An Efficiently Checkable, Proof-Based
Formulation of Vacuity in Model Checking

Kedar S. Namjoshi

Bell Labs, Lucent Technologies
kedar@research.bell-labs.com

Abstract. Model checking algorithms can report a property as being
true for reasons that may be considered vacuous. Current algorithms for
detecting vacuity require either checking a quadratic size witness formula,
or multiple model checking runs; either alternative may be quite expen-
sive in practice. Vacuity is, in its essence, a problem with the justification
used by the model checker for deeming the property to be true. We argue
that current definitions of vacuity are too broad from this perspective
and give a new, narrower, formulation. The new formulation leads to a
simple detection method that examines only the justification extracted
from the model checker in the form of an automatically generated proof.
This check requires a small amount of computation after a single verifi-
cation run on the property, so it is significantly more efficient than the
earlier methods. While the new formulation is stronger, and so reports
vacuity less often, we show that it agrees with the current formulations
for linear temporal properties expressed as automata. Differences arise
with inherently branching properties but in instances where the vacuity
reported with current formulations is debatable.

1 Introduction

The problem of detecting a vacuous model check of a property has received much
attention in the literature [2,3,17,24,6,1]. A vacuous model check often indi-
cates a problem, either with the precise formulation of an informal correctness
property, or with the program itself. A classic example is that of the property:
“Every request is eventually granted”, which is true vacuously of a program
in which no request is ever made! Most model checkers produce independently
checkable evidence for a negative answer in the form of a counterexample trace,
but typically are not designed to produce any such evidence of their reasoning
for success. Without further checking, therefore, one may end up trusting in
vacuously justified properties.

Several algorithms for vacuity detection have been proposed in the papers
above. Essentially, these algorithms look for a sub-formula of the correctness
property whose truth value does not matter for property verification (a pre-
condition is that the property has been verified). In [3], vacuity is defined as
follows: a program M satisfies a formula ¢ vacuously iff M satisfies ¢, and there
is some subformula ¥ of ¢ such that v does not affect the satisfaction of ¢ — this

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 57-69, 2004.
© Springer-Verlag Berlin Heidelberg 2004

58 Kedar S. Namjoshi

last condition holds if the formula obtained by replacing ¢ with any formula &
(this is written as @[y = ¢]) is true of M. The detection method is to check
an automatically generated witness formula for each subformula 1, one that
demonstrates redundancy of v if it is true — the witness formula for the property
above is “No request is ever made”. In [17], this test is simplified and generalized
to all of CTL* from the fragment of ACTL considered in [3]. It is shown that
to determine whether ¢ affects ¢, it suffices to check whether ¢[¢p = false]
(p[tb := true]) holds of M if ¢ occurs with positive (negative) polarity in ¢
(i.e., under an even (odd) number of negations). These methods treat multiple
occurrences of the same subformula independently. A recent paper [1] extends
the method above to take into account such dependencies. We adopt their term,
formula vacuity, to refer to the definition that treats subformulas independently.

A major drawback of these algorithms is that they either require multiple
model checking runs to test each subformula, or a single run checking a quadrat-
ically long witness formula. (The witnesses are of linear length for the w-ACTL
fragment of [3].) Although the cost of model checking increases only linearly
in the length of the formula, even a linear blowup can be quite significant in
terms of the resources used (time, space, processors), since it is common for
large verification runs to take hours to run on a single formula. Remedies have
been proposed: in [1], formula structure is used to reduce the number of witness
checks, and [24, 6] show how to share intermediate results while checking a single
witness formula.

A vacuous verification is, in its essence, a problem with the justification used
by the model checking algorithm for deeming the property to be true. Recent
work has shown how to extract and present such this justification in the form of
a deductive proof (see [21,22] and the references therein). The central question
this paper discusses is whether one can analyze this justification alone in order
to detect a vacuous verification? The premise seems reasonable, but there are
subtleties involved in making it work, and in determining the precise relationship
to formula vacuity.

