
Proving More Properties
with Bounded Model Checking�

Mohammad Awedh and Fabio Somenzi

University of Colorado at Boulder
{Awedh,Fabio}@colorado.edu

Abstract. Bounded Model Checking, although complete in theory, has been thus
far limited in practice to falsification of properties that were not invariants. In
this paper we propose a termination criterion for all of LTL, and we show its
effectiveness through experiments. Our approach is based on converting the LTL
formula to a Büchi automaton so as to reduce model checking to the verification
of a fairness constraint. This reduction leads to one termination criterion that
applies to all formulae. We also discuss cases for which a dedicated termination
test improves bounded model checking efficiency.

1 Introduction

The standard approach to model checking an LTL property [17, 9] consists of checking
language emptiness for the composition of the model at hand and a Büchi automaton
that accepts all the counterexamples to the LTL property. A competing approach con-
sists of encoding the problem as propositional satisfiability (SAT) [2]. In this approach,
known as Bounded Model Checking (BMC), a propositional formula is constructed
such that a counterexample of bounded length for the LTL formula exists if and only if
the propositional formula is satisfiable.

The basic BMC just described is not complete in practice: It often finds a coun-
terexample if it exists, but it cannot prove that a property passes unless a tight bound
on the completeness threshold [6] of the state graph is known. Such a bound is difficult
to obtain. The issue of completeness is addressed by recourse to an induction proof in
[14] and [7], or by the use of interpolants in [10] so that BMC can be used for both
verification and falsification of invariants.

The approach of [14] is based on the observation that if a counterexample to an
invariant exists, then there is a simple path from an initial state to a failure state that
goes through no other initial or failure state. Every infinite path that extends this simple
path violates the invariant. Therefore, an invariant holds if all states of all paths of length
k starting from the initial states satisfy the invariant, and moreover, there is no simple
path of length k + 1 starting at an initial state or leading to a failure state, and not going
through any other initial or failure states.

This method can be easily extended to prove LTL safety properties. For full LTL,
one can convert the check for a liveness property into the check of a safety property
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following [13]. However, the conversion doubles the number of state variables. An ap-
proach that does not incur this penalty is the subject of this paper. We translate the
given LTL formula into a Büchi automaton and compose the latter with the model as in
[17, 6]. This step reduces the checking of any LTL property to the one of FG¬p for a
propositional formula p, on the composed model.

A counterexample to FG¬p exists if there is a simple path from an initial state of
the composed model followed by a transition to some state on the path1. If there is no
simple path from an initial state of length k, then there cannot be a counterexample of
length k + 1. This condition is the counterpart of the one for invariants that checks for
simple paths from initial states. However, there is no strict analog of the states failing
an invariant in the general case. Hence, the check for no simple paths of length k into
failure states must be replaced by a criterion that guarantees that no loops satisfying
certain acceptance conditions may be closed by extending paths of length k.

In this paper, we present such a criterion to prove LTL properties in general. We
also discuss a more efficient criterion for a common special case. The translation of the
LTL formula can be accomplished in several ways. In Sect. 4 we discuss the impact of
various choices on the efficiency of the model checker.

As in the case of invariants, the effectiveness of our termination criteria depends on
the lengths of the simple paths in a state graph. However, our experiments, presented
in Sect. 5, show that many properties that defy verification attempts by either standard
BMC or BDD-based model checking can be proved by our approach.

2 Preliminaries

The goal of LTL model checking is to determine whether an LTL property is satisfied in
a finite model of a sequential system. The behavior of this sequential system is described
by a Kripke structure. A Kripke structure K = 〈S, δ, I, L〉 consists of a finite set of
states S whose connections are described by the transition relation δ ⊆ S × S. If
(s, t) ∈ δ, then there is a transition form state s to state t in K. The transition relation
δ is total: For every state s ∈ S there is a state t ∈ S such that (s, t) ∈ δ. I ⊆ S is the
set of initial states of the system. The labeling function L : S → 2AP indicates what
atomic propositions hold at each state. We write δ(s, t) for (s, t) ∈ δ; that is, we regard
δ as a predicate. Likewise, we write I(s) to indicate that s is an initial state, and, for
p ∈ AP , p(s) to indicate that p ∈ L(s).

