for the description of flowering plants (angiosperms) has
been created in collaboration with taxonomists from the Royal Botanic Gardens, Edinburgh [7]. The
ontology is composed of 'Defined Terms' (terms with associated definitions and citations) and
relationships between these terms. As shown in figure 3, there are three major subclasses of defined
terms which can be used to create descriptions of biological specimens: Structure terms representing
all the possible anatomical structures of a given specimen (e.g. leaf, petal, stamen); Property terms,
which represent possible Attributes of a structure that might be described (e.g. length, shape, colour);
and State terms which represent the actual values for a qualitative property of a given structure (e.g.
round, yellow). In our description model 'quantitative properties' are scored by numerical values. 'Is-
part-of' forms the central organising relationship for the ontology, and allows representation of a
hierarchy of all the possible structural relationships found on any given specimen (e.g. a blade is
potentially part of a leaf, or part of a leaflet, which itself is part of a leaf). Additional relationships in
the ontology group states and relate them to a descriptive property, and capture permitted relationships
between groups of states and the set of structures that they may be used to describe.

1 This mapping is currently done manually, although it is hoped to develop a tool to assist this process
in the future.

Figure 3: Major terms and relationships represented in the angiosperm domain ontology.

2.2.3 Concrete Domain Model
The potential variation in composition of domain ontologies makes their automatic adaptation for a
domain model a nontrivial task [23defying automatic mapping of the domain ontology, which thus
requires the intervention of an IT expert actor. The IT expert makes a mapping between the Abstract
Domain Model and the particular domain ontology’s conceptual model. This allows the system to
derive the Concrete Domain Model from the imported domain ontology. It is only necessary to perform
this mapping once for a given domain conceptual model (ontology). Where the database schema and
ontology conceptual model are based on the same domain conceptual model, this mapping also allows
the system to format the entered data for transfer to the database application. Where this is not the case
a second expert mapping would be required for each database schema.

In order, to perform the domain ontology mapping, a number of key objects and relationships need to
be identified or derived. At the fundamental level, Description Objects need to be identified along with
a primary Description Object Hierarchy inter-relationship and root Description Object(s) (to form a
Description Object Hierarchy). Attribute objects must be identified or derived from ontology terms
and/or relationships between Description Objects and possible Value Objects. In addition the
applicability of Attributes to Description Objects is identified. Value Objects must be identified from
the descriptive terms which could form possible values of a Description Object via an Attribute
relationship (Value Objects can also be Description Objects themselves or instances of Description
Objects). Beyond these basic terms and relationships, the Abstract Domain Model can have modifiers,
units, synonym relationships and various other aspects mapped to it (see section 3 for examples).

Mapping the Angiosperm Domain Ontology (figure 3) to the Abstract Domain Model (figure 2),
‘specimens’ represent the 'high level concepts' that are described. Their constituent ‘structures’ map to
'Description Objects', and their ‘is-part-of’ relationships form the ‘Hierarchy Relationship’. ‘Properties’
are the 'Attributes' of a Description Object and ‘states’ form 'Value Objects' which belong to an
‘Attribute’2, and are constrained over a 'Value Domain' defined by the permitted grouping relationships
between structures and states.

2.2.4 Specialised Domain Model
A data entry interface based on the whole angiosperm domain ontology would be too large for usability
and would cover a much larger number of structures and characteristics than a taxonomist would utilise
in any one taxonomic project. Individual projects would typically be restricted to only a small subset of
the angiosperm group of plants. Additionally, taxonomists are interested in different sets of specimen
characteristics dependent on the focus of their work. The exact data requirements of a given taxonomic
project must therefore be established. Normally, taxonomists do this by creating paper-based templates
(proformas) for each project, which have entries for the major describable characteristics of the
specimens that they wish to record. Our system provides an electronic equivalent to this process by

2 Some relational modifiers can also be Value Objects.

allowing taxonomists to create Specialised Domain Models based on the angiosperm domain model,
which enables the system to present them with data entry forms based solely on the data and semantics
relevant for their particular project.

2.3 Presentation Model
There are two presentation models in the system one for ontology presentation and one for data entry
(see figure 1). In order to allow the expert taxonomist to create a Specialised Domain Model, the
system uses a modelling tool (the ‘Specialisation Interface’) which presents the entire angiosperm
domain model for exploration and editing. The ontology presentation model is used in this tool, to
provide a general layout presentation for displaying ontologies based on the Abstract Domain Model.
This presentation model is also utilised to display aspects of the Specialised Domain Model in the final
data entry interface. The ontology presentation model was derived by user requirement and evaluation
testing and is now captured within the system. The data entry presentation model determines the layout
and selection of interaction objects for the data entry interface. Different data entry presentation models
could be utilised as plug-ins. User testing and evaluation have also been used to develop one such
model.

