PlayGame: A Platform for Diagnostic Games

Li Tan*

Department of Computer and Information Science, University of Pennsylvania
Philadelphia, PA 19104, USA
tanli@saul.cis.upenn.edu

Abstract. We introduce an integrated tool for implementing and play-
ing various diagnostic games. The tool uses a semantics hierarchy intro-
duced in [6] to improve code sharing among various diagnostic games
and reduce the cost of introducing a new game. PlayGame synthesizes
the winning strategy using the evidence that is an abstract and uniform
encoding of the proof computed by a checker, and hence instead of re-
lying on any particular checker the tool works on a variety of checkers
that can be extended to produce such evidence. PlayGame implements
a p-calculus game and a full range of equivalence/preorder games on the
Concurrency Workbench-New Century (CWB-NC).

1 Introduction

Games have been used in the verification community to model verification prob-
lems, to seek better solutions, and to understand verification results. The early
work by Stirling [5] on bisimulation games and pu-calculus games unveils the
potential of such games as diagnostic routines. In a diagnostic game the user
competes with the computer to show that the verification result is incorrect. By
losing each and every play to the computer the user shall be then convinced of
the correctness of the verification result. A diagnostic game can provide valuable
diagnostic information in an interactive way that a traditional diagnostic routine
such as counterexample mechanism cannot. Individual efforts have been made
to implement certain types of diagnostic games. The recent release of Edinburgh
Concurrency Workbench [1] includes the support for a u-calculus game and a
strong bisimulation game. The verification tool Truth [3] also implements a p-
calculus game. These tools are designed to use some specific checkers, mostly
game-based checkers, to build the winning strategy for the computer. It is left
to see how diagnostic games can be built on top of other existing checkers. An-
other problem in diagnostic games is that with so many verification semantics,
each of which requires different rules for game, defining and implementing them
separately is a daunting task. We introduce PlayGame, a tool that provides a
consistent interface for implementing diagnostic games and incorporating check-
ers. Figure 1 shows the architecture of the tool.

* Research supported by NSF grants CCR-9988489 and CCR-0098037, Army Research
Office grants DAAD190110003, DAAD190110019, and DAAD190110473.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 492-495, 2004.
© Springer-Verlag Berlin Heidelberg 2004

PlayGame: A Platform for Diagnostic Games 493

: Game Semantics Module o Strategy Module X
' - - ! Generic Generic '
[Model Checking Equivalence/Preorder o ¢ -
'l Game Subn)odulJ ’ Game Submodule ' Equivalence Model CheCklng '
. '| _ /Preorder Strategy Alg |!
' 1\ 1\ /P /P 1\ C Strategy Alg \
P . Weak Trace Testing [+ “ === -A-==---=- ot i -----

| #pcpleulus | Bisim/Sim|| pigir /Sind | Baiv /Pre|| Eaiv /Pre|! o oooo oo Evidence | .
& g Plug in Plug in Plug in : CWB NC Kernel A

Sl * | Bisim/Sim Model |1
' Checkers Checkers '

Fig. 1. The architecture of PlayGame

The tool is designed to use the evidence that is an abstract and uniform
encoding of the proof constructed by a checker during verification. Its precise
definition is given in our previous work [7,8]. Instead of relying on a particular
checker, the tool works on a variety of existing checkers that can be extended
to produce such evidence, as discussed in [7, 8]. To support different verification
semantics, we introduce a semantics hierarchy [6] that abstracts game rules to
different layers. To introduce a new game, one only needs to provide the semantic
layers unique to the game. PlayGame implements a p-calculus model-checking
game and eight different equivalence/preorder games including strong bisim-
ulation/simulation games, weak bisimulation/simulation games, trace equiva-
lence/preorder games, and testing equivalence/preorder games that cover all the
equivalence/preorder semantics supported by Concurrency Workbench - New
Century (CWB-NC)[2]. PlayGame also provides a consistent user interface for
all the games that reduces the time required to learn a new game.

2 PlayGame

2.1 Designing PlayGame

The design of PlayGame reflects the game semantics hierarchy defined in [6].
The abstract game module implements an abstract version of games and the
features common to all games. The game semantics module defines the rules for
each individual game. The strategy module synthesizes winning strategies from
the evidences submitted by checkers.

Abstract Game Module. A typical verification game has two players: player
I, who insists a negative verification result, and player II, who believes otherwise.
Each game has its own rules that must be determined in the following sense: if
the correct answer to the verification problem is negative, then I has a strategy
to win each and every play no matter how II moves; otherwise, II shall have a
winning strategy. When a game is used as a diagnostic routine, it involves two

494 Li Tan

sides: the computer vs. the user. The computer assumes the role of a player in
favor of the verification result. Thus, by losing each and every play to the com-
puter, the user is convinced of the verification result. The abstract game module
implements the aforementioned abstract version of games. It also introduces the
role of a referee that enforces the rules supplied by the game semantics module.
It also implements the common functions including the bookkeeping and the
user interface.