To make this relationship clearer, we examine formula vacuity from the view-
point of justifications. We show that a mu-calculus formula ¢ is formula-vacuous
if, and only if, there exists a valid correctness proof showing that ¢ is true of M
in which the invariant for some subformula contains only unreachable states or
is empty. Call such a proof vacuous. Formula vacuity, then, is equivalent to ask-
ing the question: “Does there exist a vacuous correctness proof?”. Viewed from
this angle, the criterion appears rather odd: why should one discard a valid,
non-vacuous correctness proof, just because there is an alternative proof that is
vacuous? Examples given later in the paper support this conclusion, by showing
that formula vacuity can sometimes produce debatable reports of vacuity.

We propose a new, stronger, formulation of vacuity, which we call proof vacu-
ity. This consists of checking whether the correctness proof produced by the
model checker as justification is vacuous. Since our vacuity criterion is stronger
than formula vacuity, one may expect the new check to report vacuity less often.

An Efficiently Checkable, Proof-Based Formulation 59

However, we show that this may happen only for properties that are inherently
branching in nature.

Besides correcting some anomalies in the formula vacuity criterion, the new
formulation is, moreover, significantly more efficient to check in practice. All that
is required is to examine for emptiness the invariants produced during a model
checking run. As these invariants are readily available, this process is even simpler
and requires less resources than the generation of a full proof of correctness. As
the two formulations coincide for linear time automaton properties, this also gives
a significantly more efficient way of checking formula vacuity for such properties.

The next section introduces the concept of proof used in new formulation.
In Section 3, we characterize formula vacuity in terms of proofs, motivate and
present proof vacuity, and show their equivalence for automaton representations
of linear time properties. Section 4 discusses related work, and some future re-
search directions, including “partial vacuity” detection.

2 Preliminaries

We assume that properties are specified as alternating tree automata. In this
section, we define the automaton syntax and semantics, and also give the proof
system used to represent the justification of model checking results.

Transition Systems. We represent a program by the transition system (TS, for
short) that it generates — this is also called a Kripke Structure. A TS is a tuple
(S, 5’, R, L), where S is a non-empty set of states, S C S is the set of initial states,
R C S x S is a transition relation, and L : S — 247 (AP is a set of atomic
propositions) is a labeling function that maps each state to the the propositions
true at that state. We assume that R is total: i.e., for every s, there exists ¢ such
that (s,t) € R.

Temporal Logics. While our results are based on alternating tree automata, we
also consider properties defined in one of several well-known temporal logics. The
syntax of these logics is defined below; please see [8] for the precise semantics.

LTL [23], linear temporal logic, is a logic that defines infinite sequences over
subsets of AP. In positive normal form, formulas of LTL are given by the gram-
mar: ¢ := P(P € AP) | ~-P(P € AP) |®P AN D | DV | X(D) | (PUD) | (PWP).
The temporal operators are X (next-time), U (until), and W (weak-until or un-
less). Other operators are defined through abbreviation: F(®) (eventually @) is
(trueU®), and G(P) (always P) is (PW/alse).

CTL* [7], a branching time logic, is given by adding path quantifiers A (over
all paths) and E (over some path) to LTL; the set of state formulas are defined
inductively as: ¢ ::= P(P € AP) | ~P(P € AP) | ® AN D | DV | AY) | E(¥).
Here, 1) is the set of path formulas, which are LTL formulas where atomic propo-
sitions come from @. CTL [5] is obtained from CTL* by restricting the set of
path formulas so that they contain a single, top-level, temporal operator. Its
sub-logic ACTL (ECTL) is obtained by allowing only the A (E) path quantifier;
ACTL* (ECTL*) is the analogous restriction of CTL*.

60 Kedar S. Namjoshi

The mu-calculus [16] is a branching time temporal logic which subsumes
the logics defined above [10]. Formulas in positive form are defined using the
following grammar, where V is a set of symbols denoting fixpoint variables,
and p (v) is the least (greatest) fixpoint operator: ¢ ::= P(P € AP) | Z(Z €
VY| PAND|DPV P|EX(D) | AX(D) | (uZ : @) | (vZ : P). A formula must have
each variable under the scope of an even number of negation symbols; it is closed
iff every variable in it is under the scope of a fixpoint operator. The evaluation
of a formula f with free variables is a subset of S, defined inductively relative
to a context that maps free variables to subsets of S. A state s in M satisfies a
closed mu-calculus formula f iff s is in the evaluation of f relative to the context
that maps every variable to the empty set; M satisfies f (written as M | f) iff
all of its initial states satisfy f.

