
GSTE Is Partitioned Model Checking

Roberto Sebastiani1,�, Eli Singerman2, Stefano Tonetta1, and Moshe Y. Vardi3,��

1 DIT, Università di Trento
{rseba,stonetta}@dit.unitn.it

2 Intel Israel Design Center
eli.singerman@intel.com

3 Dept. of Computer Science, Rice University
vardi@cs.rice.edu

Abstract. Verifying whether an ω-regular property is satisfied by a finite-state
system is a core problem in model checking. Standard techniques build an au-
tomaton with the complementary language, compute its product with the system,
and then check for emptiness. Generalized symbolic trajectory evaluation (GSTE)
has been recently proposed as an alternative approach, extending the computa-
tionally efficient symbolic trajectory evaluation (STE) to general ω-regular prop-
erties. In this paper, we show that the GSTE algorithms are essentially a parti-
tioned version of standard symbolic model-checking (SMC) algorithms, where
the partitioning is driven by the property under verification. We export this tech-
nique of property-driven partitioning to SMC and show that it typically does
speed up SMC algorithms.

1 Introduction

Verifying whether an ω-regular property is satisfied by a finite-state system is a core
problem in Model Checking (MC) [23, 31]. Standard MC techniques build a comple-
mentary Büchi automaton (BA), whose language contains all violations of the desired
property. They then compute the product of this automaton with the system, and then
check for emptiness [30, 23]. To check emptiness, one has to compute the set of fair
states, i.e., those states of the product automaton that are extensible to a fair path. This
computation can be performed in linear time by using a depth-first search [10]. The
main obstacle to this procedure is state-space explosion, i.e., the product is usually too
big to be handled. Symbolic model checking (SMC) [3] tackles this problem by repre-
senting the product automaton symbolically, usually by means of BDDs. Most symbolic
model checkers compute the fair states by means of some variant of the doubly-nested-
fixpoint Emerson-Lei algorithm (EL) [13].

Another approach to formal verification is that of Symbolic Trajectory Evalua-
tion (STE) [28], in which one tries to show that the system satisfies the desired prop-

� Sponsored by the CALCULEMUS! IHP-RTN EC project, code HPRN-CT-2000-00102, by a
MIUR COFIN02 project, code 2002097822 003, and by a grant from the Intel Corporation.

�� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435,
IIS-9978135, EIA-0086264, and ANI-0216467 by BSF grant 9800096, and by a grant from
the Intel Corporation.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 229–241, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

230 Roberto Sebastiani et al.

erty by using symbolic simulation and quaternary symbolic abstraction. This often en-
ables quick response time, but is restricted to very simple properties, constructed from
Boolean implication assertions by means of conjunction and the temporal next-time
operator [5]. Recently, GSTE [33] has been proposed as an extension of STE that can
handle all ω-regular properties. In this framework, properties are specified by means
of Assertion Graphs (AG). The GSTE algorithm augments symbolic simulation with a
fixpoint iteration. Recent work on GSTE, e.g., in [34], has described various case stud-
ies and has focused mainly on abstraction in GSTE. The fundamental relation between
GSTE and SMC, however, has not been completely clarified. The basic relationship be-
tween AGs and BAs is sketched in [21], but the algorithmic relationship between GSTE
and SMC has not been studied.

In this work, we analyze the property-specification language and the checking al-
gorithm used by GSTE and compare them to those used in SMC. (We do not deal with
abstraction, which is an orthogonal issue.) We first fill in details not given in [21] to
show that assertion graphs are essentially universal ω-automata [24], which require all
runs to be accepting. Universal automata enjoy the advantage of easy complementa-
tion; in fact, they can be viewed as nondeterministic automata for the complementary
property. Formally, given a BA, one can easily construct an AG for the complemen-
tary language, and vice versa. This permits us to do a direct comparison between the
algorithms underlying GSTE and SMC.

We then point out that the GSTE algorithms are essentially a partitioned version of
the standard SMC algorithms. SMC algorithms operate on subsets of the product state
space S×V , where S is the state space of the system and V is the state space of comple-
mentary automaton. We show that GSTE operates on partitioned subsets of the product
state space. The partitioning is driven by the automaton state space. The GSTE analog
of a subset Q ⊆ S×V is the partition {Qv : v ∈ V}, where Qv = {s : (s,v) ∈ Q}. The
GSTE algorithms are in essence an adaptation of the standard SMC algorithms to the
partitioned state space. Thus, rather than operate on a BDD representing a subset P of
the product state space, GSTE operates on an array of BDDs, representing a partitioning
of P. We refer to such partitioning as property-driven partitioning.

Finally, we proceed to explore the benefits of property-driven partitioning in the
framework of SMC. We use NuSMV [6] as our experimental platform in the context of
LTL model checking. We added to NuSMV the capability of property-driven partitioned
SMC, both for safety LTL properties and for full LTL properties, and compared the
performance of SMC with partitioned SMC. We find that property-driven partitioning
is an effective technique for SMC, as partitioned SMC is typically faster than SMC. The
major factor seems to be the reduction in the number of BDD variables, which results
in smaller BDDs. The reduced BDD size more than compensates for the additional
algorithmic overhead for handling a partitioned state space.

