
 
 

University of Birmingham

A Language for Configuring Multi-Level
Specifications
Hill, G; Vickers, Steven

DOI:
10.1016/j.tcs.2005.09.065

Citation for published version (Harvard):
Hill, G & Vickers, S 2006, 'A Language for Configuring Multi-Level Specifications', Theoretical Computer
Science, vol. 351, no. 2, pp. 146-166. https://doi.org/10.1016/j.tcs.2005.09.065

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.1016/j.tcs.2005.09.065
https://doi.org/10.1016/j.tcs.2005.09.065
https://birmingham.elsevierpure.com/en/publications/fd653c43-1304-4272-b821-8f4f4f4ce198


A Language for Configuring Multi-level

Specifications

Gillian Hill1 and Steven Vickers2

1 Department of Computer Science, City University,
Northampton Square, London, EC1V OHB and

Department of Computing, Imperial College, London SW7 2AZ
2 School of Computer Science, The University of Birmingham,

Birmingham, B15 2TT

Abstract. This paper shows how systems can be built from their com-
ponent parts with specified sharing. Its principle contribution is a mod-
ular language for configuring systems. A configuration is a description
in the new language of how a system is constructed hierarchically from
specifications of its component parts. Category theory has been used to
represent the composition of specifications that share a component part
by constructing colimits of diagrams. We reformulated this application of
category theory to view both configured specifications and their diagrams
as algebraic presentations of presheaves. The framework of presheaves
leads naturally to a configuration language that expresses structuring
from instances of specifications, and also incorporates a new notion of
instance reduction to extract the component instances from a particular
configuration. The language now expresses the hierarchical structuring
of multi-level configured specifications. The syntax is simple because it
is independent of any specification language; structuring a diagram to
represent a configuration is simple because there is no need to calculate
a colimit; and combining specifications is simple because structuring is
by configuration morphisms with no need to flatten either specifications
or their diagrams to calculate colimits.

1 Introduction

Large complex systems are put together, or configured, from smaller parts, some
of which have already been put together from even smaller parts. This paper
presents a modular language that expresses the hierarchical structuring of a
system from specifications of the component parts. We review briefly the math-
ematical framework for configuration in order to focus on the constructs of the
language. Systems configuration involves specifying each of the components of
the system as well as the relationship of sharing between these components. The
structure of the system is therefore expressed directly and mathematically by the
syntax of the configuration language, while the history of system construction is
kept at a second level of mathematical structure by the accumulation of many
levels of configured specifications as configuration proceeds. We propose a new
and simple concept of ‘instance’ of a specification to manage the complexity of
large systems which may require many instances of their component parts.



1.1 The Development of the Work

The motivation for our work has been to contribute to research into the mod-
ularization of systems. Our aim has been to design a language for configuring
systems that is easy to use and involves concepts that should seem natural to
software engineers. The language is simple because no assumptions are made
about the underlying logic for specification. In earlier work we used the term
‘module’ to mean a ‘uniquely named instance of a specification’. We now use the
term ‘instance’, in order to avoid confusion with the use of ‘module’ to mean
a ‘composite structure wrapped up to form a single unit’. This latter use of
‘module’ is closer to the meaning of a configured specification.

Mathematically we were influenced by Burstall and Goguen, who gave a cat-
egorical semantics for their specification language Clear, in [2, 3]. Categorical
colimits were used for building complex specifications in [3, 12]. We followed
Oriat [9] in using colimits to express configuration in a way that was indepen-
dent of any particular specification language. Oriat compared two approaches,
one using diagrams and the other using a calculus of pushouts. Both in effect
described the finite cocompletion of a category C of primitive (unconfigured)
specifications.

In [13] we used instead finitely presented presheaves. This is a mathematically
equivalent way of making a cocompletion, but leads to a different notation that
very naturally describes how a configuration specifies instances of the compo-
nent specifications, brought together with specified sharing of subcomponents.
In flavour it is not unlike object-oriented languages, with the relationship be-
tween instances and specifications being analogous to that between objects and
classes [8, 1] (though [13] points out some respects in which the analogy cannot
be pushed too far).

As a simple example of our notation we describe, in this paper, a shop in
which there are two counters sharing a single queue in which customers wait for
whichever counter becomes available. We also discuss how the abstract presheaf
structure is a means for describing what ‘subcomponents’ are, with a categorical
morphism from one specification, S , to another, T , representing a means by
which each instance of T may be found to bring with it an instance of S — for
example, how each shop counter has a queue associated with it.

