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Abstract. A novel method allowing simplified and efficient active surface
initialization for 3D images segmentation is presented. Our method allows to
initialize an active surface through simple objects like points and curves and
ensures that the further evolution of the active object will not be trapped by
unwanted local minima. Our approach is based on minimal paths that inte-
grate the information coming from the user given curves and from the image
volume. The minimal paths build a network representing a first approximation
of the initialization surface. An interpolation method is then used to build a
mesh or an implicit representation based on the information retrieved from the
network of paths. From this initialization, an active surface converges quickly
to the expected solution. Our paper describes a fast construction obtained by
exploiting the Fast Marching algorithm. The algorithm has been successfully
applied to synthetic images and 3D medical images.

1 Introduction

Since their introduction by Kass et al. in [7], deformable models have been extensively
used to find single and multiple objects in 2D and 3D images. The common use of
these models consists in introducing an initial object in the image and transforming
it until it reaches a wanted target. In most applications, the evolution of the object is
done in order to minimize an energy attached to the image data until a steady state
is reached. One of the main drawbacks of this approach is that it suffers from local
minima ‘traps’. This happens when the steady state reached by the active object
does not correspond with the target but with another local minimum. This is why,
when considering the problem of a single object segmentation in real 3D images, the
initialization of the active object is a major issue: if the initial position of the active
object is too far from the target, local minima can block the evolution, hence missing
the objective. Since the publication of [7], much work has been done in order to free
the model from this initialization dependency. A balloon force was early proposed in
[5] to cope with the shrinking problem of the first model, but this force supposed a
known direction in the evolution. Geodesic active objects [2, 3] were then a major step
toward the improvement of the energy term, but still did not guarantee the uniqueness
of a minimum in the general case. The introduction of region dependent energies [11]



and the use of the level set technique [10, 9] that allows topological changes of the
active model, contributed to create a more robust framework. Nonetheless, when
dealing with 3D images and when looking for a precise object (like the left ventricle
in 3D ultrasound images) the initialization of the model still is a fundamental step
that is often made by simple geometric objects (spheres, cylinders) too far from the
objective, or by tedious hand drawing.
The main contribution of our work is to provide an initialization surface that will
allow the active object to avoid unwanted local minima and increase its convergence
speed. This surface will be obtained through the interpolation of a network of 3D
global minimal paths that will be generated between simple objects like points or
curves introduced by the user and known to belong to the object of interest.
Our paper outline is as follows: we begin in section 2 by recalling the principles of
geodesic active contours and surfaces as well as the global minimal paths framework.
In section 3 we explain how minimal paths can be used to build a network of paths
that is not concerned by the problem of local minima traps. In section 4 we present
an improvement of the network construction where we project the minimal paths
into suitable subspaces. In section 5 we give the final step of our algorithm which
is the generation of the initialization surface from the network of paths. At last, in
section 6 we show some examples on synthetic images and real medical images.

2 Active Surfaces and Minimal Paths

Active surfaces as well as minimal paths derived from deformable models introduced
with the snake model [7]. This model consists in introducing a curve C into the image
and make it evolve in order to minimize the energy,

E (C) =

∫

{α. ‖C′(s)‖ + β. ‖C′′(s)‖ ds} +

∫

P(C(s))ds. (1)

The two first terms maintain the regularity of the curve and the last one is the
data attachment. P represents an edge detector that has lower values on edges, for
example if I is the image, a choice can be P = (1 + |∇I|

2
)−1.

Caselles et al improved the energy formulation in [2, 3] by introducing the geodesic
active contour model and its surface extension. In their approach the evolution of the
initial curve C0 or surface S0 was driven by the minimization of the geodesic energy

E (C) =

∫

P(C(s)) ‖C′(s)‖ ds, (2)

E (S) =

∫ ∫

P(S(u, v)) ‖Su × Sv‖ dudv (3)

Even though these models are only edge-driven most of the current approaches that
integrates other informations (region, texture, a priori) are actually extensions. This
is why in this paper we will concentrate on this models.