Partitioning techniques have often been proposed in order to tackle the state space
explosion problem. (We refer here to disjunctive partitioning, rather than to the orthog-
onal technique of conjunctive partitioning, which is used to represent large transition
relations.) Static partitioning techniques, which require an analysis of the state space,
have been discussed, e.g., in [25]. Dynamic partitioning techniques, which are driven

GSTE Is Partitioned Model Checking 231

by heuristics to reduce BDD size, have been discussed, e.g., in [4]. Partitioning has been
used in [19] to develop a distributed approach to SMC.

Property-driven partitioning is orthogonal to previous partitioning techniques. Un-
like dynamic partitioning techniques, no expensive BDD-splitting heuristics are re-
quired. Unlike previous static partitioning techniques, property-driven partitioning is
fully automated and no analysis of the system state space is needed. The technique is
also of interest because it represents a novel approach to automata-theoretic verifica-
tion. So far, automata-theoretic verification means that either both system and property
automaton state spaces are represent explicitly (e.g. in SPIN [20]) or symbolically (in
NuSMV [6] or in Cadence SMV www-cad.eecs.berkeley.edu/˜kenmcmil/smv/).
Just like GSTE, property-driven partitioning enables a hybrid approach, in which the
property automaton, whose state space is often quite manageable, is represented explic-
itly, while the system, whose state space is typically exceedingly large is represented
symbolically. Other hybrid approaches have been described in [1, 7, 18], but ours is the
first work to evaluate a hybrid approach in the context of general model checking.

The paper begins with an overview of the basic notions of SMC [9] and GSTE
[33] in Section 2: first, BAs and AGs are defined in a new perspective that clarifies
the common underlying structure; we then describe SMC and GSTE model checking
procedures. In Section 3, first, we prove that AGs and BAs are equivalent; then, we
analyze the checking algorithms of GSTE and show that it is a partitioned version of
standard SMC algorithms. In Section 4, we export property-driven partitioning to SMC
and we report on the comparison of SMC with partitioned SMC in the framework of
NuSMV. We conclude in Section 5 with a discussion of future research directions.

2 Büchi Automata and Assertion Graphs

In this section, we introduce the specification languages and the checking algorithms
used by SMC [9] and GSTE [33]. In SMC, we can specify properties by means of
BAs, while GSTE uses AGs. Both the languages have a finite and a fair semantics. The
finite semantics is checked with a fixpoint computation, while the fair one requires a
doubly-nested fixpoint computation.

We define a system M as a tuple 〈S,SI,T 〉, where S is the set of states, SI ⊆ S is
the set of initial states, T ⊆ S× S is the transition relation. We use capital letters such
as Y,Z, .. to denote subsets of S. We define functions post, pre : 2S −→ 2S such that
post(Y) = {s′ ∈ S | (s,s′) ∈ T,s ∈ Y} and pre(Y) = {s′ ∈ S | (s′,s) ∈ T,s ∈ Y}. A
finite (resp., infinite) trace in M is a finite (resp., infinite) sequence σ of states such that
σ[i + 1] ∈ post(σ[i]) for all 1 ≤ i < |σ| (resp., i ≥ 1). A trace σ is initial iff σ(1) ∈ SI .
We define Lf (M) as the set of all initial finite traces of M and L(M) as the set of all
initial infinite traces.

In the following, we propose a new representation for BAs and AGs: both can be
seen as an extension of Fair Graphs (FG). This is the structure which AGs and BAs have
in common. As we shall see, while an AG is an FG with two labeling functions, a BA
is an FG with just one labeling function. We use labels on vertices rather than on edges
(as in GSTE [33]). This does not affect the generality of our framework and allows for
an easier comparison between GSTE and SMC as well as an experimental evaluation

232 Roberto Sebastiani et al.

in the framework of NuSMV. Moreover, labels are defined as sets of systems states. (In
practice, labels are given as predicates on system states; a predicate describes the sets
of states that satisfy it.)

2.1 Fair Graphs, Büchi Automata and Assertion Graphs

Fair Graphs are essentially graphs with the addition of a fairness condition.

Definition 1. A Fair Graph G is a tuple 〈V,VI,E,F 〉 where V is the set of vertices,
VI ⊆V is the set of initial vertices, E ⊆V ×V is a total relation representing the set of
edges, and F = {F1, ...,Fn}, with Fj ⊆V for 1 ≤ j ≤ n, is the set of fair sets.

A finite (resp., infinite) path in G is a finite (resp., infinite) sequence ρ of vertices
such that (ρ[i],ρ[i+1]) ∈ E for all 1 ≤ i < |ρ| (resp., i ≥ 1). ρ is initial iff ρ[1]∈VI . ρ is
fair iff it visits every set F ∈ F infinitely often. We define Lf (G) as the set of all finite
initial paths of G and L(G) as the set of all fair initial paths.

For every v ∈V we define the set of successor vertices E(v) = {v′ ∈V | (v,v′) ∈ E}
and the set of predecessor vertices E−(v) = {v′ ∈ V | (v′,v) ∈ E} . (The operators E
and E− are analogous to post and pre. They are used for clarity of notation.)

