
WSAT: A Tool for Formal Analysis of Web Services

Xiang Fu, Tevfik Bultan, and Jianwen Su

Department of Computer Science
University of California

Santa Barbara, CA 93106, USA
{fuxiang,bultan,su}@cs.ucsb.edu

1 Introduction

This paper presents Web Service Analysis Tool (WSAT), a tool for analyzing and ver-
ifying composite web service designs, with the state of the art model checking tech-
niques. Web services are loosely coupled distributed systems communicating via XML
messages. Communication among web services is asynchronous, and it is supported by
messaging platforms such as JMS which provide FIFO queues to store incoming mes-
sages. Data transmission among web services is standardized via XML, and the spec-
ification of web service itself (invocation interface and behavior signature) relies on a
stack of XML based standards (e.g. WSDL, BPEL4WS, WSCI and etc.). The charac-
teristics of web services, however, raise several challenges in the application of model
checking: (1) Numerous competing web service standards, most of which lack formal
semantics, complicate the formal specification of web service composition. (2) Asyn-
chronous messaging makes most interesting verification problems undecidable, even
when XML message contents are abstracted away [3]. (3) XML data and expressive
XPath based manipulation are not supported by current model checkers.

WSAT, as shown in Fig. 1, tackles these challenges as follows: (1) An Intermediate
Representation: We use automata with XPath guards (called GFSA) as an intermediate
representation for web services. A translator from BPEL4WS to GFSA is developed,
and support for other languages can be added without changing the analysis and the
verification modules of the tool. (2) Synchronizability and Realizability Analyses:
We define a set of sufficient synchronizability conditions to restrict control flows of a
composite web service. When the analysis succeeds, LTL verification can be performed
using the synchronous communication semantics instead of asynchronous communica-
tion semantics. We also define a set of sufficient realizability conditions that are used to
synthesize a set of GFSA (called peers) which communicate with asynchronous mes-
sages from a single GFSA (called a conversation protocol) which specifies the set of
desired global behaviors. The behaviors of the synthesized peers are the same as the
behaviors of the conversation protocol if the conversation protocol is realizable [3]. (3)
Handling of XML Data Manipulation: We developed and implemented algorithms
for translating XPath expressions to Promela code [5], and we use model checker SPIN
[7] as the back-end of WSAT to check LTL properties.

2 Guarded Finite State Automata

A composite web service can be specified in either bottom-up or top-down fashion.
Formally, for a composite web service, its bottom-up specification (called a web service

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 510–514, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



WSAT: A Tool for Formal Analysis of Web Services 511

BPEL 
to

GFSA
Guarded
automata

GFSA to Promela 
(bounded queue)

BPEL

Web
Services

Promela

Synchronizability
Analysis

GFSA to Promela
(synchronous

communication)

Intermediate
Representation

Conversation
Protocol

Front End

Realizability 
Analysis

Guarded
automaton

skip

GFSA
parser

success

fail

GFSA to Promela
(single process, 

no communication)

success

fail

Analysis Back End

(bottom-up)

(top-down)

Verification 
Languages

Fig. 1. WSAT architecture

composition) [4] is described as a tuple 〈(P, M),A1, . . . ,An〉, and its top-down spec-
ification (called a conversation protocol) [2, 3, 6] is specified as a tuple 〈(P, M),A〉.
Here (P, M) is the composition schema where P is a set of peer prototypes, and M is a
set of message classes. Guarded Finite State Automata (GFSA) A1, . . . ,An are the peer
implementations (supposing |P | = n), and A specifies the desired set of global behav-
iors. Below, we present a fragment of the Stock Analysis Service (SAS) conversation
protocol studied in [5]:

Conversation Protocol{
Composition Schema{
PeerList{Inv,SB,RD},
MSL Type List{
Register[
orderID[xsd:int],
reqList[stockID[xsd:int]{1,10}],
payment [
account[xsd:int] |
creditCard[xsd:int]

]], ...
},
Message List{
register{Inv->SB:Register},
bill{SB->Inv:Bill},...