Alternating Tree Automata. An alternating automaton over AP is specified by a
tuple (@, g, 9, F'), where @) is a non-empty set of states, § € @ is the initial state,
0 is a transition function, and F' is a parity acceptance condition. F' is given by
a partition (Fy, F1, ..., Fon) of Q. An infinite sequence over @) satisfies F iff the
smallest index i for which a state in F; occurs infinitely often on the sequence is
even. We use a simple normal form for the transition relation: it maps an automa-
ton state and an input from 247 to one of (A R),(V R),EXr, AXr, true, false,
where r is a state, and R a non-empty subset of states.

Given a mu-calculus formula, one can obtain an equivalent automaton whose
transition relation is just the parse graph of the formula (so that each subformula
is represented by an automaton state), and the parity condition is determined
by an analysis of the alternation between least and greatest fixpoints in the
formula [9].

These automata accept computation trees of programs, where tree nodes
are labeled with subsets of atomic propositions. For a labeled tree ¢, let A\; be
the labeling function that maps tree nodes to their labels. The acceptance of a
labeled tree t by the automaton is defined in terms of a two-player infinite game.
A configuration of the game is a pair (z,q), where x is a tree node and ¢ is an
automaton state. The moves of the game are as shown in Figure 1.

A play of the game is a maximal sequence of configurations generated in
this manner. A play is a win for player I iff either it is finite and ends in a
configuration that is a win for I, or it is infinite and satisfies the automaton

At configuration (z,q), based on the form of §(g, A:(z)),

— true: Player I wins, and the play is halted

— false: Player Il wins, and the play is halted

— (V R): Player I picks r € R; the next configuration is (x,r)

(A R): Player II picks r € R; the next configuration is (x,r)

EXr: Player I picks a child y of x; the next configuration is (y,r)
AXr: Player II picks a child y of z; the next configuration is (y, r)

Fig. 1. Model Checking Game Moves

An Efficiently Checkable, Proof-Based Formulation 61

acceptance condition. The play is winning for player II otherwise. A strategy for
player I (I) is a partial function that maps every finite sequence of configurations
to a choice at each player I (II) position. A strategy is a win for player I if every
play following that strategy is a win for I, regardless of the strategy for II. The
automaton accepts the tree t iff player I has a winning strategy for the game
starting at (e, §), where € is the root node of the tree t. M satisfies A (written
as M = A) iff the automaton accepts the computation trees obtained from each
initial state by “unwinding” the transition relation of M.

The Proof System. The proof system presented in [21] is as follows. For a TS
M = (S, S,R, L) and automaton A = (Q, ¢, 9, F'), a proof (¢, p, W) of A over M
is given by specifying (i) [Invariants] for each automaton state ¢, an invariant
predicate ¢4 (i.e., a subset of S), and (ii) [Rank Functions] for each automaton
state ¢, a partial rank function, p,, from S to a well-founded set (W, <), with
induced rank relation <1, over W x W. For vacuity checking, the precise nature
of the rank functions and relations is not important'. The invariants and rank
function must satisfy the three local conditions given in Figure 2 for the proof
to be valid. In these conditions, the variable w ranges over elements of W, the
notation [f] means that f is valid, and a term of the form p, <, w (p, = w)
represents the predicate (As : pr(s) <qw) ((As : pr(s) = w)).

— Consistency: (pq is defined for every state in ¢q) For each q € Q, [¢pq =
(Fw: (pg = w))])
— Initiality: (the initial states satisfy the initial invariant) [S = ¢g]
— Invariance and Progress: For each q € @), depending on the form of §(q,1),
where [is a propositional formula over AP, check the following.
e true: nothing to check.
false: [¢pq = —l]

o (VR): [pg NI A (pg=w) = (Vr:r €R:¢pr A (pr Qg w))]
o (AR): [pg NI A (pg=w) = (AT:7 € R:pr A (pr Qg w))]
o EXr: [gg A LA (pg=w) = EX(dr A (pr < 0))
o AXr:[pg A LA (pg =w) = AX(¢r A (pr dq w))]

Fig. 2. The Proof System Rules

Theorem 0 (/21]) (Soundness) If there is a valid proof of A over M, then
M = A. (Completeness) If M |= A, there is a valid proof for A over M.

