A Multi-Scale Geometric Flow for Segmenting
Vasculature in MRI

Maxime Descoteaux Louis Colling, and Kaleem Siddidi

McGill University
Montréal, QC, Canada
!School of Computer Science & Centre For Intelligent Machine
{mdesco,siddigi  }@cim.mcgill.ca
2McConnell Brain Imaging Centre, Montréal Neurologicadtitute
{louis }@bic.mni.mcgill.ca

Abstract. Often in neurosurgical planning a dual echo acquisitioreisqzmed
that yields proton density (PD) and T2-weighted images tduate edema near
a tumour or lesion. The development of vessel segmentalimmitams for PD
images is of general interest since this type of acquisisowidespread and is
entirely noninvasive. Whereas vessels are signaled by llood contrast in
such images, extracting them is a challenge because otatamaigal structures
also yield similar contrasts at their boundaries. In thisgrave present a novel
multi-scale geometric flow for segmenting vasculature fi®® images which
can also be applied to the easier cases of computed tomgg(€dh angiog-
raphy data or Gadolinium enhanced MRI. The key idea is todipgly Frangi’s
vesselness measure [4] to find putative centerlines ofanistiluctures along with
their estimated radii. This multi-scale measure is thefritligged to create a vec-
tor field which is orthogonal to vessel boundaries so thatfline maximizing
flow algorithm of [17] can be applied to recover them. We \a@ithe approach
qualitatively with PD, angiography and Gadolinium enhah®RI volumes.

1 Introduction

A three-dimensional (3D) representation of vasculaturetmextremely important in
image-guided neurosurgery, pre-surgical planning andcall analysis. It is unfortu-
nately often the case that in order to obtain such represemsafrom an MRI volume
an expert has to interact with it manually slice by slice wltiblouring regions of inter-
est and connecting them using image processing operafibissprocess is extremely
laborious, is prone to human error and makes large scaleallistudies of vasculature
infeasible. In computer vision there has been a significenttumt of work towards au-
tomating the extraction of vessels or vessel centerlindseas an exhaustive review
of this literature is beyond the scope of this article, tgbiexamples include: 1) active
contours or surfaces for angiography data [13], 2) multlsenethods for model-based
segmentation of tubular structures [9], 3) statisticallods which use mixture mod-
els [18], and 4) methods based on intensity ridge detectidriraversal [8, 3]. It should
be pointed out that most of these methods have been demedstva2D projection an-
giography, 3D CT angiography or Gadolinium enhanced MRd, thiese modalities can



Fig. 1. A sagittal view of a proton density (PD) weighted MRI volunexjaired at the Montreal
Neurological Institute. The spaghetti-like structuresrespond to vasculature.

require the injection of contrast agents. To our knowledgenethod currently exists

for the automatic extraction of vessel boundaries in stethi¥R| volumes such as the

PD image shown in Figure 1. Here it is clear that a signal deserés present in the vas-
cular regions (the spaghetti-like structures), but thetremt between blood vessel and
surrounding tissue is not as great when compared to the gnagibic sequences. Hence,
the problem of recovering vessels from image intensity rasttalone on PD-weighted

images is a challenge and requires shape information tdreimshe segmentation. If

successful, such a procedure could result in a vascular Itteatecould be used in sur-

gical planning while eliminating the need for an additios@dn thus saving time during

image acquisition and easing the burden on the patient.

In this paper we introduce a novel algorithm for vessel segat®n which is de-
signed for the PD images, but can be applied as well to angjpttic data or Gadolin-
ium enhanced MRI volumes. The algorithm is motivated in pgithe approach in [15]
where Frangi’s vesselness measure [4] is thresholded teéinttrlines. Tubular fits to
vessel boundaries are then obtained using a form of cortheoteponent analysis and
a generalized cylinder model. This latter step typicallglgs results that are discon-
nected. In our approach the vesselness measure is extengleftita vector field which
is locally normal to putative vessel boundaries. This imtaitows the flux maximizing
geometric flow of [17] to be applied, which has a formal mdiwa, is topologically
adaptive due to its implementation using level set methadd, finally is computa-
tionally efficient. We illustrate the power of this geometfiow based framework with
segmentation results on PD data, and also illustrate itécadity to Gadolinium en-
hanced MRI volumes and angiography data.