Definition 1. A sequence of states (s0, . . . , sk) forms a path of length k of Kripke struc-
ture K if it satisfies

pathk =
∧

0≤i<k

δ(si, si+1) .

The path is initialized if I(s0) holds. A simple path of length k satisfies:

simplePathk = pathk ∧
∧

0≤i<j≤k

(si �= sj) .

1 Precisely, this is the case when BMC starts from paths of length 0, and increases the length by
1 every time.
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The simple path condition can be easily expressed with a number of CNF clauses that
is quadratic in the length k of the path. Recent work [8] reduces the number of required
clauses to O(k log2 k).

Definition 2. A loop condition Lk is true of a path of length k if and only if there is a
transition from state sk to some state of the path.

Lk =
∨

0≤l≤k

δ(sk, sl) .

Definition 3. The LTL formulae over atomic propositions AP are defined as follows

– Atomic propositions, true, and false are LTL formulae.
– if f and g are LTL formulae, then so are ¬f , f ∧ g, f ∨ g, X f , and f U g.

An LTL formula that does not contain the temporal operators (X and U) is propositional.
We write f R g for ¬(¬f U¬g), F f for true U f , and G f for false R g.

LTL formulae are interpreted over infinite paths. An atomic proposition p holds
along a path π = (s0, s1, . . .) if p(s0) holds. Satisfaction for true, false, and the
Boolean connectives is defined in the obvious way; π |= X f iff π1 |= f , where
πi = (si, si+1, . . .); and π |= f U g iff there exists i ≥ 0 such that πi |= g, and
for j < i, πj |= f .

A safety linear-time property is such that every counterexample to it has a finite
prefix that, however extended to an infinite path, yields a counterexample. A liveness
property, on the other hand, is such that every finite path can be extended to a model of
the property. Every linear time property can be expressed as the intersection of a safety
and a liveness property [1].

Though in principle a counterexample to a linear-time property is always an infinite
sequence of states, for safety properties it is sufficient and customary to present an ini-
tialized simple path that leads to a bad state—one from which all extensions to infinite
paths result in counterexamples. For liveness properties, on the other hand, counterex-
amples produced by model checkers are ultimately periodical sequences of states. Such
sequences can be presented in the form of an initialized path followed by a transition
to one of its states. As an example, in a counterexample to the liveness property F p all
states of the path satisfy ¬p. In a counterexample to FG¬p, the transition from the last
state of the path reaches back far enough that a state satisfying p is included in the loop.

Definition 4. A Büchi automaton over alphabet Σ is a quadruple

A = 〈Q, ∆, q0, F 〉 ,

where Q is the finite set of states, ∆ ⊆ Q × Σ × Q is the transition relation, q0 ∈ Q is
the initial state, and F ⊆ Q is a set of accepting states (or fair set).

A run of A over an infinite sequence w = (w0, w1, . . .) ∈ Σω is an infinite sequence
ρ = (ρ0, ρ1, . . .) over Q, such that ρ0 = q0, and for all i ≥ 0, (ρi, wi, ρi+1) ∈ ∆. A
run ρ is accepting if there exists qj ∈ F that appears infinitely often in ρ.

Boolean satisfiability (SAT) is a well-known NP-complete problem. It consists of
computing a satisfying variable assignment for a propositional formula or determining
that no such assignment exists.
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3 Proving Properties with Bounded Model Checking

Bounded Model Checking (BMC) [2] reduces the search for a counterexample to an
LTL property to propositional satisfiability. Given a Kripke structure K, an LTL formula
f , and a bound k, BMC tries to refute K |= f by proving the existence of a witness of
length k to the negation of the LTL formula.