The proof of the completeness theorem is important to vacuity detection,
so we sketch it here. This proof considers the “run tree” formed by a winning
strategy in the game, where the tree contains a single player I move at a node

L For F of size 2N + 1, W is the product of N well-founded sets (W;, =<;), and <
is the lexicographic order induced by <o ... <n. For a,b € W, a <, b holds if,
and only if, for the unique k£ such that ¢ is in Fj, either k = 2i, for some i, and
(a1y...,a:) < (b1,...,b:), or k =2¢— 1, for some %, and (a1, ...,a;) < (b1,...,b;).

62 Kedar S. Namjoshi

labeled by a configuration for player I, and all player I moves at a node labeled
for player II. The choices of a move for player I are resolved uniquely by the
winning strategy. One can extract a proof from this run tree. In particular, the
invariant ¢, for ¢ is the set of program states s for which there is a configuration
of the form (x,¢) in the run tree where x contains s.

3 Defining and Detecting Vacuity

We assume that all formulas are in positive normal form. Let @ be a closed
mu-calculus formula. For a subformula ¢ of @, we define the strict positive
subformulas of i to be those subformulas of 1 that are not fixpoint variables
from a scope outside that of . For instance, in the fairness property (vZ : (uY :
EX(P A Z) v EX(Y))) (“There exists a path where P holds infinitely often”),
7 is not a strict subformula of EX(P A Z), although (P A Z) is one.

Theorem 1 Let @ be a closed mu-calculus formula, and v be a strict positive
subformula. Let Ag be the automaton formed from the parse graph of @, with
state q corresponding to . Then, @[:= false] holds of M iff there is a proof
that M satisfies Ag in which the invariant for q is the empty set.

Proof. (left-to-right) Let &' = &[¢) := false]. The parse graph for ¢ can be
obtained from that of @ by deleting nodes that correspond to strict subformulas
of 1), and replacing 1 with false. Thus, an automaton for @', Ag/, can be obtained
from Ag by deleting states that correspond to strict sub-formulas of 1, and by
setting ¢’(q,1) = false for all I. As @' holds for M, by the completeness theorem,
there is a valid deductive proof (¢', p’, W’) which, of course, is based only on the
states in Ags. As this proof is valid, the assertion [¢; = -] must be valid for
all I; thus, ¢;, = (). Now we form a proof (¢, p, W) as follows: let W = W', and
for r in Ag, let ¢, = ¢! and p, = p).. For any other state p, let ¢, = 0, and let
pp be some fixed element of W (the choice is arbitrary).

We claim that this is a valid proof for Ag over M. Since each state p missing
from Ag/ represents a strict subformula of v, it is reachable only from g; hence,
setting its invariant to the empty set does not affect the validity of the checks
for states of Ag . Furthermore, since the invariants are set to empty, the own
checks for these states, which have the form [(¢, A o) = (], are trivially valid.
Hence, the new proof is valid, and it has an empty invariance set for q.

(right-to-left) Suppose that there is a proof (¢, p, W), where ¢, = 0. Then,
the rule for ¢ holds trivially. Consider a state p that corresponds to a strict
subformula of 1. As p is reachable only from g, its invariant does not affect
the validity of the check for any state r that does not correspond to a strict
subformula of . Hence, dropping states that correspond to strict subformulas
of 1, and replacing (g,) with false for all [, yields a valid proof of Ag over M.
By the soundness theorem, this implies that M satisfies ¢’'. [

Given this theorem, the existing methods for vacuity detection can be viewed
as searching for a vacuous proof. This seems to be too broad a formulation: it
disregards a non-vacuous proof produced by a model checker simply because

An Efficiently Checkable, Proof-Based Formulation 63

VANV ANRVAW
-

@d, AP @b AQ

(b) (©)

{grant}

Fig. 3. Transition Systems

there exists an alternate, vacuous justification for the property. To illustrate this
point further, we consider some examples.