The paper is outlined as follows. In Section 2 we review rafgbackground mate-
rial on geometric flows for vessel segmentation and on th@tife Hessian matrix to
model tubular structures. We then develop our multi-scakenggtric flow by incorpo-
rating Frangi's vesselness measure [4] in the flux maxirgifliow algorithm of [17] in



Section 3. We present several reconstruction results tdatelthe algorithm in Section
4 and conclude by discussing ongoing work in Section 5.

2 Background

2.1 Geometric flows

In the context of geometric flows for segmenting vasculatthiere are two recent
approaches which are relevant to the development herd, Eosgo et al. propose
a regularization of a geometric flow in 3D using the curvatofea 3D curve [12].
This approach is grounded in the recent level set theoryldeed for mean curvature
flows in arbitrary co-dimension [2]. It yields a flow which igsigned to recover ves-
sel boundaries signaled by the gradient in angiography dditide under the influence
of a smoothing term driven by the mean curvature of an imptiesterline. Second,
Vasilevskiy and Siddiqgi derive the gradient flow which ewesva curve (2D) or a sur-
face (3D) so as to increase the inward flux of a fixed (staticforefield through its
boundary as fast as possible [17]. Wihan evolving surface and the vector field,
this flow is given by
— . —
S =div(V)N (1)

where/T)/’ is the unit inward normal to each point ¢h This flow evolves a surface to
a configuration where its normals are aligned with the vefitdd. In the context of
segmenting vasculature in angiographic imag_éscan be selected to be the gradient
of the intensity image which is expected to be orthogonaktsel boundaries.

A limitation of both the above approaches is that they arégdes! specifically for
angiographic data and hence require restrictive assungpttohold:

1. Both methods are initialized essentially by threshadinch data, and thus would
fail when vessel boundaries cannot be identified from cehaione.

2. Neither approach has an explicit term to model tubulaicstires. Rather, each flow
relies on the assumption that the gradient of the intensiggie yields a quantity
that is significanbnly at vessel boundaries.

3. Neither of these methods takes into account explicitey miulti-scale nature of
vessels boundaries as they appear in all modalities.

In this paper we overcome several of these limitations bgriperating a measure of
“vesselness” based on the Hessian matrix.

2.2 Modeling vasculature using the Hessian

Several multi-scale approaches to modeling tubular sirastin intensity images have
been based on properties of the Eigen values of the Hessigix fHa[11, 16, 4]. These
methods exploit the fact that at locations centered withiutar structures the smallest
Eigen value ol is close to zero (reflecting the low curvature along the diioewmf the
vessel) and the two other Eigen values are high and are ddssrig equal, reflecting
the fact that the cross-section of the vessel is approxigneiteular. The corresponding



Eigen vectors span the vessel direction and the crossasatplane. The Eigen value
analysis can be pushed further to differenttatee-like, blob-like, sheet-like, andnoise-
like structures from one another as summarized in Table 1.

Eigen value conditions |local structurgexamples
M0, A2x A3 >>0 tube-like vessel, bronchus
MR XAx0,M3>>0 sheet-like cortex, skin
AR A A3 >>0 blob-like nodule

MR A3x0 noise-like noise

Table 1. A classification of local structures based on the Eigen whfethe Hessian matrix.
Here, we assume thgt;| < |A2] < |As]. The sign of the highest Eigen values generally indicate
whether the local structure is dark on a bright backgroun@iright on a dark background. A
positive sign corresponds to a dark structure on a brighkdracnd which is the case for PD
weighted MRI volumes.

We choose to focus here on Frangi’'s vesselness measurecgj$eit incorporates
information from all three Eigen values. Three quantities @efined to differentiate
blood vessels from other structures:

| A1 A2 /
Rp=——, Rai=+=, S=4/X+X+).
N V]A2A3] 4 |As] ! 20

From Table 1, it can be seen thag distinguishes blob-like structures from other pat-
terns. TheR 4 ratio differentiates sheet-like from tube-like structr€inally, .S, the
Frobenius norm, is used to ensure that random noise effeztsuppressed from the
response. For a particular scalghe intensity image is first convolved by a Gaussian
at that scale(7(o) following which the vesselness measure is defined. by

0 if \a <00r\3 <0
V(o) = {(1_exp(_%))exp(—%) (1—exp(—%)) }
(2)

This measure is designed to be maximum along the centedfrtebular structures and
close to zero outside vessel-like regions. In our implemitgom we set the parameters
a, S andcto 0.5, 0.5 and half the maximum Frobenuis norm, respegtiasisuggested
in [4,15]. At each voxel we compute vesselness responsag tesn log scale incre-
ments between = 0.2 ando = 2.0 (in our data the maximum radius of a vessel is 2
voxels) and select the maximum vesselness response altimgsscale. The chosen
scale gives the estimated radius of the vessel and the Egganassociated with the
smallest Eigen value its local orientation.