BMC generates a propositional formula [[K,¬f ]]k that is satisfiable if and only if a
counterexample to f of length k exists; [[K,¬f ]]k is defined as follows:

[[K,¬f ]]k = I(s0) ∧ pathk ∧ [[¬f ]]k , (1)

where [[¬f ]]k expresses the satisfaction of ¬f along that path. Of particular interest to
us are three cases:

[[¬G p]] =
∨

0≤i≤k

¬p(si) (2a)

[[¬F G¬p]] =
∨

0≤l≤k

(δ(sk, sl) ∧
∨

l≤i≤k

p(si)) (2b)

[[¬F p]] = Lk ∧
∧

0≤i≤k

¬p(si) , (2c)

where p is a propositional formula. The first of the three cases is encountered when
checking invariants. The second occurs when checking fairness constraint [4]. It is im-
portant because model checking any LTL formula f can be reduced to checking for the
satisfaction of a fairness constraint by translating the LTL formula to a Büchi automa-
ton. This translation allows us to deal in a uniform manner with all of LTL. However,
common cases may benefit from special treatment. We illustrate these benefits for for-
mulae of the form F p, which is our third interesting case.

For an invariant G p, no counterexample of length greater than or equal to k exists if
[[K,¬G p]]k is unsatisfiable, and either of the following predicates is unsatisfiable [14]:

χ(k) = I(s0) ∧ simplePathk ∧
∧

0<i≤k

¬I(si) (3a)

ζ(k) = simplePathk ∧ ¬p(sk) ∧
∧

0≤i<k

p(si) . (3b)

For checking fairness constraints, an unsatisfiable χ(k) does not guarantee termina-
tion because all counterexamples may have to go through more than one initial state.
Therefore, a weakened form must be used:

χ′(k) = I(s0) ∧ simplePathk . (3a′)

If χ′(k) is unsatisfiable, then there can be no simple path of length k that can be ex-
tended to a counterexample by a transition back to a state along the path. For (3b),
dropping the requirement that all states except the last one satisfy p is not sufficient.
In the next two sub-sections we develop termination criteria that replace (3b) when
f = F G¬p, and when f = F p.
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3.1 Proving F G ¬p

Theorem 1. Let K = 〈S, δ, I, L〉 be a Kripke structure, let p ∈ AP be an atomic
proposition, and let the following predicates denote sets of paths in K:

α(k) = I(s0) ∧ simplePathk ∧ p(sk) (4a)

β(k) = simplePathk+1 ∧ ¬p(sk) ∧ p(sk+1) (4b)

β′(k) = simplePathk+1 ∧
∧

0≤i≤k

¬p(si) ∧ p(sk+1) (4b′)

[[K,¬F G¬p]]k = I(s0) ∧ pathk ∧
∨

0≤l≤k

[δ(sk, sl) ∧
∨

l≤i≤k

p(si)] . (4c)

Let m be the least value of k for which β′(k) is unsatisfiable, and n the least value of k
for which (α ∨ β)(k) is unsatisfiable. Then, [[K,¬F G¬p]]k is unsatisfiable unless it is
satisfiable for k ≤ n + m − 1.

Proof. Since β′(k + 1) is satisfiable only if β′(k) is, and β′(|S| + 1) is unsatisfiable,
there is a minimum m ≥ 0 such that β′(m) is unsatisfiable, and for k > m, β′(k)
remains unsatisfiable. A similar argument applies to β(k).

If α(k) is unsatisfiable, every initialized simple path of length k in K ends with a
state sk such that ¬p(sk). In addition, if β(k) is unsatisfiable, no simple path of length
k that ends in a state sk such that ¬p(sk) can be extended to a simple path of length
k + 1 such that p(sk+1). Hence, every initialized simple path of length k + 1 ends in a
state sk+1 such that ¬p(sk+1). Therefore, (α∨β)(k+1) is satisfiable only if (α∨β)(k)
is. Since α(|S| + 1) is unsatisfiable, there is a minimum n ≥ m for which (α ∨ β)(n)
is unsatisfiable. In addition, for k > n (α ∨ β)(k) remains unsatisfiable.