A labeling function is a function γ : V −→ 2S. Given a set of vertices V ′ ⊆ V , we
define the restriction γ|V ′ of γ to V ′ as follows: γ|V ′ (v) = γ(v) if v ∈ V ′, and γ|V ′ (v) = /0
otherwise. Typically, we use α,β,γ to denote labeling functions. Notice that a labeling
function γ can be considered and represented as a set of subsets of S: {γ(v)}v∈V . With
abuse of notation, given two labeling functions α and γ, we will write α ⊆ γ (resp., α∩γ,
α∪ γ) to mean, for all v ∈V , α(v) ⊆ γ(v) (resp., α(v)∩ γ(v), α(v)∪ γ(v)).

Definition 2. Given a trace σ in M, a path ρ in G of the same length l (resp., both
infinite) and a function γ : V −→ 2S, we say that σ satisfies ρ under γ (denoted σ |=γ ρ)
iff σ[i] ∈ γ(ρ[i]) for all 1 ≤ i ≤ l (resp., i ≥ 1).

A Büchi automaton (BA) is essentially an FG with the addition of a labeling func-
tion. A trace is accepted by a BA iff it satisfies the labeling function along at least one
path of the FG. In the following, BAs express complementary properties, that is, their
language contains all violations of the desired property.

Formally, a Büchi Automaton B is a tuple 〈G,L〉 where G = 〈V,VI,E,F 〉 is a fair
graph, and L : V −→ 2S is the labeling function. We define the set Lf (B) (resp., L(B))
as the set of finite (resp., infinite) traces of M accepted by B:

Definition 3.
– finite semantics: if F = {F}, L f (B) = {σ ∈ Lf (M) | there exists a finite path ρ ∈

Lf (G) with |σ| = |ρ| = l, ρ[l] ∈ F and σ |=L ρ};
– fair semantics: L(B) = {σ ∈ L(M) | there exists a fair path ρ ∈ L(G) with σ |=L ρ}.

Since BAs have the complementary language of the specification, the model checking
problem consists in verifying whether Lf (B) = /0, in the case of finite semantics, L(B) =
/0, in the case of fair semantics.

An assertion graph (AG) is essentially an FG with the addition of two labeling
functions: the antecedent and the consequent. An AG accepts a trace iff, along all paths,
either the trace does not satisfy the antecedent or if it satisfies the consequent.

GSTE Is Partitioned Model Checking 233

Fig. 1. FG example

true p&!q !q

Fig. 2. BA example

true/false !q/falsep&!q/false

Fig. 3. AG example

Formally, an Assertion Graph A is a tuple 〈G,ant,cons〉 where G = 〈V,VI,E,F 〉
is a fair graph, ant : V −→ 2S is the antecedent function, and cons : V −→ 2S is the
consequent function. Given a trace σ in M and a path ρ in G of the same length, we say
that σ satisfies ρ in A (denoted σ |=A ρ) iff σ |=ant ρ ⇒ σ |=cons ρ. We define the set
Lf (A) (resp., L(A)) as the set of finite (resp., infinite) traces of M accepted by A:

Definition 4.
– finite semantics: if F = {F}, L f (A) = {σ ∈ Lf (M) | for all finite path ρ ∈ Lf (G),

if |σ| = |ρ| = l and ρ[l] ∈ F, then σ |=A ρ};
– fair semantics: L(A) = {σ ∈ L(M) | for all fair path ρ ∈ L(G), σ |=A ρ}.

The model checking problem for AGs consists in verifying whether Lf (M) ⊆ Lf (A), in
the case of finite semantics, L(M) ⊆ L(A), in the case of fair semantics.

Example 1. An example of FG is depicted in Fig. 1. The vertices are represented by
points, the edges by arrows. An arrow without starting vertex point to a vertex to indi-
cate that it is initial. For simplicity, in the example we have only one fair set. The circle
around the rightmost vertex means that it belongs to this fair set.

Examples of BA and AG are depicted resp. in Fig. 2 and 3. They have the same
underlying FG. In the AG, the labels are represented in the format ant/cons. p and q
are propositional properties. With the fair semantics, the AG corresponds to the LTL
property G(p → Fq), while the BA has the complementary language. �

2.2 SMC Algorithms

Given a system M = 〈S,SI,T 〉 and a BA B = 〈〈V,VI,E,F 〉,L〉, SMC first computes
the product P between B and M. Then, in the case of finite semantics, it finds the set
of vertices reachable from the initial vertices and check if it intersects a certain set of
vertices FP in P; in the case of fair semantics it finds the set of fair vertices, i.e., those
which are extensible to fair paths, and it checks if it intersects the set of initial vertices.

The product between M and B is a BA defined as follows: P := 〈〈VP, IP,EP,FP〉,LP〉
where VP = {(s,v) | s ∈ M,v ∈ V,s ∈ L(v)}, IP = {(s,v) ∈ VP | s ∈ SI,v ∈ VI}, EP =
{((s,v),(s′,v′)) | (s,v) ∈ VP,(s′,v′) ∈ VP,(s,s′) ∈ T,(v,v′) ∈ E}, FP = {FP1, ...,FPn}
where FP j = {(s,v) ∈VP | v ∈ Fj}, LP(s,v) = {s}.