The most popular approach for solving the minimization problem is to consider the
Euler-Lagrange equations for (2) and (3)(first variation of the energy) and derive



from it the corresponding gradient descent schemes that will drive the model in the
direction of steepest descent :

∂C

∂t
= (Pκ −∇P .n)n with C(., 0) = C0, (4)

∂S

∂t
= (PH −∇P .N)N with S(., ., 0) = S0, (5)

where H and κ are respectively the mean curvature of the surface and the curvature
of the curve. N and n are their outward normals.
However, in next section we recall a method introduced in [6] that allows to find
the global minimum for the contour energy (2) when imposing the two end points
and that does not use the evolution equation 4. Unfortunately such a method is not
available for surfaces, we thus have to deal with the steepest gradient descent. The
choice of S0 will then have a major impact on how well and how fast the model
will recover the expected surface. In our approach to build a convenient S0 we made
extensive use of the possibility to find the global minimum of the geodesic energy for
curves.

2.1 Global minimal paths between two end points

It was established in [8] that the global minimal path connecting p0 and p1 is the
curve obtained by following the opposite gradient direction on a map Up0

starting
from p1 until p0 is reached, thus solving the problem:

dC

ds
(s) = −∇Up0

, with C(0) = p1 and C(L) = p0. (6)

It was also shown in [8] that the map Up0
is the solution of the Eikonal equation

‖∇Up0
‖ = P and Up0

(p0) = 0. (7)

Equation 6 can be numerically solved by simple ordinary differential equations tech-
niques like Newton’s or Runge-Kutta’s. Hence, the fundamental point is the compu-
tation of the minimal action map Up0

. To solve equation 7 numerically, classic finite
differences schemes tend to be unstable. In [14] Tsitsiklis introduced a new method
that was independently reformulated by Sethian in [12] that relies on a one-sided
derivative looking in the up-wind direction of the front, and giving the correct vis-
cosity solution. This algorithm is known as the Fast Marching algorithm and is now
widely used and understood, details can be found in [13]. Nevertheless it is important
to highlight the major interest of this algorithm. After a simple initialization of Up0

over the grid domain, setting Up0
(p0) = 0 and Up0

(p) = ∞ for any other point p,
only one grid pass is needed, and by using min-heap data structure, an O(N log(N))
complexity can be ensured on a grid of N nodes for the computation of Up0

.

To summarize, we are able, by imposing the two end points, to build a 3D global
minimum path for the geodesic energy. On the other hand, an active surface’s goal
is to locate a local minimum of energy (3) that agrees with some user’s criteria. The



problem is that during the evolution process the surface can be trapped by other
local minima.
In our work we have used the global minimum property of the paths to generate an
initial surface S0 from points and/or curves drawn by the user.

3 First approximation of the initial surface S0

In order to determine a first approximation of S0 we propose to build a network of
global minimal paths between a curve (henceforth noted C1) and a point (henceforth
noted p) or other curves (henceforth noted C2, C3 and so on). Clearly, when building
a minimal path network between C1 and p, one will compute only one action map
(noted Up as in previous section) centered in p and the network will be built by
gradient descents from the points of a discretized version of C1. Which yields in this
way a very numerically efficient algorithm. Figure 1.a and 1.b give an example of this

(a) (b) (c) (d)

Fig. 1: (a) Set of Minimal Paths between a point and a curve lying on a cylinder. (b) The
paths are minimal with respect to a potential that takes small values on the boundaries of
the cylinder.(c) is the original vase surface, (d) is the set of Minimal Paths between two
curves lying on a synthetic image of this vase. The paths are minimal with respect to a
potential that takes small values on the vase’s boundaries.

construction. From a closed cylinder synthetic image, we generated minimal paths
between a point in the upper part of the cylinder and a circle drawn on the opposite
side.
When it comes to building a set of minimal paths between two curves, an extension
of this approach has to be considered. In the general situation we do not want to
associate all the points of C1 with all the points of C2, first because this would be
too computationally expensive (at least N actions maps to build and N×N gradient
descents, if N is the number of points of the discretized versions of C1 and C2), and
second because we are only interested in the most relevant associations. This is why
we introduced in [1] a way to compute the optimal path between a curve and a single
point. In [1] we showed that this problem can also be solved by applying the Fast
Marching algorithm to solve the equation ‖∇UC1

‖ = P initializing UC1
by UC1

(q) = 0
if q ∈ C1 and UC1

(q) = ∞ otherwise. And the minimal path is obtained by a gradient



descent initialized on p, just like in equation (6).
Consider now a discretized version of C2 containing n2 points {qi}i=1...n2

. For each
and every point qi, we build the minimal path between this point and C1, thus gen-

erating a set of minimal paths from C1 to C2,
{

GC1

i

}

i=1...n2

.

An illustration of this construction is given in figure 1.d, a potential adapted to find-
ing the surface of a vase is used and the network is built between two curves drawn
on it.
It is important to see that the construction of the network of paths is not symmetric.