However, the approach of [13] was entirely ‘flat’, in that each configuration
was described in terms of its primitive components. A more modular style of
configuration, developed in [6], allows multi-level configuration of either primitive
or previously configured components. The structure of the categorical framework
is simply a hierarchy of categories, in which each configuration belongs to a
level and is represented by a structured categorical diagram. Morphisms, as
simple implementations between configured specifications, are allowed to cross
the levels of the hierarchy. There is a notion of assignment between the instances
of specifications, and in addition proof obligations are discharged. A case study,
of configuration up to four levels, illustrates the expressiveness of the language.
The category theory becomes somewhat deeper, with the interesting possibility
of incorporating recursively defined configurations, and is still to be worked out



in detail. However, the configuration language is subject to only two simple
modifications, and it is the aim of this paper to describe them.

1.2 The Structure of the Paper

In Sect. 2 the key idea of ‘composites as presheaves’ is introduced as an alter-
native to the established work on ‘composites as colimits’. Presheaves provide a
firm mathematical basis for the configuration language: presheaf presentations
correspond to the components of a configuration and the relationship of shar-
ing a common component; presheaf homomorphisms correspond to morphisms
between configurations. In Sect. 3 we review the configuration language of [13].
Mathematically, it is formally equivalent to presenting presheaves by generators
and relations, and that provides a well defined abstract semantics. Specification-
ally, however, one should read each configuration as specifying components and
sharing. In Sect. 4 it is extended to a modular language for multi-level configura-
tion, with two new language constructions (‘basic up’ morphisms, and ‘indirect’
morphisms). We present the case study briefly in Sect. 5, and in Sect. 6 we draw
conclusions.

2 Composite Specifications as Presheaves

We gave the theoretical framework chosen for configuration in “Presheaves as
Configured Specifications”, [13]. Most of the technical details of the paper are due
to Steven Vickers. Configuration builds composite specifications as presheaves
because they express colimits in category theory. Previous research has viewed
composite specifications as colimits; the approaches have varied, however, in
the choice of a category with appropriate colimits. For example, the pioneering
work by Burstall and Goguen on expressing the structuring of specifications by
constructing the colimits of diagrams, in [2, 3], was continued in the algebraic
approach to specification [5, 4, 10] and also in proof-theoretic approaches [7, 11].
All these research methods depended on the different specification logics that
were used, because they constructed colimits over some cocomplete category of
specifications.

A contrasting aim of configuration is to separate the specification logic of
the primitive (unconfigured) specifications from their configuration. Colimits
are expressed in a category of configurations which is a free cocompletion of
the category of primitive specifications. There are no assumptions about the
underlying logic. This more general approach allows the category of primitive
specifications to be incomplete.

We followed Oriat [9] in working more generally. She models the composi-
tion of specifications by working within an equiv-category of diagrams, which
is finitely cocomplete. Her equiv-category of base specifications need not be
complete, however. Oriat’s constructions on diagrams are shown in [13] to be
mathematically equivalent to the construction of presheaves in configuration.



2.1 Presheaves

The mathematical theory of presheaves provides an alternative construction to
Oriat’s cocomplete category of diagrams for modelling the composition of dia-
grams. Formally, the category SetC

op

is the category of presheaves over a small
category, C. It follows that a presheaf, as an object in the category, is a functor
from Cop to Set, and a presheaf morphism is a natural transformation from one
presheaf to another. The category SetC

op

is a free cocompletion of C. The theory
is difficult, and it is understandable that its suitability for the practical appli-
cation of building specifications might be questioned. There are, however, three
main reasons why presheaves express configurations precisely: when presented
algebraically, a presheaf expresses the structure of a configuration; a presheaf
over C is formally a colimit of a diagram in C; for each morphism in C, a presheaf
presentation provides a contravariant operator from which instance reduction is
defined between configurations.

The fact that SetC
op

is cocomplete means it has all small colimits. Intuitively,
the fact that it is freely cocomplete means that it contains all the colimit objects
and the morphisms to the colimit objects, but no more. Although expressing
colimits by presheaves is more complicated theoretically than by just using di-
agrams, presenting presheaves algebraically simplifies the theory so that it is
appropriate for configuration.

