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Abstract. We propose a new statistical approach to analyzing stochas-
tic systems against specifications given in a sublogic of continuous
stochastic logic (CSL). Unlike past numerical and statistical analysis
methods, we assume that the system under investigation is an unknown,
deployed black-box that can be passively observed to obtain sample traces,
but cannot be controlled. Given a set of executions (obtained by Monte
Carlo simulation) and a property, our algorithm checks, based on statisti-
cal hypothesis testing, whether the sample provides evidence to conclude
the satisfaction or violation of a property, and computes a quantitative
measure (p-value of the tests) of confidence in its answer; if the sample
does not provide statistical evidence to conclude the satisfaction or vio-
lation of the property, the algorithm may respond with a “don’t know”
answer. We implemented our algorithm in a Java-based prototype tool
called VESTA, and experimented with the tool using case studies ana-
lyzed in [15]. Our empirical results show that our approach may, at least
in some cases, be faster than previous analysis methods.

1 Introduction

Stochastic models and temporal logics such as continuous stochastic logic
(CSL) [1, 3] are widely used to model practical systems and analyze their per-
formance and reliability. There are two primary approaches to analyzing the
stochastic behavior of such systems: numerical and statistical. In the numerical
approach, the formal model of the system is model checked for correctness with
respect to the specification using symbolic and numerical methods. Model check-
ers for different classes of stochastic processes and specification logics have been
developed [8,14,13,4,5,2,6]. Although the numerical approach is highly accu-
rate, it suffers from being computation intensive. An alternate method, proposed
by Younes and Simmons [16], is based on Monte Carlo simulation and sequen-
tial hypothesis testing. Being statistical in nature, this approach is less accurate
and only provides probabilistic guarantees of correctness. The approach does
not assume knowledge of a specific formal model for the system being analyzed,
and therefore can be potentially applied to analyzing complex dynamical sys-
tems such as generalized semi-Markov processes (GSMPs), for which symbolic
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and numerical methods are impractical. However, the Younes and Simmons’ ap-
proach assumes that the system is controllable (not black-box) and can be used
to generate sample executions from any state on need basis.

Both the numerical and the current statistical methods suffer from several
serious drawbacks when it comes to analyzing practical systems. First, modern
day systems are large heterogeneous, and assembled by integrating equipment
and software from diverse vendors, making the construction of a formal model of
the entire system often impossible and thus limiting the feasibility of numerical
and symbolic methods. Second, for large network systems, meaningful experi-
ments may involve dozens or even thousands of routers and hosts, which would
mean that the system needs to be deployed before reasonable performance mea-
sures can be obtained. However, once they are deployed, such systems cannot be
controlled to generate traces from any state, making it impossible to generate
execution samples on a need basis as is required by the Younes et. al’s statistical
approach.

Despite the success of current analysis methods [10,13,12,15,8], there is
therefore a need to develop methods to analyze stochastic processes that can be
applied to deployed, unknown “black-box” systems (systems from which traces
cannot be generated from any state on need) . In this paper we address these
concerns by proposing a new statistical approach to model checking. Like in
Younes et. al’'s approach, discrete event simulation methods are used to obtain a
set of sample executions; however, unlike their method we assume no control over
the set of samples we obtain. We then test these samples using various statistical
tests determined by the property to be verified. Since we assume that the sam-
ples are generated before testing, our algorithm relies on statistical hypothesis
testing, rather than sequential hypothesis testing. Our inability to generate sam-
ples of our choosing and at the time of our choosing ensures that our approach
differs from the previous statistical approach in one significant way: unlike the
previous approach where the model checker’s answer can be guaranteed to be
correct within the required error bounds, we instead compute a quantitative
measure of confidence (the p-value, in statistical testing terminology [11]) in
the model checker’s answer. Our algorithm computes the satisfaction of the de-
sired formula by recursively determining the satisfaction of its subformulas (and
the confidence of such an answer) in the “states” present in the sample. This
presents a technical challenge because our algorithm, being statistical in nature,
may be uncertain about the satisfaction of some formulas based on the given
samples. The algorithm needs to compute useful answers (as far as possible)
even in the presence of uncertain answers about the satisfaction of subformulas.
We overcome this challenge by interpreting such “don’t know” answers in an
adversarial fashion. Our algorithm, thus checks if the sample provides evidence

! We assume that the samples generated from the system by discrete event simulation
have information about the “system state”. We, however, make no assumptions
about the transition structure of the underlying system, nor do we assume knowledge
about the transition probabilities; the system under investigation is black-box in this
sense.



