
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

On the learnability of E-pattern languages over small alphabets

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Springer-Verlag

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Reidenbach, Daniel. 2019. “On the Learnability of E-pattern Languages over Small Alphabets”. figshare.
https://hdl.handle.net/2134/3470.

https://lboro.figshare.com/

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

On the Learnability of E-pattern Languages over

Small Alphabets

Daniel Reidenbach⋆

Fachbereich Informatik, Technische Universität Kaiserslautern,
Postfach 3049, 67653 Kaiserslautern, Germany

reidenba@informatik.uni-kl.de

Abstract. This paper deals with two well discussed, but largely open
problems on E-pattern languages, also known as extended or erasing
pattern languages: primarily, the learnability in Gold’s learning model
and, secondarily, the decidability of the equivalence. As the main result,
we show that the full class of E-pattern languages is not inferrable from
positive data if the corresponding terminal alphabet consists of exactly
three or of exactly four letters – an insight that remarkably contrasts
with the recent positive finding on the learnability of the subclass of
terminal-free E-pattern languages for these alphabets. As a side-effect of
our reasoning thereon, we reveal some particular example patterns that
disprove a conjecture of Ohlebusch and Ukkonen (Theoretical Computer

Science 186, 1997) on the decidability of the equivalence of E-pattern
languages.

1 Introduction

In the context of this paper, a pattern – a finite string that consists of variables
and terminal symbols – is used as a device for the definition of a formal language.
A word of its language is generated by a uniform substitution of all variables with
arbitrary strings of terminal symbols. For instance, the language generated by the
pattern α = x1x1 a b x2 (with x1, x2 as variables and a, b as terminals) includes
all words where the prefix can be split in two occurrences of the same string,
followed by the string ab and concluded by an arbitrary suffix. Thus, the language
of α contains, among others, the words w1 = a a a b a, w2 = a b a b a b a b,
w3 = a b b b, whereas the following examples are not covered by α: v1 = b a,
v2 = b b b b b, v3 = b a a b a. Consequently, numerous regular and nonregular
languages can be described by patterns in a compact and “natural” way.

The investigation of patterns in strings – initiated by Thue in [22] – may
be seen as a classical topic in the research on word monoids and combinatorics
of words (cf. [19]); the definition of pattern languages as described above goes
back to Angluin [1]. Pattern languages have been the subject of several analy-
ses within the scope of formal language theory, e.g. by Jiang, Kinber, Salomaa,
Salomaa, Yu [7], [8]) – for a survey see [19] again. These examinations reveal

⋆ Supported by the Deutsche Forschungsgemeinschaft (DFG), Grant Wi 1638/1-2

that a definition disallowing the substitution of variables with the empty word
– as given by Angluin – leads to a language with particular features being quite
different from the one allowing the empty substitution (that has been applied
when generating w3 in our example). Languages of the latter type have been
introduced by Shinohara in [20]; contrary to those following Angluin’s defini-
tion (called NE-pattern languages), they are referred to as extended, erasing, or
simply E-pattern languages.

Particularly for E-pattern languages, a number of fundamental properties is
still unresolved; one of the best-known open problems among these is the decid-
ability of the equivalence, i.e. the question on the existence of a total computable
function that, given any pair of patterns, decides whether or not they generate
the same language. This problem, that for NE-pattern languages has a trivial
answer in the affirmative, has been discussed several times (cf. [7], [8], [5], and
[12]), contributing a number of conjectures, conditions and positive results on
subclasses, but no comprehensive answer.