If [[K,¬F G¬p]]k is satisfiable for k = n′ ≤ n, then the theorem holds for K.
Suppose it is satisfiable for k = n′ > n, but not for any value of k less than or equal to
n. Then

γ(k) = I(s0) ∧ simplePathk ∧
∨

0≤l≤k

[δ(sk, sl) ∧
∨

l≤i≤k

p(si)] (4c′)

is also satisfiable for some k = n′′, n < n′′ ≤ n′. Since every initialized simple path
of length n′′ ≥ n satisfies ¬(p(sn) ∨ · · · ∨ p(sn′′)), if there is a path of length k > n
satisfying γ(k), no state si in (4c′) such that p(si) holds can have i ≥ n. Hence, the
maximum length of such a path is m + n − 1; otherwise, there would be a simple
path of length m′ > m satisfying (4b′) from sn to a state that satisfies p. Therefore, if
there is no path of length at most m + n − 1 that satisfies γ(k), then [[K,¬F G¬p]]k is
unsatisfiable for any k ≥ 0. ��

Theorem 2. There exists a family of structures {Ki}, i ≥ 0, such that the minimum
value of k for which γ(k) is satisfiable is m + n − 1 = 2n− 1.
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Proof. Structure Ki is defined as follows:

Si = {s0, . . . , s2i+1} Ii = {s0}

δi = {(sj , sj+1) | 0 ≤ j ≤ 2i}
∪ {(s2i+1, si)}

L(sj) =

{
{p} if j = i

∅ otherwise .

For this structure, m = n = i + 1; γ(k) is satisfiable for k = 2i + 1 and for no other
value of k. (Regarding criterion (3a′), χ′(k) is unsatisfiable for k > 2i + 1.) ��

As shown in Sect. 5, for many models and properties, the termination criterion based
on Theorem 1 is more effective than the one based on (3a′).

The conditions of Theorem 1 can be checked efficiently by observing that (4b) is
unsatisfiable only if (4b′) is, and that the satisfiability of (4a) is immaterial until (4b)
becomes unsatisfiable. Initially, it is therefore sufficient to check (4b′); when this be-
comes unsatisfiable, one records the value of m and switches to checking (4b). When
the latter also becomes unsatisfiable, then one starts monitoring (4a) until the value of n
is found. Naturally, if (4c) becomes satisfiable, the process terminates. It is not required
to check one of (4a)–(4b′) for all values of k, though, obviously, skipping some checks
may lead to trying larger values of k than strictly necessary.

3.2 Trap States

Suppose that a predicate τ is given such that from a state s that satisfies τ(s), no state
s′ satisfying p(s′) ∨ ¬τ(s′) can be reached. Then, when checking FG¬p, (3a′) can be
strengthened as follows:

χ′′(k) = I(s0) ∧ simplePathk ∧ ¬τ(sk) . (3a′′)

The model on which FG¬p is checked is normally obtained by composition of the
given Kripke structure with a Büchi automaton for the negation of an LTL property.
The automaton may contain a trap state, that is, a non-accepting state with a self-loop
as only outgoing transition. Such a state is often introduced when making the transition
relation ∆ of the automaton complete. In such cases, one can take τ as the predicate that
is true of all states of the composition that project on the trap state of the automaton.

3.3 Proving F p

Theorem 3. Let K = 〈S, δ, I, L〉 be a Kripke structure, let p ∈ AP be an atomic
proposition, and let the following predicates denote sets of paths in K:

θ(k) = I(s0) ∧ simplePathk ∧
∧

0≤i≤k

¬p(si) (5a)

[[K,¬F p]]k = I(s0) ∧ pathk ∧ Lk ∧
∧

0≤i≤k

¬p(si) . (5b)

Let n be the least value of k such that θ(k) is unsatisfiable. Then [[K,¬F p]]k is unsat-
isfiable unless it is satisfiable for k ≤ n.
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Proof. Since θ(|S|+ 1) is unsatisfiable, there exists a minimum k such that θ(k) is un-
satisfiable. Let this minimum be n. Since θ(k +1) implies θ(k), if θ(n) is unsatisfiable,
for k > n, θ(k) remains unsatisfiable.