In the case of finite semantics F = {F}, so that FP = {FP}, where FP = {(s,v) ∈
VP | v ∈ F}. Then, it is easy to see that Lf (P) = Lf (B). Moreover, every finite path of
P corresponds to a finite trace of M accepted by B. Thus, to verify that Lf (P) = /0, we
can just compute the set of reachable vertices and check that it does not intersect FP.
Usually, this set is found with a traversal algorithm like the one described in Fig. 4.

234 Roberto Sebastiani et al.

Algorithm traversal(P)
1. R := IP
2. N := IP
3. repeat
4. Z := EY[N]
5. N := Z\R
6. R := R∪Z
7. until N = /0
8. return R

Fig. 4.

Algorithm fairstates(P)
1. Y :=

2. repeat
3. Y ′ := Y
4. for FP ∈ FP
5. Z := E[Y U(Y ∧FP)]
6. Y := Y ∧EX[Z]
7. until Y ′ = Y
8. return Y

Fig. 5.

Similarly, in the case of fair semantics, it is easy to see that L(P) = L(B). Moreover,
every fair path of P corresponds to an infinite trace of M accepted by B. Thus, to verify
that L(P) = /0 we can just compute the set of fair vertices and check that it does not
intersect IP. The standard algorithm to compute the set of fair vertices is the Emerson-
Lei algorithm (EL) described in Fig. 5 [13]. SMC tools typically implement a variant
of this doubly-nested fixpoint computation.

2.3 GSTE Algorithms

The algorithm used by GSTE to check the AG in the different semantics is described in
Fig. 6. The function GSTE f airstates of line 2 is called only in the case of fair seman-
tics and it is described in Fig. 7. GSTE f airstates restricts the antecedent function to
the states of the system that are extensible to fair paths. In the lines 3-9 of Fig. 6, α is
defined iteratively until a fixpoint is reached. First, α is initialized to be the restriction
of ant to the set of initial vertices and to the set of initial states. Then, at every iteration,
a state s is added to α(v) iff s ∈ ant(v) and there exists a state s′ ∈ α(v′) such that s is
reachable from s′ in one step and v is reachable from v′ in one step. When the fixpoint
is reached, α(v) contains s iff there exists an initial path ρ of the assertion graph and an
initial trace σ of the system of the same length l such that ρ[l] = v, σ[l] = s and σ |=ant ρ.

With an analogous fixpoint computation (lines 6-10), GSTE f airstates finds a func-
tion α such that α(v) contains s iff there exist a path ρ of the assertion graph and a trace
σ of the system of the same length l such that ρ[l] ∈ F , ρ[1] = v, σ[1] = s and σ |=ant ρ.
This computation is applied for every F ∈ F and it is nested in a second fixpoint com-
putation: at every iteration the antecedent function is updated with α until a fixpoint is
reached. At the end of the outer loop, ant(v) contains s iff there exist a fair path ρ of the
assertion graph and an infinite trace σ of the system such that σ |=ant ρ.

3 GSTE vs. SMC

In this section, we clarify the relationship between GSTE and SMC. First, we show that
AGs and BAs are equivalent. Then, we show GSTE algorithm is essentially a “parti-
tioned” version of the SMC algorithm.

We now show that, given a BA B, one can easily find an AG A with the complemen-
tary language and vice versa. This means that, given a specification ϕ, one can choose
either GSTE or SMC techniques to check ϕ, no matters whether ϕ is an AG or a BA.

GSTE Is Partitioned Model Checking 235

Algorithm GSTE(M,A)
1. if fair semantics
2. then A := GST E f airstates(M,A)
3. α := ant|VI

4. for v ∈V α(v) := α(v)∩SI

5. repeat
6. α′ := α
7. for v ∈V α(v) :=
8. α′(v)∪⋃

v′∈E−(v) post(α′(v′))∩ant(v)
9. until α′ = α
10. if fair semantics
11. then return α ⊆ cons
12. else return α|F ⊆ cons

Fig. 6.

Algorithm GSTE fairstates(M,A)
1. repeat
2. ant ′ := ant
3. for F ∈ F
4. for v ∈V α(v) :=
5.

⋃
v′∈E(v),v′∈F pre(ant(v′))∩ant(v)

6. repeat
7. α′ := α
8. for v ∈V α(v) :=
9. α′(v) ∪ ⋃

v′∈E(v) pre(α′(v′)) ∩
ant(v)

10. until α′ = α
11. ant := α
12. until ant ′ = ant
13. return A

Fig. 7.

Moreover, since BAs are nondeterministic (i.e., existential) automata, AGs are revealed
to be their dual, which are universal automata.

The following four theorems establish the relationship between AGs and BAs1.
First, the following two theorems show how to express AGs as BAs.