Existential Properties. The existential analogue of the example defined in the
introduction is “There exists a computation where every request is eventually
granted”. This may be formulated in ECTL as EG(re¢ = EF(grant)). For
the TS shown in Figure 3(a), the property is true, as on the left-hand path, a
request is sent and subsequently granted. This witness does make use of every
subformula, so is non-vacuous. However, replacing the subformula EF(grant) with
false, we obtain the property EG(—req), which is true of the right-hand branch;
thus, the verification is considered vacuous by the formula-vacuity criterion. This
is clearly odd: a perfectly reasonable, non-vacuous proof is disregarded because
of the existence of an alternative, vacuous proof.

Universal, Non-linear Properties. Consider another property, in this case a
universal one, but one that is not expressible in linear-time logics: “At ev-
ery successor state, either inevitably P holds, or inevitably @ holds”, where
P and @ are atomic propositions. The property can be written in ACTL as
AX(AF(P) Vv AF(Q)). Consider the TS shown in Figure 3(b), with the dashed
arrow representing a long path to a state satisfying the target proposition. The
property is clearly true of the TS. The shortest proof will favor satisfying AF(P)
for the left successor of the initial state, since it can be done in fewer steps
than satisfying AF(Q), and it will favor satisfying AF(Q) for the other succes-
sor, for the same reason. This is a non-vacuous proof, since all subformulas are
used. However, replacing the subformula AF(Q) by false results in the prop-
erty AX(AF(P)), which is also true of the TS; hence, the verification is vacuous
by formula vacuity. This conclusion is debatable: again, a perfectly reasonable
proof (in fact, the shortest one) is disregarded because of a vacuous proof that
is non-optimal.

3.1 Proof Vacuity

Given these anomalies resulting from the formula-vacuity criterion, we seek to
define a stronger criterion based on the justification actually given by the model
checker. One possible approach is to examine only the justification provided

64 Kedar S. Namjoshi

by a given model checker for vacuity. This is simple, but has the disadvantage
of being sensitive to the choice of the model checker. This sensitivity may not
be a problem if a particular model checker is standardized for use within an
organization.

We explore, however, the consequences of a definition that is insensitive to the
model checking strategy. As a preliminary, given M and Ag, for a mu-calculus
formula @, call a state of M game-reachable iff it occurs in some configuration
of the game for M = Ag. Note that all unreachable states of M are also game-
unreachable, but that some reachable states of M may also be game-unreachable.
For instance, the game for the formula @ = P examines only the initial states
of M; thus, all other states are game-unreachable. The proof of the soundness
theorem in [21] shows that each valid proof defines a history-free winning strategy
for the model checking game. Thus, removing game-unreachable states from each
invariant set does not change the validity of a proof. We can now define a proof
to be vacuous for some subformula as follows.

Definition 0 (Vacuous Proof) A proof for an automaton property is vacuous
for automaton state q iff the invariant for q is emptly or contains only game-
unreachable states. A proof is vacuous iff it is vacuous for some automaton
state.

Theorem 1 can then be amended so that it is also possible for the invariant
for ¢ to contain game-unreachable states. We rely on this amended form in the
subsequent discussion. We can now define proof vacuity as follows. Notice that
the crucial difference with formula vacuity is that a verification is considered to
be vacuous only if all all model checking strategies give rise to vacuous proofs.

Definition 1 (Proof Vacuity) For an automaton property A and a TS M, the
verification of A on M is proof-vacuous iff for some automaton state q, every
proof that M satisfies A is vacuous for q.

The rationale for excluding game-unreachable, rather than just unreachable
states is as follows. Consider the property AX(P = AX(Q)). This is true
vacuously of a TS M for which all successors of the initial state satisfy —P.
However, there may be a proof where the invariant for the state corresponding
to AX(Q) includes reachable states of M that satisfy AX(Q); thus, the weaker
criterion would not properly detect the vacuous verification. Game-reachability
is not that stringent a criterion; for instance, COSPAN [12], a symbolic model
checker for linear-time automaton properties, restricts the model checking to the
reachable states of the product of the TS and a negated property automaton.
This product defines the game configurations: thus, all invariants include only
game-reachable states.