! In practice we directly compute the entries which comptigeHessian matrix by using deriva-
tives of Lindeberg'sy-parametrized normalized Gaussian kernels [10], whicbwadlus to
compare responses at different scales.



Fig. 2. A synthetic Y-shaped structure and a synthetic helix. Fehesiructure the red vectors
indicate the estimated vessel orientation at locationsrevtiee multi-scale vesselness measure
(Eq. 2) is high.

This process is illustrated in Figure 2 for a synthetic Yisthstructure and a syn-
thetic helix. The grey surface coincides with a particukwel set of the vesselness
measure (which quickly drops to zero away from centerlimafions). Within this sur-
face locations of high vesselness are indicated by overdgtyie Eigen vectors which
correspond to the estimated vessel orientation. Obseatddbations of high vessel-
ness are close to vessel centerlines, and that the estiwedsdl orientation at these
locations is accurate. This information along with theraatied radius of associated
vessels can be used to construct an appropriate vectordidhilze the flux maximizing
geometric flow, as we shall see in the following section.

3 A Multi-Scale Geometric Flow For Segmenting Vasculature

Our goal now is to extend the flux maximizing flow algorithm &¥] so that the vector
field which drives it lies along the surface of putative vésseindaries. This allows us
to lift many of the restrictions on the flow pointed out in Sent2, because an explicit
model of a tubular structure is now incorporated along withappropriate notion of
scale.

3.1 Construction of the vector field

The key idea is to distribute the vesselness measure, whicbricentrated at center-
lines, to the vessel boundaries which are implied. At eactel(r, y, z) where the
vesselness measure is a local maximum in a 3x3x3 neighbdreaonsider an ellip-
soid with its major axis aligned with the estimated orieiotatand its two semi-minor
axes equal to the estimated radius. In our implementatiersémi-major axis length
is chosen to be twice that of the semi-minor axes. The vessglmeasure is then dis-
tributed over every voxe{z., y., z.) on the boundary of the ellipsoid by scaling it
by the projection of the vector frorx, y, z) to (z., ye, z) ONto the cross-sectional
plane, as illustrated in Figure 3. (%, y, 2) is taken to be the origif0, 0, 0) and thery
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Fig. 3. Distributing the vesselness measure to the implied bougglafl) The vector from the
center of the ellipsoid to the surface voXelk, y., z.), as well as its projection onto the cross-
sectional plane, taken to be thg plane. We distribute the vesselness measure {@ally., z.)

on the ellipsoid by scaling it by the magnitude of this prtijge. (2) A synthetic tube of radius
2. (3) A view of the vesselness measure in a slice. Brightgions indicate stronger vesselness.
(4) A view of the ¢ distribution in the same slice. As expected, we have locatima of the
vesselness measure on the centerline in (3) and local matithe boundaries of the tube on the
¢ distribution in (4).

plane is taken to coincide with the cross-sectional plaredbale factor works out to
be <(xe, Ye, Ze ), % = /a2 + y2. This process of distributing the vesselness
measure to the implied boundaries clearly favours voxethéncross-sectional plane.
We define the addition of the extensions carried out indepethyat all voxels to be the

¢ distribution. The extended vector field is now defined as thdpct of the normalized
gradient of the original image with the aboyealistribution

— VI
V=07

This vector field embodies two important constraints. Fthet magnitude of is max-
imum on vessel boundaries and the ellipsoidal extensiofopes a type of local in-
tegration. Second,% captures the direction information of the gradient, whigh i
expected to be high at boundaries of vessels as well as anlabtp them, which is
the basic motivation for the flux maximizing geometric flonislimportant to normal-
ize the gradient of the image so that its magnitude does noirdtde the measure in
regions of very low vesselness. For example, structurds asievhite and gray matter

boundaries could then get significant unwanted contribstio

2 This follows because the local maximum vesselness critegidorces the condition that the
extension is carried out only from locations as close asiblesto vessel centerlines.