204 Koushik Sen, Mahesh Viswanathan, and Gul Agha

for the satisfaction or violation of a property and the confidence with which such
an assertion holds, or gives up and says “don’t know.” The algorithm that we
propose suffers from one drawback when compared with the previous statistical
approach. Since we analyze a fixed sample, we will get useful answers only when
there are sufficient samples for each “relevant state.” Therefore our method is
likely to work well only when a finite set of samples is enough to provide sufficient
information about relevant states. Examples of systems we can successfully an-
alyze are Continuous-time Markov Chains (CTMCs) or systems whose relevant
states are discrete, while we are unlikely to succeed for GSMPs in general.

A closely related approach to analyzing stochastic systems based on Monte
Carlo simulation is by Herault et. al. [7], which can model-check discrete-time
Markov chains against properties expressed in an expressively weak logic (“pos-
itive LTL").

We have implemented the whole procedure in Java as a prototype tool, called
VESTA (VErification based on STatistical Analysis)?. We have experimented
with VESTA by applying it to some examples that have been previously analyzed
in [15] and the results are encouraging. However, we suspect that VESTA would
require a lot more space, because it stores the entire collection of samples it is
analyzing. Even though space was not a problem for the examples we tried, we
suspect that it may become an issue later.

The rest of the paper is organized as follows. Section 2 defines the class of
systems we analyze and the logic we use. In Section 3, we present our algorithm
based on statistical hypothesis testing in detail. Details about VESTA and our
case studies are presented in Section 4. In Section 5, we conclude and present
possible directions for future research.

2 Preliminaries

2.1 Sample Execution Paths

The verification method presented here can be independent of the system model
as long as we can generate sample execution paths of the system; the model
and its definition are very similar to [16]. We will assume that the system being
analyzed is some discrete event system that occupies some state s € S, where S
is the set of states of the system. The states in .S that can effect the satisfaction
of a property of our interest are called the “relevant states.” Note that the num-
ber of relevant states may be quite small compared to the whole state space of
the system. For example, for a formula ¢ U=!¢, the states that can be reached
within time ¢ are relevant. We assume that each relevant state can be uniquely
identified and that information about a state’s identity is available in the exe-
cutions. Since samples are generated before running our analysis algorithm, we
require that a Monte Carlo simulation is likely to generate a sample that has
enough “information” about the relevant states; if not our algorithm is likely to
say that it cannot infer anything about the satisfaction of the property.

2 Available from http://osl.cs.uiuc.edu/~ksen/vesta/
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We assume that there is a labeling function L that assigns to each state a set
of atomic propositions (from among those appearing in the property of interest)
that hold in that state; thus L : S — 247 where AP is a set of relevant atomic
propositions. The system remains in a state s until an event occurs, and then
proceeds instantaneously to a state s’. An execution path that appears in our
sample is thus a sequence

to ty ty
T =80 — 81 —>82— """

where sg is the unique initial state of the system, s; is the state of the system
after the ith event and ¢; is the time spent in state s;. If the kth state of this
sequence is absorbing, then s; = s, and t; = oo for all i > k.

We denote the ith state in an execution 7 by 7[i] = s; and the time spent
in the ith state by 6(m,7). The time at which the execution enters state 7[i + 1]
is given by 7(m,i+ 1) = 377=(d(m,j). The state of the execution at time ¢ (if
the sum of sojourn times in all states in the path exceeds t), denoted by = (t), is
the smallest ¢ such that ¢ < 7(m, i+ 1). We let Path(s) be the set of executions
starting at state s. We assume Path(s) is a measurable set (in an appropriate
o-field) and has an associated probability measure.

2.2 Continuous Stochastic Logic

Continuous stochastic logic (CSL) is introduced in [1] as a logic to express prob-
abilistic properties of continuous time Markov chains (CTMCs). In this paper
we adopt a sublogic of CSL (excluding unbounded untils and stationary state
operators) as in [16]. This logic excludes the steady-state probabilistic opera-
tors and the unbounded until operators. We next present the syntax and the
semantics of the logic.

