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Abstract. Often in neurosurgical planning a dual echo acquisition is performed
that yields proton density (PD) and T2-weighted images to evaluate edema near
a tumour or lesion. The development of vessel segmentation algorithms for PD
images is of general interest since this type of acquisitionis widespread and is
entirely noninvasive. Whereas vessels are signaled by black blood contrast in
such images, extracting them is a challenge because other anatomical structures
also yield similar contrasts at their boundaries. In this paper we present a novel
multi-scale geometric flow for segmenting vasculature fromPD images which
can also be applied to the easier cases of computed tomography (CT) angiog-
raphy data or Gadolinium enhanced MRI. The key idea is to firstapply Frangi’s
vesselness measure [4] to find putative centerlines of tubular structures along with
their estimated radii. This multi-scale measure is then distributed to create a vec-
tor field which is orthogonal to vessel boundaries so that theflux maximizing
flow algorithm of [17] can be applied to recover them. We validate the approach
qualitatively with PD, angiography and Gadolinium enhanced MRI volumes.

1 Introduction

A three-dimensional (3D) representation of vasculature can be extremely important in
image-guided neurosurgery, pre-surgical planning and clinical analysis. It is unfortu-
nately often the case that in order to obtain such representations from an MRI volume
an expert has to interact with it manually slice by slice while colouring regions of inter-
est and connecting them using image processing operations.This process is extremely
laborious, is prone to human error and makes large scale clinical studies of vasculature
infeasible. In computer vision there has been a significant amount of work towards au-
tomating the extraction of vessels or vessel centerlines. Whereas an exhaustive review
of this literature is beyond the scope of this article, typical examples include: 1) active
contours or surfaces for angiography data [13], 2) multi-scale methods for model-based
segmentation of tubular structures [9], 3) statistical methods which use mixture mod-
els [18], and 4) methods based on intensity ridge detection and traversal [8, 3]. It should
be pointed out that most of these methods have been demonstrated for 2D projection an-
giography, 3D CT angiography or Gadolinium enhanced MRI, and these modalities can



2

Fig. 1. A sagittal view of a proton density (PD) weighted MRI volume acquired at the Montreal
Neurological Institute. The spaghetti-like structures correspond to vasculature.

require the injection of contrast agents. To our knowledge no method currently exists
for the automatic extraction of vessel boundaries in standard MRI volumes such as the
PD image shown in Figure 1. Here it is clear that a signal decrease is present in the vas-
cular regions (the spaghetti-like structures), but the contrast between blood vessel and
surrounding tissue is not as great when compared to the angiographic sequences. Hence,
the problem of recovering vessels from image intensity contrast alone on PD-weighted
images is a challenge and requires shape information to constrain the segmentation. If
successful, such a procedure could result in a vascular model that could be used in sur-
gical planning while eliminating the need for an additionalscan thus saving time during
image acquisition and easing the burden on the patient.

In this paper we introduce a novel algorithm for vessel segmentation which is de-
signed for the PD images, but can be applied as well to angiographic data or Gadolin-
ium enhanced MRI volumes. The algorithm is motivated in partby the approach in [15]
where Frangi’s vesselness measure [4] is thresholded to findcenterlines. Tubular fits to
vessel boundaries are then obtained using a form of connected component analysis and
a generalized cylinder model. This latter step typically yields results that are discon-
nected. In our approach the vesselness measure is extended to yield a vector field which
is locally normal to putative vessel boundaries. This in turn allows the flux maximizing
geometric flow of [17] to be applied, which has a formal motivation, is topologically
adaptive due to its implementation using level set methods,and finally is computa-
tionally efficient. We illustrate the power of this geometric-flow based framework with
segmentation results on PD data, and also illustrate its applicability to Gadolinium en-
hanced MRI volumes and angiography data.

The paper is outlined as follows. In Section 2 we review relevant background mate-
rial on geometric flows for vessel segmentation and on the useof the Hessian matrix to
model tubular structures. We then develop our multi-scale geometric flow by incorpo-
rating Frangi’s vesselness measure [4] in the flux maximizing flow algorithm of [17] in
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Section 3. We present several reconstruction results to validate the algorithm in Section
4 and conclude by discussing ongoing work in Section 5.