3.2 The multi-scale geometric flow

The extended vector field explicitly models the scale at Whiessel boundaries oc-
cur, due to the multi-scale nature of the vesselness medSure (Eq. 2) as well as

the expected gradient in the direction normal to vessel baries. Thus, it is an ideal
candidate for the static vector field in the flux maximizinggeetric flow (Eq. 1). The

surface evolution equation then works out to be

S, = div(V)N
= (Vo 55 ) + odiv (155 )| ¥ 3)
= [( V¢, % + (blﬁz] N
wherekz is the Euclidean mean curvature of the iso-intensity leeelo$ the image.
Note that this is a hyperbolic partial differential equat&ince all terms depend solely

on the vector field and not on the evolving surface. We now earate several properties
of this geometric flow.

1. The first term<V¢, %> acts like a doubletV¢ has a zero-crossing at vessel

boundaries an¥Z does not change sign. Hence, when the evolving surface over-

shoots the boundary slightly, this term acts to push it baakatds the boundary.
2. The second term behaves like a geometric heat equatioarsinis the mean cur-
vature of the iso-intensity level set of the original intéy8nage. This equation has
been extensively studied in the mathematics literaturehaisdbeen shown to have
remarkable smoothing properties [5, 6]. It is also the b&siseveral nonlinear
geometric scale-spaces such as those studied in [1,7].
3. Combining both terms, it is clear that the flow cannot leadegions outside vessels

since both¢ and V¢ are zero there. Hence, when seeds are placed at locations

where the vesselness measuie ) is high the flow given by Eq. 3 will smoothly
—
evolve toward zero level set of the divergence of the vectdd fir .

3.3 Implementation Details

Below we review some of the details of the implementationwfraulti-scale geometric
flow (Eq. 3), which is based on level set methods [14].

1. We run five iterations of mean curvature type smoothinghendriginal image,
which is a standard method to remove artifacts such as sperolde since it smooths
along iso-intensity level sets but not across them.

2. We compute the Hessian operator over 10 log scales arat #semaximum ves-
selness response as described in Section 2. We use Jacetiisdior symmetric
matrices to find Eigen values of the Hessian.

3. The¢ distribution in Section 3.1 is carried out from voxels atsascenterlines
since at such locations one has strong confidence in the @cdlerientation esti-
mate from Frangi's vesselness measure [4]. This is dong tisenfollowing proce-
dure

if (V () > threshold && —22_ > percentile)

g locaLmax ~ :
Distribute vesselness over ellipsoid




For all examples we use a vesselness threshold of 0.01 andengike of 0.75 and
locaLmax is the maximum vesselness response in a 3x3x3 neightmbidfathe
voxel.

4. The doublet tern(VqS, %> is computed using central differences for the first
term and a second-order essentially non-oscillatory (EdiBeme for the second.

5. kz,the mean curvature of each intensity iso-surface is coetfusing a 3-neighbor
central difference scheme for all derivatives:

Ty AT )T (TaaA Lo ) T A (Tao 4 Ly ) T2 2L Ty Loy 4+ Lo To T 42,227,
- 3
(72 +I$ +72)2

RT

4)

6. Afirst-order in time discretized form of the level-setsien of the evolution equa-
tion is given by

Wn =Y, 1+ At * F * ||an_1||

whereF = <V¢, %> + pdiv (%), ¥ is the embedding hypersurface aid
is the step size. This is now a standard numerical approacofeing partial dif-
ferential equations of this type since it allows topologjifzanges to occur without
any additional computational complexity and can be madeieffi using a narrow
band implementation. The evolving surfagés obtained as the zero level set of the

¥ function. The numerical derivatives used to estimé¥@”|| must be computed
with up-winding in the proper direction as described in [14]

4 Examples

We illustrate our multi-scale geometric flow for segmentiagculature on three differ-
ent modalities: MRA, Gadolinium enhanced MRI and PD. Theesaarameters were
used throughout as described in Section 3.3 with the e>arefiiat for the PD data the
vesselness threshold was lowered to 0.005 and the numénmaktep was lowered
to 0.5 in order to capture smaller structures. We shouldtpminh that whereas prior
geometric flow based methods [12,17] could be applied to tiggography data set,
they would fail entirely on the latter two modalities wheigthcontrast regions are not
limited to vessel boundaries.