}}

GFSA{
States{s1,s2,...,s12},
InitialState {s1},
FinalStates{s3},
TransitionRelation{
t14{s8 -> s12 : bill,
Guard{
$request//stockID =
$register//stockID[position()=last()]

=>
$bill//orderID := $register//orderID

}
}, ...

}//end of TransitionRelation
}//end of GFSA

}//end of Conversation Protocol

As shown above, each message class has a type defined using MSL [1], a compact
theoretical model of XML Schema. WSAT supports a fragment of MSL, where complex
types can be constructed using sequence ‘,’ (e.g. the Register) and choice ‘|’ (e.g. the
payment) operators. An MSL type can also have multiple occurrences (e.g. payment
can have 1 to 10 stockID children), however, maximum occurrence must be bounded.

A GFSA is a tuple (M, T, s, F, ∆). M is the message class set in the composition
schema. T , s, F are the set of states, initial state, and the set of final states, respectively.
∆ is the transition relation. Each transition τ ∈ ∆ is of the form τ = (s, (c, g), t), where
s, t ∈ T are the source and the destination states of τ , c ∈ M is a message class and g is
the guard of the transition. Guards are written using XPath expressions. WSAT supports
a subset of XPath which consists of the following operators: child axis (/), descendant
axis (//), self-reference (.), parent-reference (..), basic type test (b()), node name
test (t), wildcard (*), function calls position() and last(), and predicates ([]).
Arithmetic and boolean constraints can be used as predicates in WSAT.



512 Xiang Fu, Tevfik Bultan, and Jianwen Su

As shown in the SAS protocol, a guard consists of a guard condition and a set of
assignments which specify the contents of the message that is being sent. For example
the guard of transition t14 specifies that: if the stockID attribute in the request

message is the last stockID in the register message, then send out a bill message
whose orderID attribute matches the orderID of register. The powerful XPath
language allows guards to express very rich semantics. In [4] we showed that static
BPEL4WS web services can be translated into GFSA representation without loss of
data semantics.

3 Synchronizability and Realizability Analyses

Consider the simple client-server web service composition given in the following fig-
ure. A requester and a server interact with each other via three request messages and
one acknowledgment message. Recall that each peer is equipped with a queue to store
incoming messages. It is not hard to infer that the composition has an infinite number

requester server

!r1

!r

!r2

?a

!e

?r1

?r !a

?e
?r2

r,r1,r2

a

of configurations, because the requester can
send arbitrary number of r1 and r2 mes-
sages (which are stored in the queue of the
server) before any acknowledgment is sent
back. However, another interesting observa-
tion is that the global behaviors, character-
ized by the sequence of messages, is a regu-

lar language (r1 | r2 | ra)∗e, which is the set of behaviors generated by the composition
under synchronous semantics (i.e., the Cartesian product of the two automata). Since in
our model [3], LTL properties are defined over the global behaviors, it is decidable to
check LTL properties for such services.

We say a web service composition is synchronizable if it generates the same set of
global behaviors for both synchronous and asynchronous semantics. In [4] we present
three sufficient synchronizability conditions to identify synchronizable web service
compositions. For each synchronizable web service composition WSAT will generate a
Promela specification with synchronous (rendezvous) communication (by limiting the
Promela channel size to 0), and then call SPIN to verify LTL properties on the syn-
chronous specification. The verified LTL properties are guaranteed to be satisfied by
the original asynchronous web service composition. For top-down specified conversa-
tion protocols, we developed a similar analysis called realizability analysis [3], which
is further extended to consider message contents in [6].