2 Background

2.1 Geometric flows

In the context of geometric flows for segmenting vasculature, there are two recent
approaches which are relevant to the development here. First, Lorigo et al. propose
a regularization of a geometric flow in 3D using the curvatureof a 3D curve [12].
This approach is grounded in the recent level set theory developed for mean curvature
flows in arbitrary co-dimension [2]. It yields a flow which is designed to recover ves-
sel boundaries signaled by the gradient in angiography data, while under the influence
of a smoothing term driven by the mean curvature of an impliedcenterline. Second,
Vasilevskiy and Siddiqi derive the gradient flow which evolves a curve (2D) or a sur-
face (3D) so as to increase the inward flux of a fixed (static) vector field through its
boundary as fast as possible [17]. WithS an evolving surface and

−→V the vector field,
this flow is given by

St = div(
−→V )

−→N (1)

where
−→N is the unit inward normal to each point onS. This flow evolves a surface to

a configuration where its normals are aligned with the vectorfield. In the context of
segmenting vasculature in angiographic images,

−→V can be selected to be the gradient
of the intensity image which is expected to be orthogonal to vessel boundaries.

A limitation of both the above approaches is that they are designed specifically for
angiographic data and hence require restrictive assumptions to hold:

1. Both methods are initialized essentially by thresholding such data, and thus would
fail when vessel boundaries cannot be identified from contrast alone.

2. Neither approach has an explicit term to model tubular structures. Rather, each flow
relies on the assumption that the gradient of the intensity image yields a quantity
that is significantonly at vessel boundaries.

3. Neither of these methods takes into account explicitly the multi-scale nature of
vessels boundaries as they appear in all modalities.

In this paper we overcome several of these limitations by incorporating a measure of
“vesselness” based on the Hessian matrix.

2.2 Modeling vasculature using the Hessian

Several multi-scale approaches to modeling tubular structures in intensity images have
been based on properties of the Eigen values of the Hessian matrix H [11, 16, 4]. These
methods exploit the fact that at locations centered within tubular structures the smallest
Eigen value ofH is close to zero (reflecting the low curvature along the direction of the
vessel) and the two other Eigen values are high and are close to being equal, reflecting
the fact that the cross-section of the vessel is approximately circular. The corresponding
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Eigen vectors span the vessel direction and the cross-sectional plane. The Eigen value
analysis can be pushed further to differentiatetube-like, blob-like, sheet-like, andnoise-
like structures from one another as summarized in Table 1.

Eigen value conditions local structureexamples
λ1 ≈ 0 , λ2 ≈ λ3 >> 0 tube-like vessel, bronchus
λ1 ≈ λ2 ≈ 0 , λ3 >> 0 sheet-like cortex, skin
λ1 ≈ λ2 ≈ λ3 >> 0 blob-like nodule
λ1 ≈ λ2 ≈ λ3 ≈ 0 noise-like noise

Table 1. A classification of local structures based on the Eigen values of the Hessian matrix.
Here, we assume that|λ1| ≤ |λ2| ≤ |λ3|. The sign of the highest Eigen values generally indicate
whether the local structure is dark on a bright background orbright on a dark background. A
positive sign corresponds to a dark structure on a bright background which is the case for PD
weighted MRI volumes.

We choose to focus here on Frangi’s vesselness measure [4] because it incorporates
information from all three Eigen values. Three quantities are defined to differentiate
blood vessels from other structures:

RB =
|λ1|

√

|λ2λ3|
, RA =

|λ2|
|λ3|

, S =
√

λ2
1 + λ2

2 + λ2
3.

From Table 1, it can be seen thatRB distinguishes blob-like structures from other pat-
terns. TheRA ratio differentiates sheet-like from tube-like structures. Finally,S, the
Frobenius norm, is used to ensure that random noise effects are suppressed from the
response. For a particular scaleσ the intensity image is first convolved by a Gaussian
at that scale,G(σ) following which the vesselness measure is defined by1.

V (σ) =

{

0 if λ2 < 0 orλ3 < 0

(1 − exp
(

− R2

A

2α2

)

)exp
(

−R2

B

2β2

)

(1 − exp
(

− S2

2c2

)

)

}

(2)
This measure is designed to be maximum along the centerlinesof tubular structures and
close to zero outside vessel-like regions. In our implementation we set the parameters
α, β andc to 0.5, 0.5 and half the maximum Frobenuis norm, respectively, as suggested
in [4, 15]. At each voxel we compute vesselness responses using ten log scale incre-
ments betweenσ = 0.2 andσ = 2.0 (in our data the maximum radius of a vessel is 2
voxels) and select the maximum vesselness response along with its scale. The chosen
scale gives the estimated radius of the vessel and the Eigen vector associated with the
smallest Eigen value its local orientation.