2.2 Presheaves Presented Algebraically

The key idea is that using generators and relations algebraically to present a
presheaf corresponds directly to specifying components and the sharing of sub-
components in a composite system. This correspondence gives a direct physical
interpretation to the configuration language.

Presheaves are presented, in detail in [13], as algebras for a many-sorted
algebraic theory PreSh(C). The sorts of the theory are the objects of C, and for
each morphism u : Y → X in C, there is a unary operator ωu : X → Y .

The definition of an algebra P for PreSh(C) gives:

– for each object X of C, a set P(X ), the carrier at X ;
– for each morphism u : Y → X , an operation P(u) : P(X ) → P(Y ) (written

x �→ ux ).

Algebras and homomorphisms for PreSh(C) are equivalent to presheaves and
presheaf morphisms. The correspondence with configurations becomes apparent
when presheaves are presented, as algebras of the algebraic theory PreSh(C), by
generators and relations. We give only the main points of the correspondence:

– A set of generators (with respect to PreSh(C)) is a set G equipped with
a function D : G → ob C, assigning a sort to each generator in G. In
configuration the generators stand for instances of specifications. Instead
of denoting the sort of a generator by D(g) = X , writing g : X is more
suggestive of declaring an instance of the specification X .



– If G is a set of generators, then a relation over G is a pair (e1, e2) (written as
an equation e1 = e2) where e1 and e2 are two expressions of the same sort,
X , say. In configuration, the expressions will describe instances of the same
specification. Expressions are built out of G by applying a unary operation
that corresponds to a morphism. Relations can be reduced to the form ug1 =
ug2.

– A presentation is a pair (G,R) where G is a set of generators and R is a
set of relations over G. The presheaf that is presented by (G,R) is denoted
PreSh〈G | R〉. Presheaf presentations correspond to configurations.

Example 1. Suppose C is the category with two objects, X and Y , and one
morphism u : X → Y (and two identity morphisms). A presheaf P over C is
a pair of sets P(X ) and P(Y ) equipped with a function, the u operation from
P(Y ) to P(X ). Suppose P is presented by generators g1 and g2 (both of sort
Y ) subject to ug1 = ug2. This is denoted by:

P = PreSh〈g1, g2 : Y | ug1 = ug2〉

Then P(Y ) = {g1, g2}, and P(X ) has a single element to which u maps both g1

and g2. In configuration this single element is the reduction by u of g1 and g2.

An advantage of the correspondence with presheaves for configuration is that
instead of describing an entire presheaf, by objects and morphisms, enough ele-
ments are presented to generate the rest algebraically. Although diagrams pro-
vide a simpler way of describing colimits than presheaves, the presentation by
generators and relations is more natural than diagrams for expressing the con-
figuration of components (by generators) and the sharing of components (by
shared reducts).

2.3 Primitive Specifications

Configuration is over an arbitrary base category C. The objects of C are primitive
(unconfigured) specifications that, for instance, may be named after the theory
presentations in the category Thpr, but are without their logical properties. For
example, a theory presentation for a queue could be named as a primitive spec-
ification Queue in C. The morphisms in C are named after the interpretations
between theory presentations in mor Thpr. The category C is the working cat-
egory for configuration: its objects are those specifications that represent the
basic components of the particular system to be configured. The structure of C
is not restricted by making it cocomplete; colimits are constructed as presheaves
over C in a free cocompletion. This means that presheaves express configura-
tion from primitive specifications without referring to their logical properties.
Already configuration is shown to contrast with other approaches, such as [11],
that work with a category of specifications over some chosen logic; presheaves
are colimits whereas other approaches construct colimits of diagrams.



3 The Language for Flat Configurations

This section presents the language of [13], expressing the flat configuration of a
system from primitive component parts. It assumes some fixed small category C,
whose objects stand for the primitive specifications, and constructs a category
Config(C) whose objects stand for the configured specifications.

It is also important to understand the role of the morphisms. If f : S → T
is a morphism (in C or in Config(C)), then it is intended to be interpreted as
showing a way by which each instance of the specification T can be ‘reduced to’
an instance of S . If IT is a T instance, then we write f IT for the correspondingly
reduced S instance. A typical example of what ‘reduced to’ means is when each
instance of T — that is to say, each thing satisfying the specification T —
already contains within it (as a subcomponent) an instance of S . There may be
different modes of reduction. For example, if each T instance contains two S
instances in it, then there must be two morphisms S → T .