When dealing with pattern languages, manifold questions arise from the prob-
lem of computing a pattern that is common to a given set of words. Therefore,
pattern languages have been a focus of interest of algorithmic learning theory
from the very beginning. In the elementary learning model of inductive inference
– known as learning in the limit or Gold style learning (introduced by Gold in
1967, cf. [6]) – a class of languages is said to be inferrable from positive data if and
only if a computable device (the so-called learning strategy) – that reads growing
initial segments of texts (an arbitrary stream of words that, in the limit, fully
enumerates the language) – after finitely many steps converges for every lan-
guage and for every corresponding text to a distinct output exactly representing
the given language. In other words, the learning strategy is expected to extract
a complete description of a (potentially infinite) language from finite data. Ac-
cording to [6], this task is too challenging for many well-known classes of formal
languages: All superfinite classes of languages – i.e. all classes that contain every
finite and at least one infinite language – such as the regular, context-free and
context-sensitive languages are not inferrable from positive data. Consequently,
the number of rich classes of languages that are known to be learnable is rather
small. Finally, it is worth mentioning that Gold’s model has been complemented
by several criteria on language learning (e.g. in [2]) and, moreover, that it has
been transformed into a widely analysed learning model for classes of recursive
functions (cf., e.g., [4], for a survey see [3]).

The current state of knowledge concerning the learnability of pattern lan-
guages considerably differs when regarding NE- or E-pattern languages, respec-
tively. The learnability of the class of NE-pattern languages was shown by An-
gluin when introducing its definition in 1980 (cf. [1]). In the sequel there has
been a variety of additional studies – e.g. in [9], [23], [17] and many more (for
a survey see [21]) – concerning the complexity of learning algorithms, conse-
quences of different input data, efficient strategies for subclasses, and so on. The
question, however, whether or not the class of E-pattern languages is learnable
– considered to be “one of the outstanding open problems in inductive infer-

ence” (cf. [11]) – remained unresolved for two decades, until it was answered in
[14] in a negative way for terminal alphabets with exactly two letters. Positive
results on subclasses have been presented in [20], [11], [13], and [15]. Moreover,
[11] proves the full class of E-pattern languages to be learneable for infinite and
unary alphabets as these alphabets significantly facilitate inferrability.

In the present paper we show that the class of E-pattern languages is not
inferrable from positive data if the corresponding terminal alphabet consists of
exactly three or of exactly four letters (cf. Section 3). We consider this outcome
for the full class of E-pattern languages as particularly interesting as it con-
trasts with the results presented in [14] and [15]. The first proves the class of
E-pattern languages not to be learnable for binary alphabets since even its sub-
class of terminal-free E-pattern languages (generated by patterns that consist of
variables only) is not learnable for these alphabets. Contrary to this, the latter
shows that the class of terminal-free E-pattern languages is inferrable if the cor-
responding terminal alphabet contains more than two letters. Consequently, with
the result of the present paper in mind, for E-pattern languages there obviously
is no general way to extend positive findings for the terminal-free subclass on
the full class. The method we use is similar to the argumentation in [14], i.e. we
give for both types of alphabets a respective example pattern with a certain
property which can mislead any potential learning strategy. The foundations of
this way of reasoning – that, as in [14], is solely made possible by an appropriate
alphabet size and the nondeterminism of E-pattern languages – are explained
in Section 2. Finally, in Section 4 one of our example patterns is shown to be
applicable to the examinations on the equivalence problem by Ohlebusch and
Ukkonen in [12], disproving the central conjecture given therein.

2 Preliminaries

In order to keep this paper largely self-contained we now introduce a num-
ber of definitions and basic properties. For standard mathematical notions and
recursion-theoretic terms not defined explicitly, we refer to [18]; for unexplained
aspects of formal language theory, [19] may be consulted.

N is the set of natural numbers, {0, 1, 2, . . .}. For an arbitrary set A of sym-
bols, A+ denotes the set of all non-empty words over A and A∗ the set of all
(empty and non-empty) words over A. Any set L ⊆ A∗ is a language over an
alphabet A. We designate the empty word as e. For the word that results from
the n-fold concatenation of a letter a or of a word w we write a

n or wn, respec-
tively. The size of a set A is denoted by |A| and the length of a word w by |w|;
|w|a is the frequency of a letter a in a word w.

For any word w that contains at least one occurrence of a letter a we define
the following subwords: [w/ a] is the prefix of w up to (but not including) the
leftmost occurrence of the letter a and [a \w] is the suffix of w beginning with
the first letter that is to the right of the leftmost occurrence of a in w. Thus,
the specified subwords satisfy w = [w/ a] a [a \w]; e.g., for w = b c a a b, the
subwords read [w/ a] = b c and [a \w] = a b.