If [[K,¬F p]]k is satisfiable for k = n′ ≤ n, then the theorem holds for K. Suppose
it is satisfiable for k = n′ > n, but not for any value of k less than or equal to n. Then

σ(k) = I(s0) ∧ simplePathk ∧ Lk ∧
∧

0≤i≤k

¬p(si) (5b′)

is also satisfiable for some k = n′′, n < n′′ ≤ n′. Since σ(k) implies θ(k), assuming
that σ(k) is satisfiable for k = n′′ > n leads to a contradiction. ��
Note that the value of n in Theorem 3 corresponds to the (predicated) recurrence ¬p-
radius of [13].

4 Minimum-Length Counterexamples

One virtue of the standard BMC algorithm is that it can produce counterexamples of
minimum length for all LTL properties if the lengths of the paths whose existence is
checked by SAT starts at 0 and is increased by 1 every time. With BDD-based LTL
model checking this is not the case for two reasons. The first is that the shortest fair cy-
cle problem is solved only heuristically [5, 12]. The second reason is that in BDD-based
LTL model checking, a counterexample is a path in the composition of Kripke struc-
ture and property automaton. Such a counterexample may be longer than the shortest
counterexamples found in the Kripke structure.

Example 1. Figure 1 shows a Kripke structure K with S = {a, b}, δ = {(a, b), (b, a)},
I = {a}, L(a) = {r}, and L(b) = ∅. This structure is composed with a Büchi au-
tomaton A for the negation of ϕ = G(r → F q). The alphabet Σ of A is 2AP . In the
figure, an arc of the automaton is annotated with the characteristic function of all the la-
bels for which there is a transition between the two states connected by the arc. Hence,
A can follow an arc into a state if it reads a letter of the input word that satisfies the
arc’s formula. The doubly-circled states are accepting. The shortest counterexample to
K |= ϕ found in K ‖ A includes three states, a0, b1, and a1, even though there is a
counterexample consisting of two states, a and b, in K.

Even when it is possible to retrieve a shortest path in the Kripke structure from the
shortest path in the composition—as in the case of Example 1—the computation on
K ‖ A is likely to be more expensive than the one on K alone because the transition
relation is unrolled more times.

An LTL formula may be translated into many distinct Büchi automata. Though they
all accept the same language, they may differ in “style” (labels on the states vs. labels
on the transitions; one acceptance condition vs. several), or simply in the numbers of
states and transitions.

Automata with labels on the transitions react to the evolution of the Kripke struc-
ture with which they are composed with a delay of one step. This is an obstacle in
producing shortest counterexamples. Automata with labels on the states do not have
this disadvantage, but do not guarantee shortest counterexamples either.
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{r}
b

0

1

a0

a

a1

b0

A K ‖ A

K

r ∧ ¬q

true

¬q b1

Fig. 1. The composition with the Büchi automaton affects the length of the counterexample

{r}
b

0

1

a0

a

a1

b0

a22

A′

r ∧ ¬q

true

¬q

K

b2

K ‖ A′

Fig. 2. The position of the labels in the Büchi automaton and its transition relation affect the
length of the counterexample

Example 2. Figure 2 shows the Kripke structure of Example 1 composed with a Büchi
automaton A′ for the negation of ϕ = G(r → F q) with labels on the states. The
transition drawn with a dashed line from State 2 to State 1 can be added or removed
without changing the language accepted by A′ [16]. However, whether it is present
or not affects the counterexample found to K |= ϕ. With the optional transition, the
language emptiness check applied to K ‖ A′ returns the cycle (a1, b2), which is of
minimal length. By contrast, when the transition is omitted, the shortest counterexample
to K |= ϕ has three states: a1, b2, and a2.

Example 2 shows that adding transitions to an automaton may lead to shorter counterex-
amples. On the other hand, more transitions may result in longer simple paths which
may delay the triggering of the termination conditions. To avoid these problems, the
check for existence of counterexamples of length k is performed according to the orig-
inal algorithm of [2], while the termination criteria are applied to the composition of
Kripke structure and Büchi automaton. The overhead of building two distinct models
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for each value of k is more than compensated by the ability to terminate sooner for
failing properties.