2.4 Summary
Figure 1 shows the interaction of the system and its models. In summary, an existing domain ontology
is mapped to the Abstract Domain Model to produce a Concrete Domain Model, which is displayed in
an interface, allowing a domain expert to specialise the data entry requirements for a project. The
system interprets the domain, task and presentation models, to generate a data entry interface which
facilitates the entry of data by domain actors. The system then exports the data which is mapped back
to the domain database application.

3. Specialising the Data Entry Requirements

3.1 Domain and Task Model Specialisation Tool
This section describes the process by which domain experts specialise the data requirements for a
particular project. The result of this process is the Specialised Domain Model and the default task
ordering of the Task Model. The specialisation tool consists of an interface (see figure 5) which allows
the user to interact with the domain model and task order. The domain expert can determine which
Description Objects (i.e. Structures) they wish to include in the Data Entry Interface (DEI), the
Attributes of those Description Objects they wish to use, and the specification (constraints) of those
Attributes. The system interprets the task and Concrete Domain Models using its ontology presentation
model to determine the layout and interface interaction objects, including the use of colour or icons to
indicate summary information (such as greying out excluded elements or warning icons for Attributes
with no possible values), as summarised in Table 1.

3.1.1 Specialising the Description Object Hierarchy
A view of all the description objects (i.e. plant structures) is presented in a Description Object
Hierarchy (figure 5A), through which the user can select description objects for inclusion in the DEI.
The description object hierarchy view is primarily based upon an interpretation of elements of the
Concrete Domain Model as summarised in Table 1.

In addition to interpreting the Concrete Domain Model, the Task Model is interpreted to provide the
order of the Description Objects (presented as the order they appear in the Description Object
Hierarchy tree) which can be modified by the user. Any alterations to the default task order are
captured in the Task Model. This functionality is provided to reflect the working practice of
taxonomists, who, within the general task of describing specimens, may want to specify the order in
which they describe the particular characteristics of the specimen, to fit with traditional biological
description methodologies.

Panel C

Panel BPanel A

Panel C

Panel BPanel A

Figure 5: Specialisation Interface Screenshot. Panel A represents the Description Object Hierarchy. B represents the potential
Attributes and their related possible values for a selected description object (The Attribute-Value Hierarchy). Panel C is an
Attribute specification interaction object to allow finer control of the Attribute constraints and modifiers.

Specialisation Interface Element
Ontology Presentation Model

INTERPRETS
Concrete Domain Model Element

Description Object Hierarchy (fig. 5A)
Node Identities Description Objects

Node Presentation Description Object Fixed Data Elements (e.g. Name)

Node Presentation + Interaction Description Object DEI Inclusion Status
 Tree Structure Description Object Hierarchy Relationships

 Attribute-Value Hierarchy (fig. 5B)

 Attribute Node Identities Attributes (of selected Description Object)
Value Nodes Attribute Value Object Constraints Relationships

Node Presentation Attribute Fixed Data Elements (e.g. Attribute Name)
Node Presentation + Interaction Attribute and Value Object DEI Inclusion Status

Tree Structure Sub Attribute and Attribute-Value Relationships

Attribute Details Specification (fig. 5C)
Element Presentation Attribute Fixed Data Elements (e.g. Value Type)

Element Presentation +
Interaction Attribute Modifiable Display Elements (e.g. Name)

Element Presentation +
Interaction

Attribute Modifiable Data Elements (e.g. Relative
Modifier)

Table 1: Creating the modelling tool interface. This table shows the mapping of the Concrete Domain Model to the
Specialisation Interface using the Ontology Presentation Model. The Task Model controls node ordering.