Although proof-vacuity has a universal quantification over all proofs, we can
show that it suffices to consider a maximally inclusive proof, produced by in-
cluding every game reachable state that satisfies an automaton state q in ¢4 —
this is just the proof provided by the completeness theorem.

An Efficiently Checkable, Proof-Based Formulation 65

Theorem 2 For an automaton property A and T'S M , the property is true proof-
vacuously for M iff the mazimally inclusive proof is vacuous.

Proof. It is slightly easier to show the contrapositive. Suppose that the property
is true non-proof-vacuously. Then there is a non-vacuous proof, one in which the
invariant for every automaton state contains some game-reachable state. This
state must be present, by inclusiveness, in the invariant for that automaton state
in the maximally inclusive proof. Hence, the maximally inclusive proof is non-
vacuous. In the other direction, if the maximally inclusive proof is non-vacuous,
the verification is non-proof-vacuous by definition. [J

Vacuity Checking. Suppose that the states of M are represented symbolically by
a vector of Boolean variables l;, and that the states of Ag are represented by a
vector of Boolean variables ¢. Let Wm(g,) be the set of reachable, winning game
configurations that is generated by the model checker, as indicated above for
COSPAN. The vacuity check then amounts to detecting whether the encoding
of some valid automaton state ¢ is not associated with any state in Win —
this means that the invariant for ¢ is empty. Such a check can be performed
through symbolic (BDD) calculations. One such method is to calculate the set
of automaton states with non-empty invariants, nonempty (), as (3b : Win(b, @),
and check whether valid = nonempty, where valid(¢) defines valid automaton
states.

An interesting point is that proof-vacuity, as defined, does not take into
account the distinction between optimal and non-optimal proofs. For instance,
consider the ACTL formula AX(AF(P) V AF(Q)) and the TS in Figure 3(c).
An optimal proof, in which player I makes choices that satisfy eventualities as
early as possible, has an empty invariant for AF(Q); a less-than-optimal proof
would include the third-level states (which are game-reachable) in the invariant
for AF(Q). Thus, the verification is non-proof-vacuous due to the existence of the
less-than-optimal, non-vacuous proof. However, it might be of interest to know
that the shortest proof of correctness does not use a certain subformula. The
construction for the completeness theorem can be adjusted to create a proof
that is optimal (vs. maximally inclusive) as follows. The construction already
results in ranks that define the shortest path to satisfying eventualites. All that
remains is to prune the maximally inclusive invariants so that states that do not
contribute to the shortest path to fulfilling any eventuality (e.g., the third-level
states in this example) are eliminated from the invariants. It is not clear, though,
whether an analogue of Theorem 2 can be obtained. Note that a discussion of
optimality differences is based on quantifying progress through rank functions;
progress concerns have so far not played a role in the identification of vacuous
justifications. As shown below, differences in optimality are of concern only for
certain branching-time properties.

Theorem 3 For a mu-calculus property ¢ and TS M, if there is a unique run
tree for the model checking game on M and Ag, then formula-vacuity for ¢
coincides with proof-vacuity (optimal-proof-vacuity) for Ag.

66 Kedar S. Namjoshi

Proof. Each run tree corresponds to a winning strategy for player I, which is
history-free (due to the parity winning condition) and so corresponds to a proof
(cf. [21]). As there is a unique run tree, there is only a single valid proof. If
¢ is true formula-vacuously, this proof is vacuous, and hence the verification is
also proof-vacuous, since there are no other valid proofs to consider. The other
direction follows as proof-vacuity is stronger than formula-vacuity. O

This theorem has some interesting consequences for linear and branching
time properties. Consider the case where a linear-time property is specified by
expressing its negation as a a Biichi word automaton — this is the usual approach
to model checking a linear-time property. From such an automaton B, one may
construct a universal dual automaton B with the same transition relation and
a complemented Biichi acceptance condition [20]. Universality means that B
accepts a computation if all runs on it are accepting. This dual automaton can
also be viewed as a universal tree automaton for the branching time property
“All computations of M are accepted by B”. As B is universal, there is a single
run tree of B on M. Applying Theorem 3, one obtains the consequence given
below. For pure branching time properties, proof-vacuity is strictly stronger, as
shown by the examples discussed previously.