5 Experimental Results

We have implemented the termination criteria of Theorems 1 and 3, (3a′), and (3a′′)
in VIS [3, 18]. VIS includes an implementation of the BMC algorithm of [2] that uses
zChaff [11] to check for the satisfiability of propositional formulae. VIS detects LTL
formulae of special types and treats them accordingly.

– For invariants and formulae that are syntactically safe according to the definition
of [15], VIS returns a simple path to a bad state in case of failure. The termination
criteria (3a) and (3b) of [14] are applied.

– LTL formulae that contain no temporal operators except X are called bounded. The
depth of a bounded formula is the maximum nesting level of X operators in it. VIS
concludes that a bounded formula holds unless it finds a counterexample whose
length does not exceed the formula’s depth. Propositional formulae are bounded
formulae of depth 0.

For formulae that fall into one of the above categories, we use the termination checks
already implemented. For the others, we have implemented two approaches.

– The first approach applies the standard BMC algorithm augmented with the termi-
nation check of (3a′′) to the composition of the original model and a Büchi automa-
ton for the negation of the formula.

– The second approach checks if the given formula is of the form F p, in which case,
the standard BMC algorithm augmented with the termination check of Theorem 3
is applied. Otherwise, the termination checks of (3a′′) and Theorem 1 are applied
to the composition of the original model and a Büchi automaton for the negation
of the formula, while standard BMC is applied to the original model to check for
violations of the property as discussed in Sect. 4.

The results presented in the following tables are for models that are either from
industry or from the VIS Verification Benchmark set [18]. For each model, we count
each LTL property as a separate experiment. We exclude experiments such that all the
methods we compare finish in less than 1 s. Experiments that take more than 1800 s are
considered timed out. For all experiments, we set the maximum value of k to 30 and we
check for termination at each step. The experiments were run on an IBM IntelliStation
with a 1.7 GHz Pentium IV CPU and 2 GB of RAM running Linux. The datasize limit
was set to 1.5 GB.

Table 1 shows the results of applying four algorithms to LTL properties for which
VIS did not already implement termination criteria. We compare the performance of our
method based on Theorems 1 and 3, and the termination criterion (3a′′) (aut sat) to the
standard BMC algorithm (bmc), to the use of the termination criterion (3a′′) (bmc et)
only, and to the BDD-based LTL model checking algorithm in VIS (ltl).

The first column in Table 1 is the name of the model, the second is the number of
state variables, and the third is the property number. The remaining columns are di-
vided into four groups, one for each algorithm. The first column in each group indicates
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Table 1. Comparison of aut sat, bmc, bmc et, and ltl

state aut sat bmc bmc et ltl
Model vars # |= k Time(s) |= k Time(s) |= k Time(s) |= Time(s)

Am2910 99 1 yes 3 3.03 ? 30 112.58 ? 30 557.48 ? Timeout
Bakery 16 1 no 13 96.86 no 13 78.05 no 13 91.3 no 0.35

Blackjack 102 1 yes 1 1.01 ? 30 148.76 yes 1 1.49 yes 282.6
Chameleon 7 1 yes 3 0.92 ? 30 68.81 ? 30 639.57 yes 0.1
Coherence 1 1 yes 3 2.32 ? 30 40.31 ? 30 178.46 yes 0.7

2 no 5 4.32 no 5 0.99 no 5 2.19 no 0.9
3 ? 21 Timeout ? 30 1231.59 ? 19 Timeout yes 1.0

D18 506 1 no 23 1378.21 no 23 82.68 no 23 342.52 ? Timeout
2 yes 0 0.4 ? 30 123.45 yes 1 13.92 ? Timeout

D24 238 1 no 9 34.53 no 9 15.12 no 9 29.35 ? Timeout
Dcnew 10 1 no 6 3.03 no 6 0.88 no 6 1.94 no 0.26