We proceed with the pattern specific terminology. Σ is a finite or infinite al-
phabet of terminal symbols and X = {x1, x2, x3, . . . } an infinite set of variables,
Σ ∩X = ∅. Henceforth, we use lower case letters in typewriter font, e.g. a, b, c,
as terminal symbols exclusively; words of terminal symbols are named as u, v,
or w. For every j ≥ 1, the variable yj is unspecified, i.e. there may exist indices
k, k′ such that k 6= k′, but yk = yk′ . For unspecified terminal symbols we use
upper case letters in typewriter font, such as A.

A pattern is a non-empty word over Σ ∪ X , a terminal-free pattern is a
non-empty word over X ; naming patterns we use lower case letters from the
beginning of the Greek alphabet. var(α) denotes the set of all variables of a
pattern α. We write PatΣ for the set (Σ ∪X)+ and we use Pat instead of PatΣ
if Σ is understood. The pattern χ(α) derives from any α ∈ Pat removing all
terminal symbols; e.g., χ(x1x1 ax2 b) = x1x1x2.

Following [5], we designate two patterns α, β as similar if and only if α =
α0 u1 α1 u2 . . . αm−1 um αm and β = β0 u1 β1 u2 . . . βm−1 um βm with m ∈ N,
αi, βi ∈ X+ for 1 ≤ i < m, α0, β0, αm, βm ∈ X∗ and ui ∈ Σ+ for i ≤ m; in other
words, we call patterns similar if and only if their terminal substrings coincide.

A substitution is a morphism σ : (Σ ∪ X)∗ −→ Σ∗ such that σ(a) = a for
every a ∈ Σ. An inverse substitution is a morphism σ̄ : Σ∗ −→ X∗. The E-
pattern language LΣ(α) of a pattern α is defined as the set of all w ∈ Σ∗ such
that σ(α) = w for some substitution σ. For any word w = σ(α) we say that σ
generates w, and for any language L = LΣ(α) we say that α generates L. If there
is no need to give emphasis to the concrete shape of Σ we denote the E-pattern
language of a pattern α simply as L(α). We use ePATΣ (or ePAT for short) as
an abbreviation for the full class of E-pattern languages over an alphabet Σ.

Following [11], we designate a pattern α as succinct if and only if |α| ≤ |β|
for all patterns β with L(β) = L(α). The pattern β = x1x2x1x2, for instance,
generates the same language as the pattern α = x1x1, and therefore β is not
succinct; α is succinct because there does not exist any shorter pattern than α
that exactly describes its language.

According to the studies of Mateescu and Salomaa on the nondeterminism
of pattern languages (cf. [10]) we denote a word w as ambiguous (in respect
of a pattern α) if and only if there exist two substitutions σ and σ′ such that
σ(α) = w = σ′(α), but σ(xi) 6= σ′(xi) for some xi ∈ var(α). The word w = aaba,
for instance, is ambiguous in respect of the pattern α = x1a x2 since it can be
generated by several substitutions, such as σ and σ′ with σ(x1) = a, σ(x2) = ba

and σ′(x1) = e, σ′(x2) = aba.

We now proceed with some decidability problems on E-pattern languages:
Let ePAT⋆ be any set of E-pattern languages. We say that the inclusion problem
for ePAT⋆ is decidable if and only if there exists a computable function which,
given two arbitrary patterns α, β with L(α), L(β) ∈ ePAT⋆, decides whether
or not L(α) ⊆ L(β). Correspondingly, the equivalence problem is decidable if
and only if there exists another computable function which for every pair of
patterns α, β with L(α), L(β) ∈ ePAT⋆ decides whether or not L(α) = L(β).
Obviously, the decidability of the inclusion implies the decidability of the equiva-

lence. The decidability of the equivalence problem for ePAT has not been resolved
yet (cf. Section 4), whereas the inclusion problem is known to be undecidable
(cf. [8]). Under certain circumstances, however, the inclusion problem is decid-
able; this is a consequence of the following fact:

Fact 1 (Ohlebusch, Ukkonen [12]). Let Σ be an alphabet and α, β two arbi-
trary similar patterns such that Σ contains two distinct letters not occurring in α
and β. Then LΣ(β) ⊆ LΣ(α) iff there exists a morphism φ : var(α)∗ −→ var(β)∗

with φ(α) = β.