3.1 Flat Configurations

The configured specification, S , structured from instances of primitive specifica-
tions, could be expressed by:

spec S is
components

IS1 : S1 ;
...
ISi : Si ;
...
ISn : Sn

equations
e1: f ISi = g ISj

...
endspec

The relation e1 states the equality between the two reducts, instances of the
primitive specification T that is the common source of the morphisms f to Si

and g to Sj . The specification Si , an object in C, only becomes a specification in
the flat world Config(C) when it is configured as conf Si and declares a formal
name for a single instance of Si :

spec conf Si is
components

ISi : Si

endspec

Intuitively, conf S i puts a wrapper round the named instance ISi of Si .



Example 2. A system of counters in a post office has queues of people waiting to
be served. Let Counter and Queue be specifications whose instances are actual
counters and actual queuing lines. Each counter has a queue, and this instance
reduction from Counter instances to Queue instances is to be represented by a
morphism i : Queue → Counter. The configured specification that expresses the
sharing of that queue by two counters in a post office is presented as:

spec SharingOfQueue is
components

C1 : Counter ;
C2 : Counter ;

equations
e1: i C1 = i C2

endspec

Although the instance of the shared queue is not declared in this general
form, the expressions i C1 and i C2 of e1 each describe the instance reduct for
the specification Queue. The specification conf Counter could be configured in
Config(C) by ‘wrapping it up’ as:

spec conf Counter is
components

IC : Counter
endspec

3.2 Morphisms Between Flat Configurations

A morphism from one configuration, S , to another, T , is again going to rep-
resent instance reduction, showing how any instance of T can be reduced to
an instance of S . We shall view this as implementation. Any T instance must
contain all the components of S , with the correct sharing, and so provide an
implementation of the specification S . The implementation is expressed by in-
terpreting the individual components of S in T according to the assignments I
�→ f J, for I, a component of S , and J, a component of T . In addition a proof
must also be given that the assignments respect the equations in S . The syntax
for a configuration morphism as an implementation must therefore include both
assignment of components and proof that equations hold. That proof, that is
fundamental to the formal building of a system from its components, is made in
the syntax of the configuration language using equations in T in a forwards or
backwards direction.

Example 3. (from Ex. 2) We define two morphisms, f and g, from the configura-
tion conf Counter to SharingOfQueue, and a morphism, h, from SharingOfQueue
to conf Counter. f and g pick out the two counters C1 and C2 of SharingOfQueue,
thus showing two ways by which a SharingOfQueue instance can be reduced to a
conf Counter instance. h describes a degenerate way in which single conf Counter
instance can be used to provide a SharingOfQueue instance, with the single
counter doing all the work for two counters.



implementation f : conf Counter
→ SharingOfQueue

IC �→ idCounter C1;
endimp

implementation g: conf Counter
→ SharingOfQueue

IC �→ idCounter C2;
endimp

implementation h: SharingOfQueue
→ conf Counter

C1 �→ idCounter IC;
C2 �→ idCounter IC;
To check e1 of SharingOfQueue:
i C1 �→ i ; idCounter IC

←� i C2

endimp

The composition of morphisms is expressed by the notation ; . The proof that
the equation e1 : i C1 = i C2 in SharingOfQueue is respected by the assignment
of instances to conf Counter is simple. The symbol �→ denotes the assignment
from the instance on the left hand side of e1 of SharingOfQueue to the instance
of conf Counter. Finally the symbol ←� denotes the assignment from i C2 on the
right hand side of e1 in SharingOfQueue to i ; idCounter IC in conf Counter.

The morphism h makes the point that the mathematics of colimits as used
for specification can specify equalities but not inequalities.

4 The Language for Multi-level Configurations

The aim of this section is to extend the configuration language by modularity to
express the hierarchical structuring of multi-level configurations, independently
of any logic. The syntax of the modular configuration language directly expresses
the structure of a system, so that the user of the configuration language is able
to record the history of configuration in easily understood amounts.