Theorem 1. Let A = 〈G,ant,cons〉 be an AG where G = 〈V,VI,E,F 〉 and F = {F}. Let
B be the BA 〈G′,L〉, where G′ = 〈V ′,V ′

I ,E
′,F ′〉 s.t. V ′ = V ×{0,1,2}, V ′

I = VI ×{0,1},
E ′ = {((v1,k1),(v2,k2)) | (v1,v2) ∈ E, k2 ∈ {0,1} if k1 = 0, and k2 = 2 otherwise},
F ′ = {F×{1,2}}, L((v,k)) = ant(v) if k ∈{0,2}, and L((v,k)) = ant(v)∩(S\cons(v))
if k = 1. Then Lf (B) = Lf (M)\Lf (A)

Theorem 2. Let A = 〈G,ant,cons〉 be an AG where G = 〈V,VI,E,F 〉 and F = {F1, ...,
Fn}. Let B be the BA 〈G′,L〉, where G′ = 〈V ′,V ′

I ,E
′,F ′〉 s.t. V ′ = V ×{0,1,2}, V ′

I =
VI ×{0,1}, E ′ = {((v1,k1),(v2,k2)) | (v1,v2) ∈ E, k2 ∈ {0,1} if k1 = 0, and k2 = 2
otherwise}, F ′ = {F1×{2}, ...,Fn×{2}}, L((v,k)) = ant(v) if k ∈ {0,2}, and L((v,k))
= ant(v)∩ (S\cons(v)) if k = 1. Then L(B) = L(M)\L(A)

The following two theorems show how to express BAs as AGs.

Theorem 3. Let B = 〈G,L〉 be a BA where G = 〈V,VI,E,F 〉 and F = {F}. Let A
be the AG 〈G,ant,cons〉, where ant = L , cons(v) = /0 for all v ∈ V. Then Lf (B) =
Lf (M)\Lf (A)

Theorem 4. Let B = 〈G,L〉 be a BA where G = 〈V,VI,E,F 〉. Let A be the
AG 〈G,ant,cons〉, where ant = L , cons(v) = /0 for all v ∈V . Then L(B) = L(M)\L(A)

We now compare the algorithms used by GSTE and SMC. In particular, we show
that the former is essentially a “partitioned” version of the latter.

1 A longer version of the paper, containing the proofs of the theorems and a more extensive bibli-
ography , can be downloaded at www.science.unitn.it/˜stonetta/partitioning.html.

236 Roberto Sebastiani et al.

In Section 2, we saw how SMC solves the model checking problem for a BA B: it
builds the product automaton P between M and B and it verifies that the language of
P is empty. GSTE follows an analogous procedure for checking an AG A: it actually
computes the product between M and Bant , where Bant is a BA with the same underlying
graph G of A and the labeling function equal to ant. The only difference between SMC
and GSTE is that the latter operates on partitioned subsets of the product state space.
The partitioning is driven by the automaton state space and we refer to such partitioning
as property-driven partitioning. The GSTE analog of a subset Q ⊆ SP is the partition
{Qv : v ∈V}, where Qv = {s : (s,v) ∈ SP}. Indeed, every labeling function γ can be seen
as a division of the model into sets of states, one for every vertex v of the graph, which
is exactly the set γ(v). If γ ⊆ ant, then γ turns out to represent a set Sγ ⊆ SP of states in
the product defined as follows: Sγ = {(s,v)|s ∈ γ(v)}

One can see that the lines 3-9 of the algorithm in Fig. 6 computes the reach-
able states of SP. In fact, we could rewrite lines 6-8 in terms of CTL formulas as
α = α∪EY[α]. Thus, at the end of the loop, α(v) = {s|(s,v) is reachable in SP}. This
computation is actually a partitioned version of the one of Fig. 4 with the difference
that SMC applies the post-image only to the new states added in the previous iteration,
while GSTE applies the post-image to the whole set of reached states.

In the case of fair semantics the computation of reachable states is preceded by
a pruning of the product: GSTE f airstates finds all vertices of SP such that they are
extensible to fair paths. To compare this procedure with EL, we rewrite the operations
of GSTE f airstates in terms of CTL formulas. At the lines 4-5 of the algorithm in Fig.
7, GSTE f airstates actually computes the preimage of ant|F (seen as a set of states
in SP). So, we can rewrite these lines as α = EX[(ant|F)]. Furthermore, the lines 7-
9 are the same as α = α∪ (ant ∩ EX[(α)]) so that one can see the loop of lines 6-
10 as α = E[(ant)U(α)]. This reachability computation is nested in a second fixpoint
computation, so that it becomes evident that GSTE f airstates is a variant of the EL
algorithm of Fig. 5.

4 SMC vs. Property-Driven Partitioned SMC

In Section 3, we saw that GSTE is a partitioned version of SMC. We can also apply
property-driven partitioning to standard SMC algorithms. In particular, there are two
algorithms to be partitioned: traversal and f airstates (Fig. 4 and 5). We partitioned
both of them, by using NuSMV as platform. This choice is motivated by the fact that
NuSMV implements symbolic model checking for LTL, its source is open, and its code
is well-documented and easy to modify.

The “translated” algorithms are shown is Fig. 8 and Fig. 9. Both are based on back-
ward reachability and respect the structure of NuSMV’s implementation (e.g., the order
of fair sets is irrelevant). The difference with the non-partitioned versions is that while
traversal and f airstates operate on a single set of states in the product automaton,
partitioned traversal and partitioned f airstates operate on an array of sets of states
of the system (one set for every vertex of the BA). Thus, every variable in the algorithms
of Fig. 8 and 9 can be considered as a labeling function. For every set Y ⊆ S of states and
labeling L , we define the labeling function parL(Y) such that: parL(Y)(v) = Y ∩L(v)
for all v ∈ V . The initial states of the product are given by parL(SI)|VI

. Given a fair set

GSTE Is Partitioned Model Checking 237

Algorithm partitioned traversal(M,B)
1. α := parL (S)|F
2. β := α
3. repeat
4. γ := EX[β]
5. β = γ\α
6. α := α∪ γ
7. until β = /0
8. return α

Fig. 8.