Theorem 4 Let B be a universal co-Biichi tree automaton that expresses that
a linear-time correctness property holds for all computations of M. If M = B,
the verification is formula vacuous iff it is proof (optimal-proof) vacuous.

Linear Properties as LTL Formulas. Theorem 4 showed that, for linear-time
properties expressed as (negated) automata, proof vacuity coincides with formula
vacuity. The situation is different if formula vacuity is applied to LTL formulas.
Intuitively, this is because model checking is carried out with an automaton
derived from an LTL formula (cf. [11]), where each automaton state represents
a set of subformulas. Thus, vacuity at the level of the automaton states makes
possible finer distinctions than vacuity at the level of formulas.

This difference can be seen with an LTL formula that is similar — though
not equivalent — to the ACTL formula defined previously: X(F(P) VvV F(Q)). This
holds for the TS in Figure 3(b); however, so does X(F(P)), which is obtained by
setting the F(Q) subformula to false. A universal co-Biichi automaton for this
formula is defined by the state set {0, 1,2} with initial state 0, and transitions

0 &g 1,1 (~LA3@) 1,1 (rve) 2, and 2 frug 2, and the co-Biichi acceptance con-

dition FG(2). This automaton is verified without vacuity (either by the old or,
from Theorem 4, by the new formulation).

We can show equivalence of the formula and automaton vacuity definitions,
however, for a subclass of LTL formulas. This class, LTL?, is defined in [19],
where it is shown that it represents exactly those LTL properties that are defin-
able in ACTL. In fact, the ACTL property equivalent to checking that ¢ holds
on all computations can be obtained simply by attaching the A path operator to
each temporal operator in ¢; we refer to this ACTL formula as ¢. Any ACTL
property has a direct translation to an equivalent mu-calculus property, so we
may consider ¢T also as a mu-calculus property. The precise syntax is given be-

An Efficiently Checkable, Proof-Based Formulation 67

low. In this syntax, p is a propositional state predicate, so that every V -choice
can be resolved deterministically at a state.

Pu=p|PANP|(pAD)V (mpAD)[X(@)|((pALVU(pAP)[((pA
BW(-p A B)).

Theorem 5 For an LTL™' formula ¢ and TS M, the verification of ¢ on M
is formula-vacuous iff the verification of ¢+ on M is proof-vacuous.

Proof. Consider any positive sub-formula ¢ of ¢. Then, A(¢[¢) := false]) is
equivalent to (@[t) := false])™, which is identical to ¢ [y := false] by the
nature of the transformation. Thus, ¢ is true formula-vacuously for M with
as the witness subformula iff ¢T is true formula-vacuously for M, with ¥T as
the witness subformula. From the determinism inherent in the syntax, there is
a unique run tree for the verification of ¢*. By Theorem 3, formula-vacuity for
¢T coincides with proof-vacuity. [

4 Conclusions and Related Work

This paper argues that the current formulation of vacuity is too broad. This con-
clusion is supported both by examples, and by a theorem showing that formula-
vacuity is equivalent to the existence of a vacuous proof. We propose a new,
narrower formulation, which needs to inspect only the invariants of a single,
maximally inclusive proof. Besides resolving anomalies with the earlier formu-
lation, the new one can be checked more efficiently, by using information that
is easily gathered during model checking. This should translate to a significant
advantage in practice. In fact, checking proof vacuity with COSPAN is trivial,
since the model checker produces a list of game-unreachable automaton states;
the verification is vacuous iff this list contains a valid automaton state.

The most closely related work in vacuity detection has been discussed
throughout the paper. As pointed out in [18], vacuity is but one of several ap-
proaches to further inspecting a valid answer from a model checker. One may
also examine the state “coverage” (cf. [14,13,4]). Vacuity may be viewed, dually,
as a form of specification coverage, since it checks whether certain sub-formulas
are redundant for the verification. More generally, producing justifications in
the form of deductive proofs (cf. [21,22]) or as interactive games or tableaux
[15,26,25] can offer deeper insight into why a property holds (or fails) of the
program, since these take ranking functions also into account (cf. the discussion
on optimality).