CSL Syntax
¢u=true | a € AP | —=¢ | ¢ A ¢ | Poap(¥)
Y= oUS'¢ | X

where AP is the set of atomic propositions, < € {<,<,>,>}, p € [0,1], and
t € R>q. Here ¢ represents a state formula and 1) represents a path formula. The
notion that a state s (or a path 7) satisfies a formula ¢ is denoted by s = ¢ (or
T = ¢), and is defined inductively as follows:

CSL Semantics

s | true skEa iff a € AP(s)

s E ¢ iff s o sE® Np2 iff s ¢1 and s = @2
s | Pup(®p)  iff Prob{m € Path(s) |7 =} ip

T E X¢ iff 7(m,1) < co and w[1] = ¢

T o1 US gy iff Tz € [0,1]. (7(z) = ¢ and Vy € [0,2). 7(y) = ¢1)

A formula Py (1) is satisfied by a state s if Prob[path starting at s satisfies
1] > p. To define probability that a path satisfies 1) we need to define a o-algebra
over the set of paths starting at s and a probability measure on the corresponding
measurable space in a way similar to [5]. The path formula X¢ holds over a path



206 Koushik Sen, Mahesh Viswanathan, and Gul Agha

if ¢ holds at the second state on the path. The formula ¢; U<, is true over a
path 7 if ¢ holds in some state along 7 at a time x € [0,¢], and ¢ holds along
all prior states along w. This can also be recursively defined as follows:

Sat(s; <5 mit1, o1 US' o)
= (t > 0) A (Sat(si, d2) V (Sat(si, ¢1) A Sat(mir1, o1 US "1 ¢2))) (1)

where Sat(s, @) (or Sat(m, 1)) are the propositions that s = ¢ (or 7 = ). This
definition will be used later to describe the algorithm for verification of ¢ U=t py
formula.

3 Algorithm

In what follows we say that s =4 ¢ if and only if our algorithm (denoted by A)
says that ¢ holds at state s. Since the algorithm is statistical, the decision made
by the algorithm provides evidence about the actual fact. In our approach, we
bound the strength of this evidence quantitatively by a number in [0, 1] which
gives the probability of making the decision given that the decision is actually
incorrect. In statistics, this is called the p-value of the testing method. We denote
it by o ® and write s |= ¢ if the state s actually satisfies ¢.

We assume that we are given a set of finite executions. The length of a finite
execution path must be large enough so that all the bounded until formulas can
be evaluated on that path. Given a set of sample execution paths starting at the
initial state and a formula ¢, the algorithm works recursively as follows:

verifyAtState(¢, s){
if cache contains (¢, s) return cache(g, s);
else if ¢ = true then (z,a) « (1,0.0);
else if ¢ = a € AP then (z,a) « verifyAtomic(a, s);
else if ¢ = —¢' then (z,a) « verifyNot(=¢', s);
else if ¢ = 1 A o then (2,a) — verifyAnd(d1 A g, 5);
else if ¢ = Puqp(¢) then (z, ) < verifyProb(Posp(¢), 8);
store (s, ¢) — (z,a) in cache;

return (z,@);

}
where verifyAtState returns a pair having 0, 1, or undecided corresponding to
the cases s =4 ¢, s Ea @, or A cannot decide respectively, as the first compo-
nent, and p-value for this decision as the second component. To verify a system
we check if the given formula holds at the initial state. Once computed, we store
the decision of the algorithm for ¢ at state s in a cache to avoid recomputation.
The result of our hypothesis testing can be shown to hold in presence of caching.
This results in a significantly faster running time and a reduction in the sam-
ple set size. In the remainder of this section we define the various procedures
verifyAtomic, verifyAnd, verifyNot, and verifyProb recursively.

The key idea of the algorithm is to statistically verify the probabilistic oper-
ator. We present the corresponding procedure verifyProb below.

3 This should not be confused with the Type I error which is also denoted by a.
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3.1 Probabilistic Operator

We use statistical hypothesis testing [11] to verify a probabilistic property ¢ =
Poap(¥) at a given state s. Without loss of generality we show our procedure for
¢ = P>p(¢). This is because, for the purpose of statistical analysis, P<, (1)) is
essentially the same as —=P>1_p(¢) and < (or >) is in effect the same as < (or
>). Let p’ be the probability that ¢ holds over paths starting at s. We say that
s | P>p(v) if and only if p" > p and s = Ps,(¢) if and only if p’ < p. We
want to decide either s = P>,(1¥0) or s = P>p(¥). Accordingly we set up two
experiments. In the first experiment, we use sample execution paths starting
at s to test the null hypothesis Hy: p' < p against the alternative hypothesis
Hi:p' > p. In the second experiment, we test the null hypothesis Hy: p’ > p
against the alternative hypothesis Hy: p' < p *.