1 In practice we directly compute the entries which comprise the Hessian matrix by using deriva-
tives of Lindeberg’sγ-parametrized normalized Gaussian kernels [10], which allows us to
compare responses at different scales.
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Fig. 2. A synthetic Y-shaped structure and a synthetic helix. For each structure the red vectors
indicate the estimated vessel orientation at locations where the multi-scale vesselness measure
(Eq. 2) is high.

This process is illustrated in Figure 2 for a synthetic Y-shaped structure and a syn-
thetic helix. The grey surface coincides with a particular level set of the vesselness
measure (which quickly drops to zero away from centerline locations). Within this sur-
face locations of high vesselness are indicated by overlaying the Eigen vectors which
correspond to the estimated vessel orientation. Observe that locations of high vessel-
ness are close to vessel centerlines, and that the estimatedvessel orientation at these
locations is accurate. This information along with the estimated radius of associated
vessels can be used to construct an appropriate vector field to drive the flux maximizing
geometric flow, as we shall see in the following section.

3 A Multi-Scale Geometric Flow For Segmenting Vasculature

Our goal now is to extend the flux maximizing flow algorithm of [17] so that the vector
field which drives it lies along the surface of putative vessel boundaries. This allows us
to lift many of the restrictions on the flow pointed out in Section 2, because an explicit
model of a tubular structure is now incorporated along with an appropriate notion of
scale.

3.1 Construction of the vector field

The key idea is to distribute the vesselness measure, which is concentrated at center-
lines, to the vessel boundaries which are implied. At each voxel (x, y, z) where the
vesselness measure is a local maximum in a 3x3x3 neighborhood we consider an ellip-
soid with its major axis aligned with the estimated orientation and its two semi-minor
axes equal to the estimated radius. In our implementation the semi-major axis length
is chosen to be twice that of the semi-minor axes. The vesselness measure is then dis-
tributed over every voxel(xe, ye, ze) on the boundary of the ellipsoid by scaling it
by the projection of the vector from(x, y, z) to (xe, ye, ze) onto the cross-sectional
plane, as illustrated in Figure 3. If(x, y, z) is taken to be the origin(0, 0, 0) and thexy
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(x_e, y_e, z_e)

(1) (2)

(3) (4)

Fig. 3. Distributing the vesselness measure to the implied boundaries. (1) The vector from the
center of the ellipsoid to the surface voxel(xe, ye, ze), as well as its projection onto the cross-
sectional plane, taken to be thexy plane. We distribute the vesselness measure to all(xe, ye, ze)
on the ellipsoid by scaling it by the magnitude of this projection. (2) A synthetic tube of radius
2. (3) A view of the vesselness measure in a slice. Brighter regions indicate stronger vesselness.
(4) A view of theφ distribution in the same slice. As expected, we have local maxima of the
vesselness measure on the centerline in (3) and local maximaat the boundaries of the tube on the
φ distribution in (4).

plane is taken to coincide with the cross-sectional plane this scale factor works out to

be

〈

(xe, ye, ze),
(xe,ye,0)√

x2
e+y2

e

〉

=
√

x2
e + y2

e . This process of distributing the vesselness

measure to the implied boundaries clearly favours voxels inthe cross-sectional plane.
We define the addition of the extensions carried out independently at all voxels to be the
φ distribution. The extended vector field is now defined as the product of the normalized
gradient of the original image with the aboveφ distribution

−→V = φ
∇I
|∇I|

This vector field embodies two important constraints. First, the magnitude ofφ is max-
imum on vessel boundaries and the ellipsoidal extension performs a type of local in-
tegration2. Second, ∇I

|∇I| captures the direction information of the gradient, which is
expected to be high at boundaries of vessels as well as orthogonal to them, which is
the basic motivation for the flux maximizing geometric flow. It is important to normal-
ize the gradient of the image so that its magnitude does not dominate the measure in
regions of very low vesselness. For example, structures such as white and gray matter
boundaries could then get significant unwanted contributions.