Algorithm partitioned fairstates(M,B)
1. α :=
;
2. repeat
3. α′ := α;
4. β :=
;
5. for F ∈ F
6. β := β∩E[αU(α∩ parL (S)|F)];
7. α := α∩β;
8. α := α∩EX[α];
9. until α′ = α
10. return α

Fig. 9.

F of the BA, the correspondent set in the product is given by parL(S)|F . The backward
image of a labeling function α is given by EX[(α)](v) =

⋃
v′∈E(v) pre(α(v′))∩L(v).

We investigated if property-driven partitioning is effective for symbolic model
checking. In particular, we applied such technique to LTL model checking. In fact,
it is well known that, given a formula ϕ expressed by an LTL formula, we can find a
BA with the same language. The standard LTL symbolic model checkers translate the
negation of the specification into a BA, they add the latter to the model and check for
emptiness. The goal of our experiments was to compare the performance of partitioned
and non-partitioned SMC algorithms. Thus, we did not try to optimize the algorithms
implemented in NuSMV, but to apply to them property-driven partitioning. The ques-
tion we wanted to answer is whether the reduction in BDD size more than compensates
for the algorithmic overhead involved in handling a partitioned state-space. This pro-
vides also an indirect comparison between GSTE and standard SMC techniques.

To verify an LTL formula ϕ, NuSMV calls ltl2smv, which translates ¬ϕ into a
symbolically represented BA with fairness constraints F . Then, the function EF G[true]
checks if the language of the product is empty. Since NuSMV does not apply any par-
ticular technique when ϕ is a safety formula [22], we enhanced the tool with the option
-safety: when ϕ contains only the temporal connectives X , G, and V , it constructs a
predicate F on the automaton states (representing accepting states for the complemen-
tary property) and calls the function E[trueUF]. In the following, we refer to this proce-
dure and to the standard NuSMV’s procedure as ‘‘NuSMV -safety’’ and ‘‘NuSMV’’
respectively. We implemented the partitioned versions of both and we refer to latter ones
as ‘‘NuSMV -safety -partitioned’’ and ‘‘NuSMV -partitioned’’ respectively.
The BA is built automatically by ltl2smv in the case of non-partitioned algorithms
while it is constructed by hand (in these experiments) in the case of partitioned algo-
rithms.

We run our tests on three examples of SMV models (for the SMV code, we refer the
reader to www.science.unitn.it/˜stonetta/partitioning.html). For every ex-
ample, we chose two properties true in the model (one safety and one liveness property,
see Tab. 1) and two properties that failed (again one safety and one liveness property,
see Tab. 2). The first example is a dining-philosophers protocol [12]. Concurrency is
modeled with the interleaving semantics. Typically, a philosopher iterates through a se-
quence of four states: she thinks, tries to pick up the chopsticks, eats and, finally, she

238 Roberto Sebastiani et al.

Table 1. Satisfied properties

Safety Liveness
Dining G((p∧ r∧X(r)∧XX(r)∧XXX(r)) → XXXX(e)) (

∧
1≤i≤N GFri) → (GFs)

Mutex G((t1 ∧
∧

2≤i≤N ¬ti) → Xc) G(
∧

1≤ı≤N ti → Fci)
Life G(b → Xc) G((G!b) → FG(d))

Table 2. Failed properties

Safety Liveness
Dining G((p∧ r∧X(r)∧XX(r)∧XXX(r)) → XXXX(¬e)) (GFr1) → (GFe1)
Mutex G((t1 ∧

∧
2≤i≤N ¬ti) → X¬c) F(t1 → G¬c1)

Life G(b → X¬c) F((G!b)∧GF(!d))

puts down the chopsticks. When a deadlock condition happens, a philosopher puts the
chopsticks down. The safety property true in this example is the following: if a philoso-
pher is thinking and both her chopsticks are free and she is scheduled for 4 four steps
in a row, then she will start eating. From this property, we deduce an analogous one
which fails: with the same premises, after 4 steps the philosopher does not eat. The
satisfied liveness property states that if every philosopher is scheduled infinitely often,
then somebody eats infinitely often (at least one philosopher does not starve). In con-
trast, the following liveness property does not hold in the example: if a philosopher is
scheduled infinitely often, then she eats infinitely often.

The second example is a mutual-exclusion protocol: N processes non-deterministi-
cally try to access the critical session. The access is controlled by the main module,
which guarantees that a process does not wait forever. The true safety property says
that, if a process is the only one that is waiting, then it accesses the critical session
in one step. If we change this property by writing that the process does not access the
critical session in one step, we obtain the safety property that fails. The satisfied liveness
property asserts that, if a process is trying, sooner or later it will access the critical
session. We chose the negation of this property as an example of liveness property that
fails.