Let the number of sample execution paths having a state s somewhere in the
path be n. We can treat the portion of all these paths starting at s (suffix) as
samples from Path(s). Let X1, Xo, ..., X,, be a random sample having Bernoulli
distribution with unknown parameter p’ € [0, 1] i.e. for each i € [1,n], Prob[X; =
1] = p’. Then the sum Y = X; + X5 + ... + X,, has binomial distribution with
parameters n and p’. We say that x;, an observation of the random variable
X;, is 1 if the i*® sample execution path satisfies ¢ and 0 otherwise. In the
first experiment, we reject Hy: p' < p and say s Fa P>p(¢) if % > p and
calculate the p-value as o« = Prob[s |=a ¢ | s & ¢] = Prob[Y > >z | p' < pl.
Note we do not know p’. Therefore, to calculate o we use p which is an upper
bound for p’. If we are not able to reject Hy in the first experiment then we do
the second experiment. In the second experiment, we reject Hy: p’ > p and say
s Fa Psp(y) if ani < p and calculate the p-value as o = Prob[s £a ¢ | s E
@] = ProblY <Y x; | p' > p]. Thus, a smaller « represents a greater confidence
in the decision of the algorithm A.

3.2 Nested Probabilistic Operators

The above procedure for hypothesis testing works if the truth value of v over
an execution path determined by the algorithm is the same as the actual truth
value. However, in the presence of nested probabilistic operators in v, A cannot
determine the satisfaction of i) over a sample path exactly. Therefore, in this
situation we need to modify the hypothesis test so that we can use the inexact
truth values of 1 over the sample paths.

Let the random variable X be 1 if a sample execution path 7 actually satisfies
1 in the system and 0 otherwise. Let the random variable Z be 1 for a sample
execution path 7 if 7 =4 ¢ and 0 otherwise. In our procedure we cannot get
samples from the random variable X; instead our samples come from the ran-
dom variable Z. Let X and Z have Bernoulli distributions with parameters p’

4 While handling nested probabilistic operators, these experiments will no longer be
symmetric. Moreover, setting up these two experiments is an alternate way of getting
at a conservative estimate of what Type II error (8 value) may be.



208 Koushik Sen, Mahesh Viswanathan, and Gul Agha

and p” respectively. Let Zy, Zs, ..., Z, be a random sample from the Bernoulli
distribution with unknown parameter p” € [0, 1]. We say that z;, an observation
of the random variable Z;, is 1 if the algorithm says that the i*" sample execution
path satisfies v and 0 otherwise.

For the formula ¢ = P>,(1¢) we calculate regions of indifference, denoted by
the fractions 0; and d2, based on the algorithm’s decision for the satisfaction
of ¢ over the different sample paths. Depending on the values of ; and o we
set up the two experiments. In the first experiment, we test the null hypothesis
Hy: p" < p+ 61 against the alternative hypothesis Hy: p”" > p + 61. If we get
% > p+ 01 we reject Hy and say s =4 P>p(¢) with p-value o = Prob[s =4
¢ s @l = Probd.Z; > >z | p < p+ 1] If we fail to reject Hy we
go for the second experiment, in which the null hypothesis Hy: p” > p — 02
against the alternative hypothesis Hy: p” < p — d3. We reject Hy and say that
s fea Psp(¥) if ZTZ < p — 62 and calculate the p-value as o = Prob[s E4 ¢ |
s ¢l = Prob]d.Z; < >z | p" > p— 02]. Otherwise, we say the algorithm
cannot decide.

We now show how to calculate d; and d5. Using the samples from Z we can
estimate p”’. However, we need an estimation for p’ in order to decide whether
¢ = P>p(¢) holds in state s or not. To get an estimate for p’ we note that the
random variables X and Z are related as follows:

Prob[Z =0 X =1] < Prob|[Z =1|X =0 <d

where ' is the p-value calculated while verifying the formula 1. By elementary
probability theory, we have

Prob[Z = 1] = Prob[Z = 1| X = 0]Prob[X = 0] + Prob[Z =1 | X = 1]Prob[X = 1]

Therefore, we can approximate p” = Prob[Z = 1] as follows:

Prob[Z =11 <d'(1—p)+1p ' =p' + (1 —p')a
Prob[Z =1] > Prob[Z =1 | X =1]Prob[X =1] > (1 —a')p' =p' — a'p’

This gives the following range in which p” lies:

/

p—ap <p"<p+(1-p)a

Hence, Prob[>.Z; > > zi | p) < p] < Prob[>.Z; > >z | p = p] <
Prob]> > Z; > >z | p” = p — o'p] which gives d; = o'p. Similarly, we get
5 =(1-p).