The set of paths
{

GC1

i

}

i=1...n2

is different from its homologue the set
{

GC2

i

}

i=1...n1

.

One can use this feature to generate a more dense set of paths and thus contributing
to the generation of an interpolated surface S0.
In practice, this scheme produces well-behaved paths which provide enough infor-
mation for the construction of an interpolated surface S0 (Figures 1.a, 1.c and 3.a).
Unfortunately in some particular situations it is not the case. In fact, even though
the number of paths can be controlled by the number of discretization points on each
curve, in some images, this will not improve the information one can extract from
the network because minimal paths tend to merge (see Figure 2.b). This not only
further complicates the problem of interpolation but if a surface is generated it is
usually not the surface expected.
In order to cope with this problem we propose a simple method to constrain the
paths between C1 and C2 and thus produce a better distributed network around the
surface we are looking for.

4 Constraining the minimal path

Figure 2 illustrates a simple situation where the set of paths described in the previous
section is not distributed in a satisfactory manner. The potential is minimal and
constant on a surface which is the blending of a plane and half a sphere. Minimal
paths will cut around the sphere rather than ’climbing’ on it because the potential
has no influence (being constant on the surface) and the length of the paths becomes
the predominant factor.
We propose a simple but effective method to obtain a network of paths that will be
better distributed. We shall constrain the network to different planes.
First introduced in [1] this approach now relies on a sounder theoretical ground
which is presented in more details in the appendix. Here we show why this restriction
provides suitable paths for our purpose.
Indeed, in the appendix to this article (section 8) we have derived a local necessary
condition a curve C traced on a surface S must satisfy in order to be a local minimum
of energy (2). C must satisfy

∇P(C).B − P(C)κ
(
n.B

)
= 0, (8)

where B = T ∧ N , N is the Gauss map of S, T is the tangent vector of C, and n

is the normal vector to the curve. Now, if the constraining surface S is a plane, the
normal n to the curve is contained in this same plane. Therefore T ∧ N = n since



(a) (b) (c)

Fig. 2: (a) represents a half-sphere blended on a plane (transparent visualization) and C1

and C2 (black segments). b) Result without constraints:set of paths
{

GC1

i

}

i=1...n2

missing

the half-sphere. c) Result with constrains.

by definition, n is normal to T and N is normal to both. Equation (8) boils down to

∇P(C).n − P(C)κ = 0,

which is exactly the Euler-Lagrange equation of the geodesic energy (2) in two di-
mensions.
In practice we geometrically restrict the back-propagation procedure that builds the

minimal paths (equation 6), considering the construction of
{

GC1

i

}

i=1...n2

, for a point

pi of the discretized version of ∈ C2 we choose a plane Πpi
containing pi and having

→
npi

as its normal vector. We build path GC1

i by solving the projected equation on
Πpi

:
dC

ds
(s) = −∇U(C) +

(

∇U(C).
→
npi

)

.
→
npi

. (9)

Figure 2.c illustrates this construction, the network is obtained through the restriction
of the paths to parallel planes which are orthogonal to C1 and C2 (npi

does not depend
on pi). In a more general case, for each point pi, one can define plane Πpi

by three
points: G1, center of mass of C1, G2 center of mass of C2 and pi, and thus

→

npi
=

→

G1G2 ∧
→

G1pi
∥
∥
∥
∥

→

G1G2 ∧
→

G1pi

∥
∥
∥
∥

.

As the point pi varies along C2, the plane Πpi
will ”rotate” around the principal axis

G1G2.

5 Generating the initialization surface S0

The final step for the generation of S0 is its effective construction through the in-
terpolation of the information given by the network of paths. We have chosen two
different approaches to generate S0.



The first one assumes that we have enough information with only one of the uncon-

strained sets
{

G
Cj

i

}

i=1...nj ,j=1,2
, which means that the paths will cross only if they

merge and that the network is simple enough to use an analytical interpolation. In
[1] we proposed an analytical method inspired by splines, that integrates information
coming from both the network of paths and the curves C1 and C2, and produces a
smooth mesh. An example of this construction is given in Figure 3.b, we have inter-
polated a network of paths obtained from an ultrasound image of the left ventricle.
This first method produces a mesh representation, and is thus adapted to the use

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) (d)

Fig. 3: (a) is the network of minimal paths obtained from an ultrasound image of the left
ventricle. The user initialized the model by drawing the upper and lower closed curves. (b)
is the analytically interpolated surface. (c) is the network obtained from our synthetic vase
image, (d) it the variational scattered data points interpolation.