2 This follows because the local maximum vesselness criterion enforces the condition that the
extension is carried out only from locations as close as possible to vessel centerlines.
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3.2 The multi-scale geometric flow

The extended vector field explicitly models the scale at which vessel boundaries oc-
cur, due to the multi-scale nature of the vesselness measureV (σ) (Eq. 2) as well as
the expected gradient in the direction normal to vessel boundaries. Thus, it is an ideal
candidate for the static vector field in the flux maximizing geometric flow (Eq. 1). The
surface evolution equation then works out to be

St = div(
−→V )

−→N
=

[〈

∇φ, ∇I
|∇I|

〉

+ φdiv
(

∇I
|∇I|

)]−→N
=

[〈

∇φ, ∇I
|∇I|

〉

+ φκI

]−→N
(3)

whereκI is the Euclidean mean curvature of the iso-intensity level set of the image.
Note that this is a hyperbolic partial differential equation since all terms depend solely
on the vector field and not on the evolving surface. We now enumerate several properties
of this geometric flow.

1. The first term
〈

∇φ, ∇I
|∇I|

〉

acts like a doublet.∇φ has a zero-crossing at vessel

boundaries and∇I does not change sign. Hence, when the evolving surface over-
shoots the boundary slightly, this term acts to push it back towards the boundary.

2. The second term behaves like a geometric heat equation sinceκI is the mean cur-
vature of the iso-intensity level set of the original intensity image. This equation has
been extensively studied in the mathematics literature andhas been shown to have
remarkable smoothing properties [5, 6]. It is also the basisfor several nonlinear
geometric scale-spaces such as those studied in [1, 7].

3. Combining both terms, it is clear that the flow cannot leak in regions outside vessels
since bothφ and∇φ are zero there. Hence, when seeds are placed at locations
where the vesselness measureV (σ) is high the flow given by Eq. 3 will smoothly

evolve toward zero level set of the divergence of the vector field
−→
V .

3.3 Implementation Details

Below we review some of the details of the implementation of our multi-scale geometric
flow (Eq. 3), which is based on level set methods [14].

1. We run five iterations of mean curvature type smoothing on the original image,
which is a standard method to remove artifacts such as speckle noise since it smooths
along iso-intensity level sets but not across them.

2. We compute the Hessian operator over 10 log scales and select the maximum ves-
selness response as described in Section 2. We use Jacobi’s method for symmetric
matrices to find Eigen values of the Hessian.

3. Theφ distribution in Section 3.1 is carried out from voxels at vessel centerlines
since at such locations one has strong confidence in the scaleand orientation esti-
mate from Frangi’s vesselness measure [4]. This is done using the following proce-
dure

if (V (σ) > threshold && V (σ)
local max > percentile)

Distribute vesselness over ellipsoid
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For all examples we use a vesselness threshold of 0.01 and a percentile of 0.75 and
local max is the maximum vesselness response in a 3x3x3 neighborhood of the
voxel.

4. The doublet term
〈

∇φ, ∇I
|∇I|

〉

is computed using central differences for the first

term and a second-order essentially non-oscillatory (ENO)scheme for the second.
5. κI , the mean curvature of each intensity iso-surface is computed using a 3-neighbor

central difference scheme for all derivatives:

κI =
(Iyy+Izz)I2

x+(Ixx+Izz)I2

y+(Ixx+Iyy)I2

z−2(IxIyIxy+IxIzIxz+IyIzIyz)

(I2
x+I2

y+I2
z)

3

2

(4)

6. A first-order in time discretized form of the level-set version of the evolution equa-
tion is given by

Ψn = Ψn−1 + ∆t ∗ F ∗ ||∇Ψn−1||

whereF =
〈

∇φ, ∇I
|∇I|

〉

+ φdiv
(

∇I
|∇I|

)

, Ψ is the embedding hypersurface and∆t

is the step size. This is now a standard numerical approach for solving partial dif-
ferential equations of this type since it allows topological changes to occur without
any additional computational complexity and can be made efficient using a narrow
band implementation. The evolving surfaceS is obtained as the zero level set of the
Ψ function. The numerical derivatives used to estimate||∇Ψ || must be computed
with up-winding in the proper direction as described in [14].

4 Examples

We illustrate our multi-scale geometric flow for segmentingvasculature on three differ-
ent modalities: MRA, Gadolinium enhanced MRI and PD. The same parameters were
used throughout as described in Section 3.3 with the exception that for the PD data the
vesselness threshold was lowered to 0.005 and the numericaltime step was lowered
to 0.5 in order to capture smaller structures. We should point out that whereas prior
geometric flow based methods [12, 17] could be applied to the angiography data set,
they would fail entirely on the latter two modalities where high contrast regions are not
limited to vessel boundaries.