In particular, Fact 1 implies the decidability of the inclusion problem for the
class of terminal-free E-pattern languages if the alphabet contains at least two
distinct letters (shown in [8]).

This paper exclusively deals with language theoretical properties of E-pattern
languages. Both motivation and interpretation of our examination, however, are
based on learning theory, and therefore we consider it useful to provide an ade-
quate background. To this end, we now introduce our notions on Gold’s learning
model (cf. [6]) and begin with a specification of the objects to be learned. In this
regard, we restrict ourselves to any indexable class of non-empty languages; a
class L of languages is indexable if and only if there exists an indexed family (of
non-empty recursive languages) (Li)i∈N such that L = {Li | i ∈ N} – this means
that the membership is uniformly decidable for (Li)i∈N, i.e. there is a total and
computable function which, given any pair of an index i ∈ N and a word w ∈ Σ∗,
decides whether or not w ∈ Li. Concerning the learner’s input, we exclusively
consider inference from positive data given as text. A text for an arbitrary lan-
guage L is any total function t : N −→ Σ∗ satisfying {t(n) | n ∈ N} = L.
For any text t, any n ∈ N and a symbol 3 6∈ Σ, tn ∈ (Σ ∪ {3})+ is a cod-
ing of the first n + 1 values of t, i.e. tn := t(0) 3 t(1) 3 t(2) . . . 3 t(n). Last,
the learner and the learning goal need to be explained: Let the learner (or: the
learning strategy) S be any total computable function that, for a given text t,
successively reads t0, t1, t2, etc. and returns a corresponding stream of natural
numbers S(t0), S(t1), S(t2), and so on. For a language Lj and a text t for Lj ,
we say that S identifies Lj from t if and only if there exist natural numbers n0

and j′ such that, for every n ≥ n0, S(tn) = j′ and, additionally, Lj′ = Lj . An
indexed family (Li)i∈N is learnable (in the limit) – or: inferrable from positive
data, or: (Li)i∈N ∈ LIM-TEXT for short – if and only if there is a learning strat-
egy S identifying each language in (Li)i∈N from any corresponding text. Finally,
we call an indexable class L of languages learnable (in the limit) or inferrable
from positive data if and only if there is a learnable indexed family (Li)i∈N with
L = {Li | i ∈ N}. In this case we write L ∈ LIM-TEXT for short.

In fact, the specific learning model given above – that largely is based on [2] –
is just a special case of Gold’s learning model, which frequently is considered for
more general applications as well. For numerous different analyses the elements of
our definition are modified or generalised, such as the objects to be learned (e.g.,
using arbitrary classes of languages instead of indexed families), the learning goal
(e.g., asking for a semantic instead of a syntactic convergence), or the output of
the learner (choosing a general hypothesis space instead of the indexed family).

Concerning the latter point we state that for the case when the LIM-TEXT
model is applied to an indexed family, the choice of a general hypothesis spaces
instead of the indexed family itself does not yield any additional learning power.
For information on suchlike aspects, see [24].

Angluin has introduced some criteria on indexed families that reduce learn-
ability to a particular language theoretical aspect (cf. [2]) and thereby facilitate
our approach to learnability questions. For our purposes, the following is suffi-
cient (combining Condition 2 and Corollary 1 of the referenced paper):

Fact 2 (Angluin [2]). Let (Li)i∈N be an arbitrary indexed family of non-empty
recursive languages. If (Li)i∈N ∈ LIM-TEXT then for every j ∈ N there exists a
set Tj such that

– Tj ⊆ Lj,
– Tj is finite, and
– there does not exist a j′ ∈ N with Tj ⊆ Lj′ ⊂ Lj.