Note that the p-value obtained while verifying ¢ over different sample paths
are different. We take the worst or the maximum of all such p-values as o’.
Moreover, since A can say true, false, or cannot decide, note that the A may not
have a definite true or false answer along certain sample paths. For such paths
the algorithm will assume the worst possible answer in the two experiments. For

the first experiment, where we check whether ZTZ > p—+ 1, we take the answers



Statistical Model Checking of Black-Box Probabilistic Systems 209

for the sample paths for which A cannot decide as false and the p-value as 0.
For the second experiment we consider the answer for the undecided paths to
be true and the p-value as 0. This allows us to obtain useful answers even when
the sample does not have enough statistical evidence for the satisfaction of a
subformula.

Thus we can define the procedure verifyProb(Ps, (1), s) as follows:

verifyProb(P=p (1), 5){
Z8UMmin < 0; 258UMmaz < 0; o — 0.0; n «+ 0;
for each sample path 7 starting at s{
(z,a") «— wverifyPath(i, m);
if z =undecided then {zsuMmin < 25UMmin + 1; 28UMmaz < 2SUMmaz + 0;}
else {ZsuMmin < 28UMmin + Z; 2SUMmag < 2SUMmae + 23}
o' — maz(a’,a"); n —n+1;
}
Sf 25UMimas/n > p+ (1 — p)o then
return (1, Prob[>. Z; > zsummas | p” =p + (1 — p)’]);
else if 25uMmin/n < p —pa’ then
return (0, Prob[Y. Z; < zsumm | p” = p — pa’]);
else return (undecided, 0.0);
}
One can calculate Prob[>" Z; > zsumupas | ' = p+(1—p)’] (or Prob[>" Z; >
28UMmin | P = p — pa’]) by noting that > Z; has binomial distribution with
parameters p + (1 — p)a’ (or p — pa’) and n.

3.3 Negation

For the verification of a formula —¢ at a state s, we recursively verify ¢ at state
s. If s =4 ¢ with p-value a we say that s 4 —¢ with p-value Prob[s a4 —¢ |
s = | = Prob[s Ea ¢ | s £ ¢] = «. Similarly, if s 4 ¢ with p-value o then
s Ea —¢ with p-value a. Otherwise, if A cannot answer the satisfaction of ¢ at
s, we say that A cannot answer the satisfaction of —¢ at s. Thus we can define
verifyNot as follows:

verifyNot(—¢', s){
(2, ) « wverifyAtState(d’, s);
if z =undecided then return (undecided,0.0); else return (1 — z, a);

}

3.4 Conjunction

To verify a formula ¢ = ¢1 A ¢o at a state s, we verify ¢; and ¢ at the state s
separately. Depending on the outcome of the verification of ¢ and ¢2, A decides
for ¢ as follows:
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1. If s Ea ¢1 and s E4 @2 with p-values o and «e respectively, then s =4 ¢.
The p-value for this decision is Prob[s =4 ¢1 A ¢2 | s & ¢1 A ¢2]. Note that
s £ @1 A ¢ holds in three cases, namely 1) s & ¢1 and s = @2, 2) s E ¢4
and s £ ¢, and 3) s = @1 and s £ ¢o. Thus, the p-value for the decision
of s =4 ¢ can be taken as the maximum of the p-values in the above three
cases which is maz(ay, as).

2. If s ra ¢1 (or s a ¢2) and either s =4 @2 or A cannot decide ¢ at s (or
either s =4 ¢1 or A cannot decide ¢ at s), then s =4 ¢ and the p-value is
Prob[s ra ¢1 A2 | s |E é1 and s | ¢o] = a1 + aa (or as + aq).

3. If s jea 1 and s Ea @2 then s fEq d1 A ¢o. The p-value for this decision is

Prob[s ea ¢1 Ao | s |E ¢1 and s | o] < a1 + as.
4. Otherwise, A cannot decide ¢.