of active meshes. Nonetheless, if needed one can produce a Level set representation
using the Fast Marching method initialized with the mesh and with a constant po-
tential of value 1.
In spite of its great speed and good results, this method is only applicable under
the conditions we stated. When considering the symmetrical network construction or
when constraining the paths, the numerous crossings makes it very difficult to exploit
the fact that we are interpolating curves and a scattered points approach is better
suited.
The second interpolation method we have used is thus the one proposed by Zhao et
al. in [15] where a variational approach is considered for the interpolation. Figure 3.d
gives an example on the vase.

6 Application to synthetic and medical images

It is a common practice in 3D medical images to perform, as a first step, 2D seg-
mentation on a slice. When images are of very low quality the practitioner does the



segmentation by hand. Our algorithm allows to rapidly build a good initialization
and by so a 3D model. Figure 4 shows the result of the segmentation of a 3D ultra
sound image of the left ventricle. As can be seen in Figure 4.b the restricted set of
paths has already rebuilt perceptually the ventricle. Figure 4.c represents the inter-
polated surface with the variational method. We then applied a classical level set
method evolution to refine the segmentation (Figure 4.d and 4.e).
In figure 5 we have given an other application of our method. We have considered
the segmentation of a 3D magnetic resonance image representing an aneurysm.

C1

C2

(a) (b) (c) (d) (e)

Fig. 4: (a) A slice of the 3D ultrasound image, we also have drawn the projection of the
user given curves and the intersection of our interpolated surface with this plane. (b) Set of
paths. (c) Interpolated surface. (d) final segmentation after a few iterations of the level set,
(e) Planar view of the same slice, intersection with the model evolved as a level set.

C1

C2

(a) (b) (c) (d)

Fig. 5: (a) Intersection of our interpolated surface with a slice of a 3D MR image. (b) Set of
paths. (c) Interpolated surface. (d) final segmentation after a few iterations of a level set.

In figure 6 we compare our method to a classical active surface. Figure 6.a is a
difficult to segment image, it was generated from three ’S’ shaped tubes placed one
inside the other. The difficulty resides in the extraction of the middle one. Without
a good initialization, a gradient descent will fail to recover the surface because of



the presence of many local minima. Our method manages to generate a suitable
initialization (figure 6.c) with the only information of two curves lying on it. An
active surface, initialized with a cylinder containing the initialization curves (Figure
6.e and 6.f), will fail to recover the middle tube (Figure 6.g and 6.h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: (a) View of different intersecting planes of a 3D volume with the two constraining
curves drawn on it. (b) Network of paths obtained with our method. (c) Interpolated surface.
(d) Surface after few iterations of a level set. (e) and (f) Simple initialization of an active
object. (g) surface after 150 iterations and (h) after 500 iterations.

7 Conclusion

In this paper we have presented a method that allows to greatly simplify the initial-
ization process of active surfaces. The model can be initialized by simple objects like
curves and points instead of volumes. Our approach is also capable of taking a maxi-
mum advantage of the information given by the user through the initialization curves,
since the surface it generates is constrained to include those curves. Our method uses
globally minimal paths to generate a surface which is the initialization of an active
surface model. Hence, the final surface is not concerned by the problem of the local
minima traps as all other active objects approach are. It is particularly well suited
for medical image segmentation, in particular for ultrasound images segmentation.
In cases where the image quality is very poor, our approach handles the introduction
of additional information coming from the practitioner in a very natural manner. A
few 2D segmentations can be enough to generate a coherent complete surface.



8 Appendix

In this appendix, inspired by the methods used in [4], we give a proof of the necessary
condition a curve C, traced on a surface S, should satisfy in order to be a local
minimum of the geodesic energy (3). We should note Ψ the signed distance function
to S, T = Ct

|Ct|
the tangent vector along the curve, N(α) the normal vector to S on

α, n the normal vector to C, and B = T ∧ N (figure 7).
Let Uδ (δ ≥ 0) be a neighborhood of S defined by Uδ = {α|Ψ(α) ≤ δ}. It can

n

b

N

B

t

Fig. 7: Illustration showing the notation we use.