Configuration offers a semantics for the structuring of specifications which is
new in two respects. The first is that flattening can be avoided because config-
urations are isomorphic to their flattened form. The second respect is that the
manipulations do not rely on a flattened form even existing. The language allows
morphisms to be defined with ‘relative’ flattening down a few levels in the hierar-
chical configuration but without necessarily reaching a primitive level. To match
this, [6] does not construct the mathematical workspace inductively, starting



with the primitive level and working up, but instead offers an axiomatic ap-
proach that identifies the structure needed to interpret the language constructs.
Potentially then, the workspace can contain configurations of infinite depth and
give meaning to recursively defined configurations.

4.1 The Objects and Morphisms in the Configuration Workspace

Providing a new mathematical semantics for structuring multi-level specifica-
tions in a categorical workspace leads to a new engineering style of manipulation
for the specifications. The primitive and configured specifications are collected
together in a single category and configuration becomes a construction that can
be applied with arbitrary objects and morphisms. Since S and conf S are now
objects in the same category they are assumed to be isomorphic, and this isomor-
phism leads to the extra syntactic features of basic up and indirect morphisms
in the multi-level language.
Objects are either primitive or configured.
Primitive objects are drawn from a category C.
Configured objects use the keywords spec and endspec as before to put to-
gether components with sharing. However, now their component specifications
may themselves be either primitive or configured, possibly with some of each.
Morphisms may be defined between any objects in the workspace, and are
needed to construct new objects or to prove that objects are equivalent. Again,
they represent a contravariant notion of instance reduction, that gets an instance
of the source specification from an instance of the target.
Primitive morphisms from C are between primitive specifications.
Configuration morphisms are defined as in Sect. 3.

However, new morphisms are needed to make any configuration S isomorphic
to the configured specification conf S that declares an instance of S .

4.2 Basic up morphisms

These morphisms arise from the need for a morphism from S → conf S. Suppose
IS is declared as the component in conf S. Our syntactic device is to use that
instance name also as the name of the morphism, IS : S → conf S. If IS: S is a
component in a configuration T , then as in Sect. 3, we can define a configured
morphism

implementation h: conf S → T
IS �→ idS IS
endimp

The morphism h can be composed with the isomorphism S → conf S to get
a morphism f from S to T . Again we apply the device of using the instance
name IS as the name of this composite morphism, IS : S → T , and this is the
most general form of what we shall call a basic up morphism. Note that S may
be either primitive or configured.



4.3 Indirect morphisms

These arise from the morphism conf S → S and are defined as indirect imple-
mentations that use the keyword given. This syntax provides a formal name for
an instance in the target specification of the morphism:

implementation f : T → S
given instance IS: S
...
endimp

Here the middle, omitted, part is just the usual format (as before) for the
body of a configuration morphism. The instance name provided can be taken as
defining an anonymous configuration which is isomorphic to conf S:

spec - - - is
components

IS : S
endspec

The indirect definition of f supplies the data for a morphism from T to this
anonymous configuration. This is then composed with the isomorphism conf S
→ S to give the indirect morphism f : T → S . Again indirect morphisms arise
from the need to have every S isomorphic to conf S. The isomorphism conf S
→ S can itself be denoted using the ‘given’ notation.

4.4 Morphisms between multi-level configurations

We have defined morphisms from configured specifications to primitives. We also
need to define them between configured specifications.

Example 4. (from Ex. 2) Second level and first level configurations illustrate two
ways of making a post office with three counters and one shared queue:

spec ExtendedShop is
components

C1QC2 : SharingOfQueue ;
C3 : Counter ;

equations
e1: i C3 = i ; C1 C1QC2

endspec

The morphism C1 is a basic up morphism.



spec NewShop is
components

C1 : Counter ;
C2 : Counter ;
C3 : Counter ;

equations
e1: i C1 = i C2 ;
e2: i C1 = i C3

endspec

These configurations are isomorphic, but the isomorphism g: ExtendedShop
→ NewShop cannot be defined except indirectly, with given. The syntax of the
indirect implementation, g, also uses a keyword where to introduce a locally
defined morphism, f : SharingOfQueue → NewShop.

implementation g: ExtendedShop
→ NewShop

given instance INS: NewShop
C1QC2 �→ f INS ;
C3 �→ C3 INS ;
where

implementation f : SharingOfQueue
→ NewShop

C1 �→ C1 ;
C2 �→ C2 ;
To check e1 of SharingOfQueue:
i C1 �→ i C1

= i C2 by e1 of NewShop
←� i C2

endimp
To check e1 of ExtendedShop:
i C3 �→ i ; C3 INS

= i ; C1 INS by e2 of NewShop
= i ; C1 ; f INS
←� i ; C1 C1QC2

endimp

The proof for equation e1 of ExtendedShop uses the fact that C1 INS = C1 ; f
INS. This comes directly out of the definition of f , from C1 �→ C1.