An interesting research topic is to recognize “partial” vacuity in a way that
produces useful results. For instance, consider a tree-structured transition system
where the left subtree of the root satisfies the request-grant property vacuously
(by never sending requests), while the right subtree satisfies it non-vacuously
(there is at least one request). Neither the earlier formulation nor the one pro-
posed here would consider this to be a vacuous verification, yet there is clearly
something odd in this proof. It seems likely that a more detailed analysis of
correctness proofs will enable the detection of such instances.

68

Kedar S. Namjoshi

Acknowledgements

This work was supported in part by grant CCR-0341658 from the National
Science Foundation.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M.Y.
Vardi. Efficient vacuity detection in linear temporal logic. In CAV, volume 2725
of LNCS. Springer-Verlag, 2003.

D. Beatty and R. Bryant. Formally verifying a microprocessor using a simulation
methodology. In 81st DAC. IEEE Computer Society, 1994.

I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
ACTL formulas. In CAV, volume 1254 of LNCS, 1997. (full version in FMSD,
18(2), 2001).

H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi. A practical approach
to coverage in model checking. In CAV, volume 2102 of LNCS. Springer-Verlag,
2001.

E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume
131 of LNCS. Springer-Verlag, 1981.

Y. Dong, B. Sarna-Starosta, C.R. Ramakrishnan, and S.A. Smolka. Vacuity check-
ing in the modal mu-calculus. In AMAST, volume 2422 of LNCS. Springer-Verlag,
2002.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: on
Branching versus Linear Time Temporal Logic. J.ACM, 33(1):151-178, January
1986.

E.A. Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B: Formal Methods and Semantics. Elsevier
and MIT Press, 1990.

E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (ex-
tended abstract). In FOCS, 1991.

E.A. Emerson and C-L. Lei. Efficient model checking in fragments of the proposi-
tional mu-calculus (extended abstract). In LICS, 1986.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV. Chapman & Hall, 1995.

R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. In CAV, volume 1102 of
LNCS, 1996.

Y. Hoskote, T. Kam, P-H. Ho, and X. Zhao. Coverage estimation for symbolic
model checking. In 37th DAC. ACM Press, 1999.

S. Katz, D. Geist, and O. Grumberg. “Have I written enough properties?” A
method for comparison between specification and implementation. In CHARME,
volume 1703 of LNCS. Springer-Verlag, 1999.

A. Kick. Generation of witnesses for global mu-calculus model checking. available
at http://citeseer.ist.psu.edu/kick95generation.html, 1995.

D. Kozen. Results on the propositional mu-calculus. In ICALP, volume 140 of
LNCS. Springer-Verlag, 1982.

O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking. In
CHARME, number 1703 in LNCS. Springer-Verlag, 1999. (full version in STTT
4(2), 2003).

18

19.
20.

21.
22.

23.
24.

25.

26.

An Efficiently Checkable, Proof-Based Formulation 69

. O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking.
STTT, 4(2), 2003.

M. Maidl. The common fragment of CTL and LTL. In FOCS, 2000.

Z. Manna and A. Pnueli. Specification and verification of concurrent programs by
V-automata. In POPL, 1987.

K. S. Namjoshi. Certifying model checkers. In CAV, volume 2102 of LNCS, 2001.
D. Peled, A. Pnueli, and L. D. Zuck. From falsification to verification. In FSTTCS,
volume 2245 of LNCS, 2001.

A. Pnueli. The temporal logic of programs. In FOCS, 1977.

M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In CAV, volume
2404 of LNCS. Springer-Verlag, 2002.

P. Stevens and C. Stirling. Practical model-checking using games. In TACAS,
volume 1384 of LNCS. Springer-Verlag, 1998.

S. Yu and Z. Luo. Implementing a model checker for LEGO. In FME, volume 1313
of LNCS, 1997.

	1 Introduction
	2 Preliminaries
	3 Defining and Detecting Vacuity
	3.1 Proof Vacuity

	4 Conclusions and Related Work
	References