3.1.2 Specialising Attributes of Description Objects
By selecting Description Objects in the hierarchy, the user can access its potential Attributes (i.e the
properties of the plant structure to be described). A second hierarchical view is presented which allows
users to select Attributes for inclusion for a given Description Object (figure 5B). This Attribute-
Value Hierarchy accesses the Attributes3 and their potential Value Objects by interpreting the Concrete
Domain Model (see Table 1). The user can also use this interface element to alter value constraints by
specifying the set of possible Value Objects. An Attribute Specification interaction object (figure 5C)
provides access to Attributes selected in the Attribute-Value Hierarchy, allowing further specification
such as determining numerical range constraints, or numerical precision. Attributes can also be more
radically varied by adding relational modifiers which can change the nature of an Attribute by relating
it to another Description Object and Attribute (e.g. to capture the ratio of leaf-blade-length to stem-
height). Other Attribute specification is aimed at affecting the data entry interface without modifying
the fundamentals of the data in the domain model. This includes influencing the selection of interaction
objects (e.g. by varying the importance of multi-media display), or affecting presentation aspects (e.g.
changing the displayed name of the Attribute instance).

3.2 Specialisation Restrictions
The domain expert in this specialisation process cannot transform the domain model in such a way as
to make it inconsistent with the original domain ontology, for example they cannot change Description
Object inter-relationships or use an Attribute for a Description Object which does not have an
appropriate relationship in the domain model. This ensures the data exported by the system is
compatible with the data model underlying the original ontology. The domain expert cannot directly
alter the Data Entry Presentation Model (for example by choosing the actual Data Entry Abstract
Interaction Objects (AIO), although they can alter the data in the Specialised Domain Model upon
which determinations are made by the Data Entry Presentation Model). This ensures a modelling split
between data determination and presentation, thus avoiding confusion between the two different
processes.

3.3 Domain Expert User Considerations
Editing domain models in model based approaches is usually a task reserved for IT experts. In our case,
a domain expert is performing this operation, so the interface must be configured towards a user who is
not necessarily familiar with modelling or ontological terminology. The ontology presentation model in
the system attempts to aid ease of understanding by using appropriate domain terms based on the
domain ontology mapping (e.g. referring to structures instead of Description Objects). In addition the
presentation model generally interprets the ontology to attempt to allow easy navigation and feedback,
with easy access to related domain knowledge (e.g. access to definitions – see figure 5A for example of
mouse-over definition access). Object definitions drawn from the domain ontology provide users with
the knowledge to make informed editing choices, thus supporting the eventual capture of semantically
good quality data. Definitions are provided in a variety of means, including mouse over pop-up
summaries and a definition viewer gives additional details of selected terms on request. Evaluation by
taxonomists from the Royal Botanical Gardens Edinburgh showed that the Description Object
hierarchy captured in the domain model allows users to navigate the potentially large description space,
using their own domain knowledge.

4. Data Entry Interface
This section describes how data is captured based on the specialised domain and task models. As the
details of the data to be entered have been determined by a domain expert actor, there is no further
direct intervention by an IT expert before the data entry interface (DEI) is generated. Some fixed
design decisions (such as basic architecture layout) are captured in the system, the DEI being generated
by interpretation of the Specialised Domain, Task and two presentation models. Working with one high
level concept instance (i.e. ‘Plant Specimen’), a domain actor enters data for the Attributes of one
Description Object (i.e. ‘Structure’) at a time.

3 Plus sub-attributes where appropriate.

Panel A Panel BPanel A Panel B

Figure 6: Data Entry Interface Example. 6A is the Description Object Hierarchy view (i.e. plant structures) providing both
compositional context and a means of overriding the default data entry ordering. 6B is a group of Attribute Presentation Units for
the selected Description Object (i.e. the structure with the compositional context Inflorescence-Perianth-Corolla-Petal). (The
bottom two Attribute Presentation Units are copies of each other, as explained in the example in section 4.3 below,)

4.1 Navigating the Data Entry Interface
The DEI provides a view of the Description Object Hierarchy (figure 6A) and presents a series of
windows with groups of interaction objects for data entry (figure 6B). The default order of the
Description Objects and Attributes presented by the system to users for data entry is interpreted from
the task model and can be overridden by the data entry user by selecting Description Objects directly
from the Description Object Hierarchy display (figure 6A). This display is controlled by the ontology
presentation model, as described in the previous section, although in this case it interprets the
Specialised Domain Model and is not editable. In the DEI context, the display uses colour, icons and
mouse-over text to indicate summary data about the data entry status of the current specimen (for
example by to represent whether a structure has been skipped over in normal task order) rather than
specialisation summary data. By providing navigation context and summary data for each Description
Object, the user is assisted in making informed data entry decisions.