5 A Case Study

We use the new configuration language in a case study, based on an example of
Oriat’s [9], to express alternative configurations for the theory of rings. In [6] the
aim of the case study is to compare Oriat’s method of composing specifications,



by constructing the pushouts of diagrams, with the method of configuration.
Since in configuration both specifications and their diagrams express algebraic
presentations of presheaves, and finitely presented presheaves express colimits,
the need to construct pushout diagrams is bypassed. Since equivalence between
configurations can be proved textually, Oriat’s need to flatten diagrams (to con-
struct their colimits) and to complete diagrams before normalizing them can
also be bypassed.

5.1 Building Flat Configurations from Primitive Specifications

The theory presentations and theory morphisms that underly the primitive spec-
ifications for the components used to configure a ring are expressed in the style
of Z schemas. As in Sect. 2.3 we use the name of each theory presentation, for-
getting its logical properties, to identify a primitive specification. The simplest
component of the mathematical structure of a ring expresses a single sort s .

Asort[s ]

The schema Bin-op specifies a sort, also called s , and a binary operator op:

Bin-op[s ]
op : s × s → s

The theory morphism s : Asort → Bin-op maps the sort of Asort to the sort
of Bin-op. The schema for the structure of a monoid is:

Monoid[s ]
× : s × s → s
1 :→ s

∀ x , y, z : s . (x × y) × z = x × (y × z )
∀ x : s . 1 × x = x
∀ x : s . x × 1 = x

The theory morphism b : Bin-op → Monoid maps the sort of Bin-op to the
sort of the monoid, and the operator op of Bin-op to the operator × in the
monoid. The theory presentation for an Abelian group is formed from Monoid
by adding an inverse function and the property of commutativity for the binary
operator, +. The theory morphism m maps the operator × of Monoid to the
operator + of Abel-group and the constant 1 of Monoid to the constant 0 of
Abel-group.



Abel-group[s ]
+ : s , s → s
0 :→ s
inv : s → s

∀ x , y, z : s . (x + y) + z = x + (y + z )
∀ x : s . 0 + x = x
∀ x : s . inv(x ) + x = 0
∀ x , y : s . x + y = y + x

Finally the schema Distributive specifies two binary operators that are re-
lated by the property of distributivity. There are two morphisms from Bin-op to
Distributive: the morphism m+ maps op to +; the morphism m× maps op to ×.
The axioms for the distributive structure express both left and right distributiv-
ity for × over +.

Distributive[s ]
+ : s , s → s
× : s , s → s

∀ x , y, z : s . x × (y + z ) = (x × y) + (x × z )
∀ x , y, z : s . (y + z ) × x = (y × x ) + (z × x )

In the text of the configured specifications we use abbreviations for the in-
stance names. Of four equivalent specifications for the flat configuration of a ring
the following is the most compact:

spec Ring1 is
components

M : Monoid ;
A : Abel-group ;
D : Distributive ;

equations
e1: b ; m A = m+ D ;
e2: b M = m× D

endspec

The specification Ring1 describes the sharing of the boolean operators ex-
plicitly. The instance reduct b ; m A gives the binary operator for addition,
derived by reduction from the instance A of Abel-group. The instance reduct b
M is the operator for multiplication, derived by reduction from the instance M
of Monoid. That is, e1 describes the sharing of the addition instance of Bin-op,
and e2 describes the sharing of the multiplication instance of Bin-op.