Figure 4 shows iterations of the flow using three single voxelseeds on an MRA data
set obtained from the Montreal Neurological Institute (MNI). The flow is able to pick
up the main vessels automatically. Several of the finer vessels are less than one voxel
wide and hence a super-sampling strategy would have to be applied in a preprocessing
step to the data in order to recover them.

Figure 5 depicts a 40mm x 53mm x 91mm region centered on the corpus callosum
from a Gadolinium enhanced MRI volume obtained at the MNI. The 1mm isotropic
data was super-sampled to 0.33mm using a tricubic interpolation kernel, because sev-
eral vessels in the original data set were less than one voxelwide. In the image one can
see the callosal and supra-callosal arteries (the long arching vessels running from left
to right). We show an MIP of a sagittal and a transverse view inthe top row. A segmen-
tation obtained by thresholding the vesselness map, as carried out in [15], is shown in



9

MIP t = 0 t = 55

t = 100 t = 200 t = 2000

Fig. 4.An illustration of the multi-scale geometric flow on a 68 x 256x 256 MRA image. An MIP
of the data is shown at the top left and the other images depictdifferent stages of the evolution
from three seeds.

the second row. This results in many disconnected vessels aswell as artifacts. Our seg-
mentation is shown in the third row and results in the reconstruction of well connected
tubular structures.

Finally, Figure 6 depicts the segmentation of the full proton density MRI volume
shown in Figure 1, which is clearly a challenge for most vessel segmentation algorithms.
The PD data is acquired with 2mm transverse slices with 1mm x 1mm in-plane vox-
els. For this data set an MIP of the original data would not correspond to vasculature.
Hence we choose to show MIPs of a sagittal and a transverse view of the vesselness
measure in the top row. We then show the corresponding reconstructions obtained by
our flow in the second row. A movie animating these segmentation results is available
from the authors’ research pages. To our knowledge, this is the first segmentation of a
PD weighted MRI performed by a geometric flow in the literature. The reconstruction
does not recover some of the finer vessels located near the surface of the brain, but these
could be recovered using a finer placement of seeds along withan adaptive lowering of
the vesselness threshold in those regions.

5 Conclusions

We have presented what to our knowledge is the first multi-scale geometric flow that
can be applied for segmenting vasculature in PD weighted MRIvolumes. The key idea
is to incorporate a multi-scale vesselness measure in the construction of an appropriate
vector field for a geometric flow. We have validated the flow qualitatively on several



10

(1) (2)

(3) (4)

(5) (6)

Fig. 5.An illustration of the flow on a 40 mm x 53 mm x 91 mm cropped region of a Gadolinium
enhanced MRI. An MIP of the sagittal and transverse views of the data is shown in (1) and (2).
Reconstructions obtained by simple thresholding for the same views are shown in (3) and (4).
These are clearly sensitive to noise and result in disconnected or missing vessels. The results
obtained by the multi-scale geometric flow are shown in (5) and (6). Observe that the flow has
connected a section of the callosal arteries which is barelyvisible in the MIP (see (1),(3),(5)).

modalities. In particular, we have shown that a significant amount of vasculature can
be recovered by initializing the flow using a few isolated seeds. In our experience we
have also found that finer vessels can also be recovered by themanual placement of
seeds by a user along with an adaptive lowering of the vesselness threshold used in the
construction of the extended vector field

−→V .
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(1) (2)

(3) (4)

Fig. 6. An illustration of the flow on the full 181 x 217 x 181 proton density weighted MRI
volume of Figure 1. We show MIPs of the vesselness measureV (σ) for sagittal and transverse
views in (1) and (2), where we have masked the outside skull and the skin. The reconstructions
obtained using our geometric flow with 10 manually placed seeds are shown in the bottom row.
A movie illustrating this segmentation is included with this submission

In ongoing work we are carrying out a careful quantitative validation of the ap-
proach by acquiring data using different modalities on the same subject. This will allow
us to evaluate the algorithm by using the results obtained onangiographic data as the
ground truth. Once we have been able to fine tune its performance it is our hope that
our implementation of this flow will become a basic image analysis tool for segmenting
vasculature in clinical studies.
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