For each Description Object, the DEI generates a grouped set of Attribute Presentation Units (figure
6B), which are complex data entry interaction objects that contain all the data and interaction capability
required to enter data for one Attribute of a Description Object. The data entry presentation model
controls the level of grouping. In taxonomy we group all Attributes for one structure in one window,
which fits with their observational methodology. An appropriate grouping, combined with the
hierarchy view and the nature of the pre-determined task, offsets one of the traditional drawbacks of
automatic generation, that users require information from multiple objects in one window [24], as all
the required information to make an informed data entry decision should be available. The layout of the
Presentation Units within the grouped screen is at present controlled by a 'place one below the other
strategy', however, more complex layout strategies could be determined by the Data entry Presentation
Model.

4.2 Entering Data in Attribute Presentation Units
The user enters data for individual Attributes of a structure using a Presentation Unit. A Presentation
Unit consists of four major components to support data entry: three data entry interaction objects; and
an Attribute display with the data required for the user to make meaningful data entry choices (such as
Attribute name, current entry status). This data is interpreted from the domain model and the
presentation is fixed and captured in the system.

The primary data entry interaction object controls selection or entering of the values. The
implementation of this interaction object varies. The abstract implementation is determined by the DE
presentation model, which selects implementations from a system library of Attribute Interaction
Objects (AIOs). These AIOs are internally specialised by the relevant Attribute and related data
captured in the domain model to create the concrete interaction objects. This specialisation controls
aspects such as internal layout management (for example using value cardinality to control number and
layout of checkboxes), the display of names and icons, etc. In order to determine an appropriate AIO
the DE presentation model accesses various defined criteria of the underlying Attribute object data.
One criterion that can be used to determine this IO, is value type, of which there are two basic choices
– Value Object selection and text entry. Selection involves choosing from a set of Value Objects,
whereas text entry allows the user to enter data as desired. As this approach is based on an ontology for
ensuring rigour of collected data, text entry is usually limited to numerical data entry, as free text entry
would allow recording of data not compliant with the description ontology. Data type is often used as a
criterion for making automatic IO selection choices, in this case the data type of the allowed values of
the Attribute is used. Multi-media representation of descriptive terms is very important in taxonomy, as
in many other domains. The presence of multi-media definition representations for possible selectable
Value Objects, is thus another criterion which can be used by the presentation model. The importance
of the multi-media representations may also vary from Attribute to Attribute, and a tag can be assigned
to an Attribute to specify this in the domain specialisation interface. Other common criteria which can
be accessed by the presentation model include data cardinality, data precision, numerical range
constraints, etc.

4.3 Controlling Nuances of Entered Data
The remaining two interaction objects in a Presentation Unit control the adding of semantic nuances to
the data. The first of which is an interaction object for adding applicable modifiers to the entered data
(such as frequency modifiers like ‘rarely', 'usually', etc.). The available modifiers are based on the
Attribute links captured in the domain model (see figure 2) and allow users finer control of the entered
data; A second interaction object controls the interpretation of multiple values. Initially one
Presentation Unit is displayed for each Attribute requiring instantiation. The data entry process
however might require additional Presentation Units being generated to capture nuances of description.
A common example of this situation is in distinguishing 'AND-ing' from 'OR-ing'. This applies where a
number of values for the same Attribute are applicable to every individual physical instance of the
Description Object, as opposed to the situation where the instantiated Attribute has different values on
different individual Description Objects (e.g. to distinguish between a specimen whose individual
petals are white and purple versus a specimen whose individual petals are either white petals or purple
petals). As the permutations of this situation can be quite complex, the domain actor is required to
instantiate one Attribute Presentation Unit for every permutation of individual Description Object
instances. The system can replicate Presentation Units to allow entry of these different permutations as
required by the domain actor using the DEI. This process is made less intrusive by not basing the
grouping of Presentation Units upon the available screen space, but instead allowing the expansion of
effective screen space using scrolling. For example (as seen in Figure 6B) a taxonomist entering data
for a specimen which had some purely white petals and some petals that were both white and purple
would select white in the petal colour Presentation Unit, and click on ‘Enter Another Score’ button.
This would generate a copy of the petal colour Presentation Unit, where the taxonomist would select
both white and purple in a single Presentation Unit.

4.4 Exporting data
Once a user has entered the data for one high level concept instance (i.e. an individual plant specimen),
they can enter data for other instances of the concept (i.e. further specimens). The data for each
specimen can be exported to the database when desired. As stated earlier, this exported data is
formatted using the mapping between the domain conceptual model and the Concrete Domain Model.
If necessary the interface can, by a reverse procedure, be reloaded from the database with specimen
data collected earlier.