2 no 5 1.62 no 5 0.38 no 5 1.31 no 0.3
Dekker 6 1 no 5 2.61 no 5 0.86 no 5 1.31 no 0.09
Fabric 85 1 yes 17 11.21 ? 30 21.57 ? 30 116.95 yes 20.9
Feistel 293 1 yes 19 44.43 ? 30 39.35 yes 19 35.54 yes 0.6
Lock 9 1 yes 7 1.16 ? 30 24.4 ? 30 359.63 yes 0.13

Microwave 4 1 no 2 0.21 no 2 0.05 no 2 0.11 no 0.01
2 yes 3 0.34 ? 30 5.87 yes 3 0.29 yes 0.02
3 yes 7 0.95 ? 30 16.72 yes 8 1.3 yes 0.1

MinMax 27 1 yes 5 13.16 ? 30 183.28 ? 24 Timeout yes 0.41
Nim 33 1 no 6 19.54 no 6 4.67 no 6 11.76 no 464.1
Palu 37 1 no 0 0.1 no 0 0.05 no 0 0.05 ? Timeout

2 no 1 0.41 no 1 0.14 no 1 0.14 ? Timeout
PI BUS 307 1 yes 5 5.53 ? 30 155.11 yes 6 15.68 yes 1.76

RetherRTF 43 1 no 2 1.31 no 2 0.56 no 2 0.79 no 1.03
2 ? 20 Timeout ? 30 1242.82 ? 25 Timeout no 1.84
3 no 2 1.0 no 2 0.54 no 2 0.94 no 0.91
4 ? 25 Timeout ? 30 1014.33 ? 28 Timeout yes 0.99
5 ? 30 823.12 ? 30 182.49 ? 30 332.99 yes 1.43

s1269 37 1 yes 9 0.95 ? 30 21.37 yes 9 0.78 ? Timeout
s1423 74 1 no 9 6.61 no 9 2.55 no 9 3.38 ? Timeout

2 yes 3 0.57 ? 30 12.21 yes 3 0.49 ? Timeout
Silvermau 17 1 yes 1 0.14 ? 30 13.72 yes 1 0.16 yes 0.12

Smult 95 1 no 1 0.0.27 no 1 0.07 no 1 0.09 no 37.45
2 ? 30 446.67 ? 30 7.52 ? 30 382.23 yes 35.47

three processor 48 1 yes 3 2.5 ? 30 56.44 ? 30 934.23 yes 184.6
Timeout 31 1 no 0 0.06 no 0 0.06 no 0 0.06 no 1.13

2 no 2 0.76 no 2 0.35 no 2 0.42 no 1.64
UniDec 18 1 yes 3 2.76 ? 30 143.84 yes 10 28.81 yes 0.16

2 yes 8 12.6 ? 30 112.87 yes 9 18.42 yes 0.18
3 no 6 5.32 no 6 1.58 no 6 2.33 no 0.36
4 no 6 6.93 no 6 3.47 no 6 3.7 no 0.15

UsbPhy 87 1 ? 30 380.54 ? 30 34.59 ? 30 130.72 yes 192.1
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Table 2. Comparison for special cases

state Theorem 1 and (3a′′) Special cases
Model vars # |= k Time(s) |= k Time(s) Property type
Arbiter 16 1 ? 30 432.6 ? 30 391.95 Invariant

Blackjack 102 1 yes 1 2.4 yes 1 1.01 F p

Bpb 36 1 yes 3 4.72 yes 0 0.35 Safety
D4 230 1 ? 30 356.7 yes 9 6.87 F p

D18 506 2 yes 1 14.66 yes 0 0.4 F p

D21 92 1 ? 24 Timeout ? 24 Timeout Invariant
D24 238 2 yes 21 532.24 yes 9 45.25 Invariant

Dekker 6 2 ? 27 Timeout yes 18 266.96 Invariant
Fabric 85 2 yes 19 15.32 yes 8 3.76 Invariant