Game Semantics Module. Game semantics module defines the rules for each
game. For the games studied before such as u-calculus games and strong bisim-
ulation games [5], our definition is close to previous results but also takes into
account the human factor. Our revision intends to keep plays concise and infor-
mative. For example, the definition of a p-calculus game by Stirling [5] requires
two steps and the participant of a player to unroll a fixpoint expression (uz.% or
vz.W), while the choice of the player unrolling the expression is really irrelevant.
In the revised rules, it takes only one step and becomes part of the referee’s job.
For those games that to the best of our knowledge have not been defined in lit-
erature such as testing equivalence/preorder games, we define the games based
on the target verification semantics. To further improve code sharing we exploit
similarity among each category of games. For instance, in [6] we introduce a
generalized equivalence game submodule and semantics plug-ins. To introduce
an equivalence game, one only needs to supply a relatively small plug-in that
specifies part of rules unique to this game. In our experience abstracting rules to
different layers saves about 70-80% coding work when introducing a new game.

Strategy Module. Synthesizing a winning strategy for the computer is the
key to diagnostic games. Traditionally winning strategies are constructed by a
game-based checker [4]. In PlayGame the strategy is constructed from the evi-
dence supplied by a checker. In [7, 8] we propose uniformly-encoded evidences for
various verification semantics: for equivalence checking the evidence is a partition
refinement tree; for preorder checking it is a kernel-auxiliary partition refinement
tree [7], a variant of partition refinement tree in which each node contains a set of
upper states (auziliary set) in addition to a set of lower (and equivalent) states
(kernel set); for model checking the evidence is a support set [8]. It turns out
that winning strategies for the games of the same category are quite similar. For
equivalence games, the strategy is to keep the states of two processes in different
leaves of the partition refinement tree, and hence the algorithm for synthesizing
the winning strategy from the evidence is implemented per category basis.

2.2 Using PlayGame

PlayGame is implemented on the CWB-NC. To activate a game, the user simply
issues a verification command with a special flag. The CWB-NC with PlayGame
calls a checker and enters the interactive game mode after the verification ends.

PlayGame: A Platform for Diagnostic Games 495

A play starts with the ref- Round
. Starting configuration:
eree deCIa‘rlng the rOIeS Of t’he Agentl: ’out_easy.Strongjobber | ’out_easy.Strongjobber

Computer and the user based Agent2: (Start_easy | Start_easy | Hammer | Mallet)
. . \ {geth,puth,getm,putm}
on the Verlﬁca’tlon reSUItﬂ then Referee: User goes first to choose an agent and make a transition.

it proceeds by rounds. Figure Which agent do you choose (1/2)7: 1
. Available user options:
2 ShOWS a Sample round m a Option 0: —-<’out_easy>-—>’out_easy.Strongjobber | Strongjobber

weak bisimulation game. The Option 1: --<’out_easy>—->Strongjobber | ’out_easy.Strongjobber
Which transition do you choose?[Type (0-1), or (r)eview optionms]:

]‘OOk and feel Of Other games Step 1: User chose agent 1 and made transition:

-

are quite similar. The referee --<’out_easy>-->Strongjobber | ’out_easy.Strongjobber
. . . Step 2: Computer matchs user’s choice by choosing

judges the winner with an ex- the tramsition for agemt 2:

planation. If no one wins yet, —-<<’out_easy>>=->(Start_easy | Jobber

. | Hammer | Mallet)\ {geth,puth,getm,putm}
he deCldeS hOW a round Shall Continue game?[(c)ontinue, e(x)it or (b)ack]:c

proceed. The user is prompted

for his/her options of the next Fig. 2. A sample round
move. The user can also choose

to take back a few steps.

3 Conclusions and Future Work

We introduce PlayGame, an integrated platform for diagnostic games. Two novel
features in its design are the use of semantics hierarchy, which enables code shar-
ing among different games, and the building of winning strategy using checker-
independent evidences, which makes it easier to incorporate new checkers. It
implements a p-calculus game and the full range of equivalence/preorder games.
In future we want to study and implement the diagnostic game for other logics.

Acknowledgments

The author would like to thank Rance Cleaveland for many interesting and
fruitful discussions, and Madhusudan Parthasarathy for reviewing the draft of
this paper.

References

1. The Edinburgh Concurrency Workbench. The University of Edinburgh, 1999.

2. R. Cleaveland and S. Sims. The NCSU concurrency workbench. In Proceedings of
CAV’96, volume 1102 of LNCS, 1996.

3. M. Leucker and T. Noll. Truth/SLC — A parallel verification platform for concur-
rent systems. In Proceedings of CAV’01, volume 2102 of LNCS, 2001.

4. P. Stevens and C. Stirling. Practical model-checking using games. In Proceedings
of TACAS 798, volume 1384 of LNCS, 1998.

5. C. Stirling. Games and modal mu-calculus. In Proceedings of TACAS’ 96, volume
1055 of LNCS, 1996.

6. L. Tan. An abstract schema for equivalence games. In Proceedings of VMCAI’'02,
volume 2294 of LNCS, 2002.

7. L. Tan. Ewvidence-based Verification. PhD thesis, State University of New York at
Stony Brook, May 2002.

8. L. Tan and R. Cleaveland. Evidence-based model checking. In Proceedings of
CAV’02, volume 2404 of LNCS, 2002.

	1 Introduction
	2 PlayGame
	2.1 Designing PlayGame
	2.2 Using PlayGame

	3 Conclusions and Future Work
	References