Finally, the third example is a variant of the game of life: at the beginning there is
only one creature; every creature has a maximum life set to 100, but it can die non-
deterministically in every moment; when the age is between 15 and 65, a creature can
bear a child, which is born in the next step; at most N creatures can be born; when all
the creatures are dead the game is reset. The true safety property states that, if a crea-
ture is bearing a child, then the number of born creatures increases; the failed property
states that the number decreases. The true liveness property asserts the following: if no
creature will be born anymore, then, after a certain point in the future (likely after a
reset), the number of alive creatures will be equal to one forever. The negation of this
property corresponds exactly to the liveness property which failed.

We run NuSMV on the Rice Terascale Cluster (RTC), a 1 TeraFLOP Linux cluster
based on Intel Itanium 2 Processors. A timeout has been fixed to 172800 sec. (2 days).
The results are shown in Fig. 10 and 11. The execution time has been plotted in log
scale against the number N of processes in the model. Every example takes a column
of plots. On the first row, we have the safety properties and on the second one the

GSTE Is Partitioned Model Checking 239

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

NuSMV -saf.
NuSMV -saf. -par.

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

NuSMV -saf.
NuSMV -saf. -par.

0.1

1

10

100

1000

10000

3 4 5 6 7 8 9 10 11 12

NuSMV -saf.
NuSMV -saf. -par.

1

10

100

1000

10000

100000

2 3 4 5 6 7 8

NuSMV
NuSMV -par.

0.1

1

10

100

1000

10000

4 6 8 10 12 14

NuSMV
NuSMV -par.

100

1000

10000

100000

3 4 5 6 7 8 9 10

NuSMV
NuSMV -par.

Fig. 10. Satisfied properties of Tab. 1. X axis: number of processes. Y axis: time. First row: perfor-
mances of ‘‘NuSMV -safety -partitioned’’ and ‘‘NuSMV -safety’’ on safety properties.
Second row: performances of ‘‘NuSMV -partitioned’’ and ‘‘NuSMV’’ on liveness properties.
1st column: dining-philosophers. 2nd column: mutex. 3rd column: life

liveness properties. Comparing the partitioned version with the non-partitioned one in
the case of satisfied properties (Fig. 10), we notice that, in the first two columns (dining
philosophers and mutual exclusion), the former outperforms the latter. Moreover, in the
case of the safety property for dining philosophers and the liveness property for mutual
exclusion, the gap is exponential, i.e. the difference between the two execution times
grows exponentially with the size of the model. In the third column (life), NuSMV
does not seem to get relevant benefit from the property-driven partitioning (even if
you should notice that, in the last point of the liveness case, NuSMV runs out of time).
Similarly, in the case of failed properties, the partitioned version outperforms always
the non-partitioned one (see Fig. 11). Moreover, in the case of liveness properties, the
improvement is exponential for all the three examples.

5 Conclusions

Our contributions in this work are two-fold. First, we elucidate the relationship be-
tween GSTE and SMC. We show that assertion graphs are simply universal automata,
or, viewed dually, are nondeterministic automata for the complementary properties. Fur-
thermore, GSTE algorithms are essentially a partitioned version of standard SMC algo-
rithms, where the partitioning is static and is driven by the property under verification.
Second, we exported the technique of property-driven partitioning to SMC and showed
its effectiveness in the framework of NuSMV.

This opens us several directions for future work. First, we need to combine the tool
with an automated generator of explicit BAs for LTL formulas and evaluate property-
driven partitioning for more complex LTL properties. Second, it requires revisiting the
issue of translating LTL formulas to BAs. Previous translations have focused on mak-
ing the BA smaller (cf. [16, 11, 29, 15]) or more deterministic [27]. The relative merit of
the two approaches has to be investigated in the context of property-partitioned SMC.

240 Roberto Sebastiani et al.

1

10

100

1000

10000

100000

4 6 8 10 12

NuSMV -saf.
NuSMV -saf. -par.

0.1

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

NuSMV -saf.
NuSMV -saf. -par.

1

10

100

1000

10000

100000

3 4 5 6 7 8 9 10

NuSMV -saf.
NuSMV -saf. -par.

0.1

1

10

100

1000

10000

100000

2 4 6 8 10 12

NuSMV
NuSMV -par.

0.01

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40

NuSMV
NuSMV -par.

0.1

1

10

100

1000

10000

100000

3 4 5 6 7 8 9

NuSMV
NuSMV -par.

Fig. 11. Same pattern as in Fig. 10 but with the failed properties of Tab. 2

Third, it requires revisiting the issue of symbolic fair-cycle detection. Previous works
have compared various variations of the EL algorithm, as well as non-EL algorithms,
cf. [2, 26, 14]. This has to be re-evaluated for property-partitioned SMC. Finally, a ma-
jor topic of research in the last few years has been that of property-driven abstraction in
model checking, [8, 17]. The combination of this technique with property-driven parti-
tioning is also worth of investigation, which could benefit from the study of abstraction
in GSTE [34, 32].

References

1. A. Biere, E. M. Clarke, and Y. Zhu. Multiple State and Single State Tableaux for Combining
Local and Global Model Checking. In Correct System Design, pages 163–179, 1999.