FPMult 43 1 yes 7 4.36 yes 2 0.35 Safety
PI BUS 307 1 yes 6 18.89 yes 5 5.53 F p

Rrobin 5 1 yes 3 0.2 yes 0 0.02 Safety
s1269 37 2 yes 5 2.26 yes 1 0.22 Invariant

Timeout 31 3 ? 30 1023.22 yes 0 0.07 Invariant
4 ? 30 923.45 yes 16 24.91 Invariant

UniDec 18 2 yes 9 22.09 yes 8 12.6 F p
5 yes 8 17.87 yes 8 1.62 Bounded LTL

whether each property passes (yes), fails (no), or remains undecided (?); the column
labeled k, when present, reports the length of the longest counterexamples that were
considered. The columns labeled Time give the times in second for each run. Boldface
is used to highlight best run times.

As usual, SAT-based model checking does much better than BDD-based model
checking on some examples, and much worse on others. Within the SAT-based ap-
proaches, aut sat is the only one to prove (as opposed to falsify) a significant number
of properties. In fact, all passing properties in Table 1 are proved by either aut sat or ltl.

The termination criterion (3a′′) is not very effective by itself. It only proves 11 of
the 23 passing properties; 5 of them are proved by Theorems 1 and 3 for smaller values
of k. By contrast, Theorems 1 and 3 prove 18 of the 23 passing properties.

Augmenting the standard BMC with the termination criteria of Theorems 1 and 3,
and (3a′′) helps to prove properties that are hard for the BDD-based method. In Table 1,
ltl times out before deciding 9 properties, whereas aut sat times out before deciding 3
properties. In addition, aut sat proves some properties faster than ltl. For example, for
model Am2910, aut sat proves the property true in 3.03 s, while ltl does not reach a
decision in 1800 s. As another example, for model three processor, aut sat proves the
property true in 2.5 s, while ltl takes 184.6 s to prove it.

Table 2 illustrates the importance of checking for special cases. These include in-
variants, syntactically safe properties, bounded LTL properties, and liveness properties
of the form F p, where p is a propositional formula. All properties in this table are pass-
ing properties. The column labeled k has the same meaning as in Table 1. If the value
of k is 0, the corresponding property is an inductive invariant.

In Table 2, the general method is slower. There are two reasons for that: The first is
that using the termination criteria of Theorem 1 and (3a′′) generate more clauses for a
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given value of k. The second reason is that longer counterexamples are examined. For
instance, for Fabric, the general method needs 19 steps to prove the property, while the
special case takes only 8 steps. As another example, s1269 has a bounded depth of 1;
however, the method based on Theorem 1 and (3a′′) needs 5 steps to prove the property.
The termination check of Theorem 3 is better than the termination check of Theorem 1
when checking properties of the form F p. For example, for model D4, Theorem 1 fails
to prove the property for k up to 30, while Theorem 3 proves it for k equal to 9 in only
6.87 s.

6 Conclusions and Future Work

We have presented an approach to proving general LTL properties with Bounded Model
Checking even without prior knowledge of a tight bound on the completeness threshold
of the graph [6]. The approach translates the LTL property to a Büchi automaton—as
is customary in BDD-based LTL model checking—so as to apply a uniform termina-
tion criterion. Experiments indicate that this criterion is significantly more effective
than the straightforward generalization of the termination criteria for invariants of [14].
Compared to the completeness threshold of [6], our bound takes into account the posi-
tion of the fair states in the graph; hence, it may lead to much earlier termination. The
experiments also underline the importance of detecting those cases for which special
termination criteria are known. Comparison with BDD-based model checking shows
a good degree of complementarity. Neither method proved uniformly better than the
other, and together, the two could prove all passing properties in our set of experiments.

Our current implementation uses Büchi automata with labels on the transitions. As
discussed in Sect. 4, we need to explore the alternative provided by automata with la-
bels on the states as a way to cause earlier termination. Another aspect needing further
attention is that our approach only considers Büchi automata with one fair set. Gener-
alized Büchi automata can be converted to non-generalized, but it is not clear that this
would be preferable to an extension of Theorem 1 to handle multiple fair sets.
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