5. Conclusions

The system described in this paper utilises domain knowledge from a domain ontology and domain
experts to specify the data requirements of an automatically generated data entry interface to databases.
This approach aims to improve the quality of data entered by users, without overburdening users or
interface developers. In Szekely’s retrospective [24] this work would fall into the model based
automatic interface generation approaches, specifically those which primarily allow users to access and
specify a domain model. This system’s domain model is, however, based on an existing ontology to
ensure that the semantics of the data are maintained. By tying the entered data to a domain ontology,
semantically high quality data can be generated and be entered into a database based on a data model
related to the original ontology.

Despite their potential benefits, model based automatic generation approaches have not been widely
adopted commercially and have been criticised as being unable to produce quality, appropriate
interfaces [24]. Our approach, however, offers access to a modelling tool for domain experts to
specialise the domain model rather than to interface developers. This specialisation can be done for
individual projects, thus improving the appropriateness of the generated interface. An appropriate, good
quality interface is a useful element for ensuring that captured data is an accurate representation of the
intent of both the data entry user, and the project designer in a multi-user system. Furthermore, by
limiting our approach to a descriptive data entry task, we have already gone some way to limiting the
possible permutations of the interface, allowing the presentation model to be more appropriate.
Focussed approaches also tend encourage wider adoption of new approaches than universal approaches
that attempt to solve all problems at once [25]. Another contributory factor in the lack of quality in
traditional automatically generated interfaces, lies with the difficulties of automatically selecting
appropriate AIOs using a predetermined presentation model. By focussing on data entry tasks and
allowing tailoring of the data entry presentation model to particular domains, this approach supports a
more appropriate AIO selection.

By using the domain ontology and domain experts to create the Specialised Domain Model, the
approach provides further benefits in the avoidance of time consuming and possibly distorted domain
knowledge acquisition by a UI expert from a domain expert who must possess or acquire this
knowledge for the purposes of their work in any case. A modelling tool has been developed for the
system which has been tailored for easy and informed use by domain experts who are not familiar with
modelling techniques.

Initial informal user evaluation for our approach has been positive. It has shown for example that
taxonomists are able to navigate and interact with the Concrete Domain Model in the Specialisation
Interface to create effective Specialised Domain Models, that taxonomists appreciate the value of
access to the exact semantics of the domain terminology being used and that data semantically
consistent with the Angiosperm Ontology can be collected and exported to a database. More extensive
user testing is planned, both in depth with the existing Angiosperm Ontology and with other domain
ontologies. Our approach has been applied to the instance field of specimen description in plant
taxonomy, however we believe the approach can be more widely applied in data entry applications,
particularly where semantically high quality data capture is important and where there are variations in
the data requirements for different projects. The provision of supporting tools for use by IT experts in
mapping from Domain Conceptual Models to the system’s Abstract Domain Model, and for generating
alternative Data Entry Presentation Models will ease expansion of this approach beyond Biological
Taxonomy applications.

We would like to acknowledge and warmly thank BBSRC for funding of this research, and the Royal
Botanical Gardens, Edinburgh for their help in evaluation and development .