be shown that if δ is small enough, we have ∀α ∈ Uδ ∇Ψ(α) = N(αS), where
αS is the closest point to α on S. And, since Ψ is the distance function to S, we
have that, in that case αS = α − Ψ(α)∇Ψ(α). We then define the the operator
Π(α) = α − Ψ(α)∇Ψ(α) on Uδ, with δ small enough. Let Cλ be a variation of C,
Cλ = C + λη, where η is a function which has the suitable regularity properties and
boundary conditions, λ ∈ IR. This variation of C is not correct in our case, since Cλ

is not necessarily traced on S. Hence we will consider Π(Cλ) = Cλ + Ψ(Cλ)∇Ψ(Cλ)
instead and will be interested in the value of the derivative of

E(λ) =

∫

P(Π(Cλ))
∣
∣Π(Cλ)t

∣
∣ dt at λ = 0, (10)

dE

dλ

∣
∣
∣
∣
λ=0

=

∫
d

dλ
{P(Π(Cλ))} . |Π(Cλ)t| dt

∣
∣
∣
∣
λ=0

︸ ︷︷ ︸

I1

+

∫

P(Π(Cλ)).
d

dλ
{|Π(Cλ)t|} dt

∣
∣
∣
∣
λ=0

︸ ︷︷ ︸

I2

If curve C is a minimum of E this derivative should be zero.



Note that C being traced on S, Ψ(C) = 0 and ∇Ψ(C).Ct = N(C).T (C) = 0. Thus

d

dλ
{P(Π(Cλ))}

∣
∣
∣
∣
λ=0

= ∇P(C).




 η −∇Ψ(C).η∇Ψ(C) − Ψ(C)

︸ ︷︷ ︸

= 0

(...)






=
(
∇P(C) −

(
N (C).∇P(C)

)
N (C)

)
.η

and

(11)

Π(Cλ)t|λ=0
= Ct − (∇Ψ(C).Ct)

︸ ︷︷ ︸

= 0

∇Ψ(C) − Ψ(C)
︸ ︷︷ ︸

= 0

(...) = Ct
(12)

Using this relations we obtain:

I1 =

∫
(
∇P(C) −

(
∇Ψ(C).∇P(C)

)
∇Ψ(C).η

)
|Ct| dt (13)

Now concerning I2, from (12) its second factor can be written as

d

dλ
{|Π(Cλ)t|}

∣
∣
∣
∣
λ=0

=
Ct

|Ct|
.

d

dλ
{Π(Cλ)t}

∣
∣
∣
∣
λ=0

= T .
d

dλ
{Π(Cλ)t}

∣
∣
∣
∣
λ=0

(14)

And

d

dλ
{Π(Cλ)t}

∣
∣
∣
∣
λ=0

=
d

dt

{
d

dλ
{Π(Cλ)}

∣
∣
∣
∣
λ=0

}

=
d

dt

{
η −

(
∇Ψ(C).η

)
∇Ψ(C)

}

= ηt −
d

dt

{(
N (C).η

)}
N (C) −

(
N (C).η

)
HΨ (C)Ct

HΨ being the Hessian of Ψ . And going back to 14, noticing that N(C).T = 0,

T .
d

dλ
{Π(Cλ)t}

∣
∣
∣
∣
λ=0

= T .ηt −
(
N (C).η

)(
T .HΨ (C)Ct

)

following that

I2 =

∫

P(C)
(
T .ηt

)
dt −

∫

P(C)
(
∇Ψ(C).η

)(
T .HΨ (C)T

)
|Ct| dt

= −

∫
( (

∇P .T
)
T + Pκn + P

(
T .HΨ (C)T

)
N (C)

)
. η |Ct| dt,

thanks to an integration by parts, and where κ is the curvature of C. Combining I1

and I2 we get

dE

dλ

∣
∣
∣
∣
λ=0

=

∫
(
∇P −

(
N .∇P

)
N −

(
∇P .T

)
T − P

(
κn +

(
T .HΨ (C)T

)
N

))
. η |Ct| dt.

Finally, taking the following relations into account

∇P −
(
N .∇P

)
N −

(
∇P .T

)
T =

(
∇P .B

)
B,

κn +
(
T .HΨ (C)T

)
N = κn −

(
n.∇Ψ

)
κN = κ

(
n −

(
n.N

)
N

)
=

(
n.B

)
κB



we get

dE

dλ

∣
∣
∣
∣
λ=0

=

∫
((
∇P −Pκn

)
. B

)(
B. η

)
|Ct| dt

Since this integral is equal to zero for every function η, we get that for every t of
the parameterization domain of C

∇P(C).B(C) −P(C)κ
(
n.B

)
= 0
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