Thus we can define the procedure verifyAnd as follows:

verifyAnd(¢p1 A ¢z, $){
(21, 00) «— verifyAtState(¢pu, s); (22, a2) «— verifyAtState(¢2, s);
if 21 =1 and 2> = 1 then return (1,maz (a1, a2));
else if z; = 0 and 22 # 0 then return (0, a1 + a2);
else if z; # 0 and 22 = 0 then return (0, a1 + a2);
else if z1 = 0 and 22 = 0 then return (0,01 + a2);
else return (undecided, 0.0);

}

3.5 Atomic Proposition

In this simplest case, given ¢ = a and a state s, A checks if s =4 a or not
by checking if a € AP(s) or not. If a € AP(s) then s =4 ¢ with p-value 0.
Otherwise, s &4 ¢ with p-value 0.

verifyAtomic(a, s){
if a € AP(s) then return (1,0.0); else return (0,0.0);

}

3.6 Next

To verify a path formula ¢v = X¢ over a path 7w, A verifies ¢ at the state
w[1]. If w[1] Ea ¢ with p-value a then © =4 ¢ with p-value . Otherwise, if
m[l] Fa ¢ with p-value o then 7 (=4 ¢ with the same p-value. Thus we can
define verifyPath for X¢ as follows:

verifyPath(X¢, m){
return verifyAtState(p, w[1]);

}

3.7 Until

Let ¢ = ¢ US'po be an until formula that we want to verify over the path .
We can recursively evaluate the truth value of the formula over the path 7 by



Statistical Model Checking of Black-Box Probabilistic Systems 211

following the recursive definition given by Equation 1. Given the truth value and
the p-value for the formula ¢ US? ' ¢y over the suffix m; 41, we can calculate the
truth value of ¢ U St/@ over the path m; by applying the decision procedure for
conjunction and negation. Observe that the recursive formulation in Equation 1
can be unrolled to obtain an equation purely in terms of conjuction and negation
(and without any until formulas); it is this “unrolled” version that is used in the
implementation for efficiency reasons.

4 Implementation and Performance

We have implemented the above algorithm as part of a prototype Java tool
called VESTA. We successfully used the tool to verify several programs having
a CTMC model®. The performance of the verification procedure depends on the
number of samples required to reach a decision with sufficiently small p-value. To
get a smaller p-value the number of samples needs to be increased. We need a lot
of samples only when the actual probability of a path from a state s satisfying a
formula 1 is very close to the threshold p in a formula P, (1) whose satisfaction
we are checking at s.

To evaluate the performance and effectiveness of our implementation we did
a few case studies. We mostly took the stochastic systems used for case studies
in [15]. The experiments were done on a 1.2 GHz Mobile Pentium IIT laptop
running Windows 2000 with 512 MB memory®. We did not take into account the
time required for generating samples: we assumed that such samples come from
a running system. However, this time, as observed in some of our experiments,
is considerably less than the actual time needed for the analysis. We generated
samples of length sufficient to evaluate all the time-bounded until formulas. In
all of our case studies we checked the satisfaction of a given formula at the ini-
tial state. We give a brief description of our case studies below followed by our
results and conclusions. The details for the case studies can be obtained from
http://osl.cs.uiuc.edu/~ksen/vesta/.

Grid World: We choose this case study to illustrate the performance of our
tool in the presence of nested probabilistic operators. It consists of an n x n
grid with a robot located at the bottom-left corner and a janitor located at the
top-right corner of the grid. The robot first moves along the bottom edge of a
cell square and then along the right edge. The time taken by the robot to move
from one square to another is exponentially distributed. The janitor also moves
randomly over the grid. However, either the robot or the janitor cannot move to
a square that is already occupied by the other. The robot also randomly sends
a signal to the base station. The underlying model for this example is a CTMC.
The aim of the robot is to reach the top-right corner in time 73 units with prob-
ability at least 0.9, while maintaining a minimum 0.5 probability of communica-

5 We selected systems with CTMC model so that we can compare our results with
that of existing tools.

6 [15] used a 500 MHz Pentium III. However, our performance gain due to the use of
faster processor is more than offset by the use of Java instead of C.
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Fig. 1. Grid world: verification time and number of samples versus number of states.

tion with the base station with periodicity less than 75 units of time. This can be
specified using the CSL formula ’on,g(’PZO,5(trueM§T2 communicate)UST goal).