4 Handling XML Data Manipulation

WSAT translates each GFSA into a Promela process. The central issue of the translation
algorithm is how to handle XML data and XPath expressions. Each MSL type declara-
tion is translated into a record type (“typedef”) in Promela, and types with multiple
occurrences are translated into Promela arrays. For example, the stockID in the SAS
protocol is mapped into a Promela array of size 10. Based on the type mapping, XPath



WSAT: A Tool for Formal Analysis of Web Services 513

expressions can be translated into Promela code. When MSL types with multiple occur-
rences are involved, the translation is essentially a nested-loop. For example, consider
the following boolean XPath expression: $reg1//stockID = $reg2//stockID,
where $reg1 and $reg2 are two XML variables of type Register that is defined in
the SAS protocol. Note each side of the equality is a location path which returns a set of
stockID values. According to XPath standard, the expression evaluates to true if we
can find one value from each side to satisfy the equality. Hence the expression captures
the query: “Is there any stockID value which appears in both $reg1 and $reg2?”.
The corresponding Promela translation is a two-layer nested loop which searches the
two arrays (that correspond to the stockID array of $reg1 and $reg2 respectively),
to find a pair of array elements that satisfy the equality. When function calls such as
position() and last() are involved (e.g. the transition guard of t14 in the SAS
protocol), the translation is more complex. The main idea is to substitute the appear-
ance of a function call with an integer variable, and properly update its value so that
when the function is called the integer variable contains the right value. More details
are available in [5].

We applied WSAT to a range of examples, including six conversation protocols con-
verted from the IBM Conversation Support Project [8], five BPEL4WS services from
BPEL4WS standard and Collaxa.com, and the SAS from [5]. Synchronizability and re-
alizability analysis are applied to each example, and except two conversation protocols,
all examples pass these checks. This implies that the sufficient conditions in our syn-
chronizability and realizability analysis are not restrictive and they are able to capture
most practical applications. For each example, we generated the corresponding Promela
specification using WSAT, and we checked LTL properties of the form “G(p → Fq)”
using SPIN. Our experience with these examples suggests that while exhaustive search
of the state space may be very costly for verifying correct properties, SPIN’s perfor-
mance at discovering false LTL properties is satisfactory. For instance, we identified
a very delicate design error (a misuse of XPath position() function in a transition
guard) in the SAS example [5] using SPIN.

WSAT can be extended in the future, by supporting other web service specification
languages at the front end, and targeting different verification tools at the back-end. We
are especially interested in extending WSAT with symbolic verification techniques in
order to handle large state spaces generated by XML data.

Acknowledgments

Authors are supported by NSF Career award CCR-9984822, NSF grant CCR-0341365,
IIS-0101134, and IIS-9817432.

References

1. A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL a model for W3C XML Schema. In Proc.
of 10th Int. World Wide Web Conference (WWW), pages 191–200, 2001.

2. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: A new approach to design and
analysis of e-service composition. In Proc. of 12th Int. World Wide Web Conference (WWW),
pages 403–410, May 2003.



514 Xiang Fu, Tevfik Bultan, and Jianwen Su

3. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification and ver-
ification of reactive electronic services. In Proc. of 8th Int. Conf. on Implementation and
Application of Automata (CIAA 2003), volume 2759 of LNCS, pages 188–200, 2003.

4. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL Web Services. To appear in the
Proc. of 13th Int. World Wide Web Conf. (WWW), 2004.

5. X. Fu, T. Bultan, and J. Su. Model checking XML manipulating software. To appear in the
Proc. of 2004 IEEE Int. Symp. on Software Testing and Analysis (ISSTA), 2004.

6. X. Fu, T. Bultan, and J. Su. Realizability of conversation protocols with message contents. To
appear in the Proc. of 2004 IEEE Int. Conf. on Web Services (ICWS), 2004.

7. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston, Massachusetts, 2003.

8. IBM. Conversation support project. http://www.research.ibm.com/convsupport/.


	1 Introduction
	2 Guarded Finite State Automata
	3 Synchronizability and Realizability Analyses
	4 Handling XML Data Manipulation
	References