6. References

1. Raguenaud, C., Kennedy J., Barclay, P. J., The Prometheus Database for Taxonomy, 12th International
Conference on Scientific and Statistical Database Management (SSDBM 2000), Berlin, Germany, 250-252, 2000
2. Pullan M., Watson M., Kennedy J., Raguenaud C., Hyam R, The Prometheus Taxonomic Model: a practical
approach to representing multiple taxonomies. Taxon 49: 55-75, 2000
3. Graham, M., Watson, M. F. and Kennedy, J. B., Novel visualisation techniques for working with multiple,
overlapping classification hierarchies, Taxon 51 (2), 351-358, 2002
4. Dallwitz, M. J., A general system for coding taxonomic descriptions, Taxon 29: 41-46, 1980
5. Maddison, D. R., Swofford, D. L. & Maddison, W. P., NEXUS: An extensible file format for systematic
information. Systematic Biology 46: 590-621,1997
6. CBIT, (2003) Lucid, developed by The Centre for Biological Information Technology: University of
Queensland, Australia. URLs: www.cpitt.uq.edu.au; www.lucidcentral.com
7. Paterson, T., Kennedy, J., Pullan, M. R., Cannon A. J., Armstrong K., Watson M. F., Raguenaud C., McDonald
S. M., and Russell G., A Universal Character Model and Ontology of Defined Terms for Taxonomic Description,
2004, In Print.
8. Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C.: The JANUS Application Development Environment-
Generating More than the User Interface. In: Vanderdonckt J. (ed.): Proceedings of CADUI’96. Namur: Presses
Universitaires de Namur (183-207), 1996
9. Elwert, T., Schlungbaum, T.: Modelling and Generation of Graphical User Interfaces in the TADEUS
Approach. In Designing, Specification and Verification of Interactive Sytems (Palangue, P., Bastide, R., Eds.).
Wien, Springer, 193-208, 1995
10. Szekely, P., Sukaviriya, P., Castells, P., Muhktumarasamy, J., Salcher, E., Declarative Interface Models For
User Interface Construction Tools: The MASTERMIND Approach, In engineering for Human-Computer
Interaction, 1996.
11. Butler, K.A., Designing Deeper: Towards a User-Centered Development Environment Design in Context,
Proceedings of ACM Symposium on Designing Interactive Systems: Processes, Practices, Methods, & Techniques
DIS´95, ACM Press, New York, 131-142, 1995
12. Zloof M M, 'Selected Ingredients in End-User Programming', in T Catarci, MF Costabile, G Santucci, L
Tarantino (Eds), Proceedings of the Working Conference on Advanced Visual Interfaces, L'Aquila, Italy, 24-27
May 1998
13. Puerta A R, Eriksson H, Gennari J H, and Mussen M A. Beyond data models for automated user interface
generation. In People and Computers IX HCI'94 Conference Proceedings, 353—366, 1994
14. Vanderdonckt, J.: Automatic Generation of a User Interface for Highly Interactive Business-Oriented
Applications. In Plaisant C. (ed.): Companion Proceedings of CHI'94. (pp. 41 & 123-124). New York: ACM Press
1994
15. Hinrichs, T., Bareiss, R., Birnbaum, L., Collins, G.: An Interface Design Tool based on Explicit Task Models.
In Tauber M.J., Bellotti V., Jeffries R., Mackinlay J.D., Nielsen J. (eds.): Companion Proceedings of CHI' 96.
(269-270), New York: ACM Press 1996
16. Novak G.S. (2003) Novak’s rule: http://www.cs.utexas.edu/users/novak/
17. Traeteberg H, Molina P J, Nunes N J, Making Model-Based UI Design Practical: Usable and Open Methods
and Tools, Proceedings of the 9th international conference on Intelligent user interface, 376-377, 2004
18. Carey M, Haas L, Maganty V, Williams J, 'PESTO: An Integrated Query/Browser for Object Databases' in
Vijayarama T M, Buchmann A, Mohan C, Sarda N L, Proceedings of the 22nd International Conference on Very
Large Data Bases, 1996
19. Gennari J, Musen M A, Fergerson R W, Grosso W E, Crubézy M, Eriksson H, Noy N F, Tu S W, The
Evolution of Protégé: An Environment for Knowledge-Based Systems Development. 2002. URL:
http://www.smi.stanford.edu/pubs/SMI_Reports/SMI-2002-0943.pdf, http://protege.stanford.edu/index.html
20. E. Furtado, J.J.V. Furtado, W. Bezerra Silva, D.W. Tavares Rodrigues, L. da Silva Taddeo, Q. Limbourg, J.
Vanderdonckt, An Ontology-Based Method for Universal Design of User Interfaces, Proceedings of Workshop on
Multiple User Interfaces over the Internet: Engineering and Applications Trends, A. Seffah, T. Radhakrishnan &
G. Canals (éds.), Lille, 2001
21. Guarino N, Giaretta P, Ontologies and Knowledge Bases: Towards a Terminological Clarification, in Mars N J
I (ed.), Towards Very Large Knowledge Bases, IOS Press 1995
22. Gruber, T.R. A Translation Approach to Portable Ontology Specification. Knowledge Acquisition 5: 199-220,
1993
23 Wang X., Chan C. W., Hamilton H. J., Design of knowledge-based systems with the ontology-domain-system
approach. SEKE 2002: 233-236
24. Szekely P.,. Retrospective and Challenges for Model-Bases Interface Development. In Computer-Aided
Design of User Interfaces, pages xxi--xliv, Namur, Belgium, Namur University Press, 1996.
25. Myers, B., Hudson, S. and Pausch, R., Past, Present, and Future of User Interface Software Tools. ACM
Transactions on Computer-Human Interaction 7, 3-28, 2000