We verified the CSL property for Grid World with n € [1,100]. The property
holds only for n € [1,13]. The state space of the program is ©(n?). In Fig.1 we
plot the results of our experiment. The graph shows that for n closer to 13 the
running time and the number of samples required increases considerably to get a
respectable p-value of around 1078, This is because at n = 13 the probability that
P>o.5(trued T2 communicate) U =T\ goal holds over an execution path becomes
very close to 0.9. We found that our graphs are similar to [15].

Cyclic Polling System: This case study is based on a cyclic server polling
system, taken from [12]. The model is represented as a CTMC. We use N to
denote the number of stations handled by the polling server. Each station has a
single-message buffer and they are cyclically attended by the server. The server
serves the station 7 if there is a message in the buffer of 7 and then moves on to
poll the station (i+ 1) modulo N. Otherwise, the server starts polling the station
i+ 1 modulo N. The polling and service times are exponentially distributed. The
state space of the system is @(N.2V). We verified the property that “once a job
arrives at the first station, it will be polled within 7" time units with probability
at least 0.5.” The property is verified at the state in which all the stations have
one message in their message buffer and the server is serving station 1. In CSL
the property can be written as (m; = 1) — Psos(trued=T(s = 1 A a = 0)),
where m; = 1 means there is one message at station 1, and s = 1 Aa = 0 means
that the server is polling station 1.

Tandem Queuing Network: This case study is based on a simple tandem
queuing network studied in [9]. The model is represented as a CTMC which
consists of a M/Coxa/1-queue sequentially composed with a M/M/1-queue. We
use N to denote the capacity of the queues. The state space is ©(N?). We verified
the CSL property P 5(true UST full) which states that the probability of the
queuing network becoming full within 7" time units is less than 0.5.

The results of the above two case studies is plotted in Fig. 2. The character-
istics of the graphs for both the examples are similar to that in [15]. However,
while achieving a level of confidence around 1078, the running time of our tool
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Fig. 2. Polling System and Tandem Queuing Network: Running time versus the pa-
rameter 7" in CSL formula.

for these cases is faster than the running time of the tool described in [15]. Tt
is important to observe that, unlike the work of [15], VESTA cannot guaran-
tee that the error of it’s probabilistic answer is bounded; the p-value computed
depends on the specific sample.

We could not compare the number of samples for these case studies as they
are not available from [15]; theoretically sequential hypothesis testing should
require a smaller sample size than simple hypothesis testing to achieve the same
level of confidence. While in our case studies we never faced a memory problem,
we suspect that this may be a problem in very big case studies. We observed
that, although the state space of a system may be large, the number of states
that appeared in the samples may be considerably smaller. This gives us hope
that our approach may work as well for very large-scale systems.

5 Conclusion and Future Work

We have presented a new statistical approach to verifying stochastic systems
based on Monte Carlo simulation and statistical hypothesis testing. The main
difference between our approach and previous statistical approaches is that we
assume that the system under investigation is not under our control. This means
that our algorithm computes on a fixed set of executions and cannot obtain sam-
ples as needed. As a consequence, the algorithm needs to check for the satisfac-
tion of a property and compute the p-value of its tests. Since the sample may not
provide sufficient statistical evidence to conclude the satisfaction or violation of a
property, one technical challenge is to provide useful answers despite insufficient
statistical evidence for the satisfaction of subformulas. We implemented our ap-
proach in Java and our experimental case studies have demonstrated that the
running time of our tool is faster than previous methods for analyzing stochastic
systems in at least some cases; this suggests that our method may be a feasible
alternative.

Another important challenge is the amount of memory needed. Since we
store all the sample executions, our method is memory intensive, and though
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we did not suffer from memory problems on the examples studied here, we sus-
pect that it will be an issue when analyzing larger case studies. Hence, there
is a need to design efficient data structures and methods to store and compute
with a large set of sample executions. We suspect statistical hypothesis testing
approaches (as opposed to sequential hypothesis testing approaches) might be
extendible to check liveness for certain types of systems, possibly by extract-
ing some additional information about the traces. Note that liveness properties
are particularly complicated by the fact that the operators may be nested. We
are currently exploring that direction. Finally, it would be interesting to apply

statistical methods to analyze properties described in probabilistic logics other
than CSL.
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