5.2 Natural Uses of Modularization

In Oriat’s language of terms, all colimits of representative diagrams are pushouts.
In the configuration language, modularization is only used if required specifica-
tionally: it is not imposed by pushout terms. Configurations that correspond to



Oriat’s modular constructions of a ring are built in [6]. Two of these are more
natural because, although they are built by adding distributivity to a pseudo-
ring, neither requires the construction of an extra configuration for the pair
of binary operators. Together with the flat Ring1, we select these modularized
configurations as the ideal configurations for a ring. Ring4, a fourth-level specifi-
cation, illustrates the flexibility of our language by expressing the sharing of each
instance of the binary operator in an equation. The history of the configuration
is presented first in the three lower-level configurations.

spec Pair Bin-op and Asort is
components

a : Bin-op ;
m : Bin-op ;

equations
e1: s a = s m sharing the instance s

endspec

spec Pair Bin-op Asort and Monoid is
components

M : Monoid ;
ams : Pair Bin-op and Asort;

equations
e1: b M = m ams

endspec

spec Pair Bin-op Asort Monoid and Abel-group is
components

amsM : Pair Bin-op Asort and Monoid;
A : Abel-group ;

equations
e1: a ; ams amsM = b ; m A

endspec

spec Ring4 is
components

D : Distributive ;
amsMA : Pair Bin-op Asort Monoid and Abel-group ;

equations
e1: m× D = m ; ams ; amsM amsMA ; sharing the instance m
e2: m+ D = a ; ams ; amsM amsMA sharing the instance a

endspec



6 Conclusions

We thank the reviewers for inspiring us to improve the paper. Our goal has been
to introduce, independently of specification language, a modular configuration
language that expresses the construction of large complex systems from their
component parts, with specified sharing. We have already presented in [13] a
configuration language based on components and sharing that is independent
of specification language. It has an abstract semantics using presheaves that is
mathematically equivalent to the diagrammatic approach of [9]. However, it is
limited to flat configurations: it has no modularity and is unable to express any
further structuring to multi-level configurations. The modularity here, avoid-
ing the need to flatten structured specifications, has been achieved categorically
in [6] by having explicit isomorphisms between unflattened configurations that
would become equivalent when flattened. Linguistically it works by the use of
two new constructions, the basic ups and the indirect configuration morphisms,
whose interpretation provides those isomorphisms. Although the configuration
language has been presented with a detailed case study in [6], more work is
required on the semantics of the language. The need to avoid the absolute flat-
tening of configured specifications to a primitive level suggests that a hierarchical
workspace of infinite depth should be constructed with the potential to deal with
recursively defined configurations.

References

1. Booch, G.: Object-Oriented Analysis and Design. The Benjamin Cummings Pub-
lishing Company, Inc. second edition (1994)

2. Burstall, R. M., Goguen, J. A.: Putting Theories Together to Make Specifications.
Proc.of the 5th. International Joint Conference on Artificial Intelligence, Cam-
bridge, Mass. (1977) 1045–1058

3. Burstall, R. M., Goguen, J. A.: The Semantics of Clear, A Specification Language.
Abstract Software Specifications, LNCS 86 (1979)

4. Ehrig, H., Fey, W., Hansen, H., Lowe, M., Papisi-Presicce, F.: Algebraic Theory
of Modular Specification Development. Technical report Technical University of
Berlin (1987)

5. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Springer-Verlag (1985)

6. Hill, G.: A Language for Configuring Systems. PhD Thesis, Department of Com-
puting, Imperial College, University of London (2002)

7. Maibaum, T. S. E., Sadler, M. R., Veloso, P. A. S.: Logical Specification and
Implementation. Foundations of Software Technology and Theoretical Computer
Science, LNCS 181 Springer-Verlag (1984)

8. Meyer, B.: Reusability. IEEE Software, (1987) 50–63.
9. Oriat, C.: Detecting Equivalence of Modular Specifications with Categorical Dia-

grams. Theoretical Computer Science, 247 (2000) 141–190
10. Sannella, D., Tarlecki, A.: Toward Formal Development of Programs from Al-

gebraic Specifications: Implementations Revisited. Acta Informatica 25 (1988) 3
233–281

11. Srinivas, Y. V., Jellig, R.: Formal Support for Composing Software. Proc. of Con-
ference on the Mathematics of Program Construction, Kloster Irsee, Germany July
(1995) Kestrel Institute Technical Report KES.U.94.5

12. Veloso, P. A. S., Fiadeiro, J., Veloso, S. R. M.: On local modularity and interpola-
tion in entailment systems. Inform. Proc. Lett. 82(4)(2002) 203 – 211

13. Vickers, S., Hill, G.: Presheaves as Configured Specifications. Formal Aspects of
Computing 13 (2001) 32–49