2. R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected component
analysis in n log n symbolic steps. In Formal Methods in Computer Aided Design, 2000.

3. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model
Mhecking: 1020 States and Beyond. Information and Computation, 98(2), 1992.

4. G. Cabodi, P. Camurati, L. Lavagno, and S. Quer. Disjunctive Partitioning and Partial Itera-
tive Squaring: An Effective Approach for Symbolic Traversal of Large Circuits. In Design
Automation Conf., 1997.

5. C.-T. Chou. The Mathematical Foundation of Symbolic Trajectory Evaluation. In Computer-
Aided Verification. Springer, 1999.

6. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic Model
Verifier. In Proc. of the 11th Conf. on Computer-Aided Verification, 1999.

7. A. Cimatti, M. Roveri, and P. Bertoli. Searching Powerset Automata by Combining Explicit-
State and Symbolic Model Checking. In TACAS’01, 2001.

8. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction
Refinement. In Computer Aided Verification, 2000.

9. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
10. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient Algorithms

for the Verification of Temporal Properties. Formal Methods in System Design, 1(2/3), 1992.
11. N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for linear tempo-

ral logic. In Computer Aided Verification, Proc. 11th International Conf., 1999.

GSTE Is Partitioned Model Checking 241

12. E.W. Dijksta. Hierarchical ordering of sequential processes, Operating systems techniques.
Academic Press, 1972.

13. E.A. Emerson and C.L. Lei. Efficient Model Checking in Fragments of the Propositional
µ–Calculus. In Symp. on Logic in Computer Science, 1986.

14. K. Fisler, R. Fraer, G. Kamhi, M.Y. Vardi, and Z. Yang. Is there a best symbolic cycle-
detection algorithm? In Tools and algorithms for the construction and analysis of systems,
2001.

15. C. Fritz. Constructing Büchi Automata from Linear Temporal Logic Using Simulation Re-
lations for Alternating Büchi Automata. In Implementation and Application of Automata,
2003.

16. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In Protocol Specification, Testing and Verification, 1995.

17. S.G. Govindaraju and D.L. Dill. Counterexample-guided Choice of Projections in Approxi-
mate Symbolic Model Checking. In Proc. of ICCAD 2000, 2000.

18. T. A. Henzinger, O. Kupferman, and S. Qadeer. From Pre-Historic to Post-Modern Symbolic
Model Checking. Form. Methods Syst. Des., 23(3), 2003.

19. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. A Scalable Parallel Algorithm for
Reachability Analysis of Very Large Circuits. In Formal Methods in System Design, 2002.

20. G.J. Holzmann. The SPIN model checker: Primer and reference manual. Addison Wesley,
2003.

21. A.J. Hu, J. Casas, and J. Yang. Reasoning about GSTE Assertion Graphs. In Correct Hard-
ware Design and Verification Methods. Springer, 2003.

22. O. Kupferman and M.Y. Vardi. Model checking of safety properties. Formal methods in
System Design, 19(3), 2001.

23. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, 1994.

24. Z. Manna and A. Pnueli. Specification and Verification of Concurrent Programs by ∀-
automata. In Proc. 14th ACM Symp. on Principles of Programming, 1987.

25. A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli. Partitioned ROBDDs-a Com-
pact, Canonical and Efficiently Manipulable Representation for Boolean Functions. In Inter.
Conf. on Computer-aided design, 1996.

26. K. Ravi, R. Bloem, and F. Somenzi. A Comparative Study of Symbolic Algorithms for the
Computation of Fair Cycles. In Formal Methods in Computer-Aided Design, 2000.

27. R. Sebastiani and S. Tonetta. “More Deterministic” vs. “Smaller” Buechi Automata for
Efficient LTL Model Checking. In Correct Hardware Design and Verification Methods,
2003.

28. C.-J.H. Seger and R.E. Bryant. Formal Verification by Symbolic Evaluation of Partially-
Ordered Trajectories. Formal Methods in System Design: An Inter. Journal, 6(2), 1995.

29. F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In Proc CAV’00,
volume 1855 of LNCS. Springer, 2000.

30. M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verifi-
cation. In Proc. 1st Symp. on Logic in Computer Science, 1986.

31. M.Y. Vardi and P. Wolper. Reasoning about Infinite Computations. Information and Com-
putation, 115(1), 1994.

32. J. Yang and A. Goel. GSTE through a Case Study. In Proc. of the 2002 IEEE/ACM Inter.
Conf. on Computer-Aided Design. ACM Press, 2002.

33. J. Yang and C.-J.H. Seger. Generalized Symbolic Trajectory Evaluation, 2000. Intel SCL
Technical Report, under revision for Journal Publication.

34. J. Yang and C.-J.H. Seger. Generalized Symbolic Trajectory Evaluation - Abstraction in
Action. In Formal Methods in Computer-Aided Design, 2002.

	1 Introduction
	2 Büchi Automata and Assertion Graphs
	2.1 Fair Graphs, Büchi Automata and Assertion Graphs
	2.2 SMC Algorithms
	2.3 GSTE Algorithms

	3 GSTE vs. SMC
	4 SMC vs. Property-Driven Partitioned SMC
	5 Conclusions
	References