Figure 4 shows iterations of the flow using three single vereds on an MRA data
set obtained from the Montreal Neurological Institute (NINIThe flow is able to pick
up the main vessels automatically. Several of the finer \®sse less than one voxel
wide and hence a super-sampling strategy would have to Hedjfpa preprocessing
step to the data in order to recover them.

Figure 5 depicts a 40mm x 53mm x 91mm region centered on thmusarallosum
from a Gadolinium enhanced MRI volume obtained at the MNIe Timm isotropic
data was super-sampled to 0.33mm using a tricubic intetipol&ernel, because sev-
eral vessels in the original data set were less than one woadel In the image one can
see the callosal and supra-callosal arteries (the longrayeiessels running from left
to right). We show an MIP of a sagittal and a transverse vietliétop row. A segmen-
tation obtained by thresholding the vesselness map, agdamut in [15], is shown in
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Fig. 4. Anillustration of the multi-scale geometric flow on a 68 x 26856 MRA image. An MIP
of the data is shown at the top left and the other images ddjfetent stages of the evolution
from three seeds.

the second row. This results in many disconnected vesselslhas artifacts. Our seg-
mentation is shown in the third row and results in the reqoetibn of well connected
tubular structures.

Finally, Figure 6 depicts the segmentation of the full prottensity MRI volume
shown in Figure 1, which is clearly a challenge for most viessgmentation algorithms.
The PD data is acquired with 2mm transverse slices with Immmin-plane vox-
els. For this data set an MIP of the original data would notegpond to vasculature.
Hence we choose to show MIPs of a sagittal and a transvergeofithe vesselness
measure in the top row. We then show the corresponding recatisns obtained by
our flow in the second row. A movie animating these segmemnta#sults is available
from the authors’ research pages. To our knowledge, thiseisitst segmentation of a
PD weighted MRI performed by a geometric flow in the literaturhe reconstruction
does not recover some of the finer vessels located near tlagswarf the brain, but these
could be recovered using a finer placement of seeds alongwitiuaptive lowering of
the vesselness threshold in those regions.

5 Conclusions

We have presented what to our knowledge is the first multesgaometric flow that
can be applied for segmenting vasculature in PD weighted WRimes. The key idea
is to incorporate a multi-scale vesselness measure in tigrogtion of an appropriate
vector field for a geometric flow. We have validated the flowlgatively on several
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Fig. 5. An illustration of the flow on a 40 mm x 53 mm x 91 mm cropped regida Gadolinium
enhanced MRI. An MIP of the sagittal and transverse view$efdata is shown in (1) and (2).
Reconstructions obtained by simple thresholding for theesaiews are shown in (3) and (4).
These are clearly sensitive to noise and result in discdaadear missing vessels. The results
obtained by the multi-scale geometric flow are shown in (%) €). Observe that the flow has
connected a section of the callosal arteries which is batisigle in the MIP (see (1),(3),(5)).

modalities. In particular, we have shown that a significanbant of vasculature can
be recovered by initializing the flow using a few isolateddseén our experience we
have also found that finer vessels can also be recovered bydheal placement of
seeds by a user along with an adaptive lowering of the vesselhreshold used in the

construction of the extended vector fiefd
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Fig. 6. An illustration of the flow on the full 181 x 217 x 181 proton déy weighted MRI
volume of Figure 1. We show MIPs of the vesselness medgise for sagittal and transverse
views in (1) and (2), where we have masked the outside skdlltla@ skin. The reconstructions
obtained using our geometric flow with 10 manually placedisee shown in the bottom row.
A movie illustrating this segmentation is included withgtlsubmission

In ongoing work we are carrying out a careful quantitativédagion of the ap-
proach by acquiring data using different modalities on #rae subject. This will allow
us to evaluate the algorithm by using the results obtaineangiographic data as the
ground truth. Once we have been able to fine tune its perfareniris our hope that
our implementation of this flow will become a basic image gsialtool for segmenting
vasculature in clinical studies.
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