If there exists a set Tj satisfying the conditions of Fact 2 then it is called a
telltale (for Lj) (in respect of (Li)i∈N).

The importance of telltales – that, at first glance, do not show any connection
to the learning model – is caused by the need of avoiding overgeneralisation
in the inference process, i.e. the case that the strategy outputs an index of a
language which is a proper superset of the language to be learned and therefore,
as the input consists of positive data only, is unable to detect its mistake. Thus,
every language Lj in a learnable indexed family necessarily contains a finite set
of words which, in the context of the indexed family, may be interpreted as a
signal distinguishing the language from all languages that are subsets of Lj.

With regard to E-pattern languages, Fact 2 is applicable because ePAT is
an indexable class of non-empty languages. This is evident as, first, a recursive
enumeration of all patterns can be constructed with little effort and, second,
the decidability of the membership problem for any pattern α ∈ Pat and word
w ∈ Σ∗ is guaranteed since the search space for a successful substitution of α is
bounded by the length of w.

Thus, we can conclude this section with a naming for a particular type of
patterns that has been introduced in [14] and that directly aims at the content
of Fact 2: A pattern β is a passe-partout (for a pattern α and a finite set W of
words) if and only if W ⊆ L(β) and L(β) ⊂ L(α). Consequently, if there exists
such a passe-partout β then W is not a telltale for L(α).

3 The Main Result

When asking for the learnability of the class of E-pattern languages then, because
of the different results on unary, binary and infinite terminal alphabets (cf. [11]
and [14]), it evidently is necessary to specify the size of the alphabet. Keeping this
in mind, there are some results on the learnability of subclasses that are worth to
be taken into consideration, namely [20] and [15]. The first shows that the class

of regular E-pattern languages is learnable; these are languages generated by
patterns α with |α|xj

= 1 for all xj ∈ var(α). Thus, roughly speaking, there is a
way to algorithmically detect the position and the shape of the terminal symbols
in the pattern from positive data. On the other hand, the latter publication shows
that the class of terminal-free E-pattern languages is learnable if and only if the
terminal alphabet does not consist of exactly two letters, or, in other words, that
it is possible to extract the dependencies of variables for appropriate alphabets.
However, our main result states that these theorems are only valid in their own
context (i.e. the respective subclasses) and, consequently, that the combination
of both approaches is impossible:

Theorem 1. Let Σ be an alphabet, |Σ| ∈ {3, 4}. Then ePATΣ 6∈ LIM-TEXT.

The proof of this theorem is given in the subsequent section.

Thus, with Theorem 1 and the results in [11] and [14], the learnability of
the class of E-pattern languages is resolved for infinite alphabets and for finite
alphabets with up to four letters. Concerning finite alphabets with five or more
distinct letters we conjecture – as an indirect consequence of Section 3.1 – that
the question of learnability for all of them can be answered in the same way:

Conjecture 1. Let Σ1, Σ2 be arbitrary finite alphabets with at least five letters
each. Then ePATΣ1

∈ LIM-TEXT iff ePATΣ2
∈ LIM-TEXT.

3.1 Proof of the Main Result

First, we give an elementary lemma on morphisms, that can be formulated in
several equivalent ways; however, with regard to the needs of the subsequent
reasoning on Lemma 2 and Lemma 3 (that provide the actual proof of Theo-
rem 1), we restrict ourselves to a rather special statement on mappings between
terminal-free patterns. Although the fact specified therein may be considered
evident we additionally give an appropriate proof sketch in order to keep this
paper self-contained.

Lemma 1. Let α, β be terminal-free patterns and φ, ψ morphisms with φ(α) = β
and ψ(β) = α. Then either ψ(φ(xj)) = xj for every xj ∈ var(α) or there exists
an xj′ ∈ var(α) such that |ψ(φ(xj′))| ≥ 2 and xj′ ∈ var(ψ(φ(xj′))).

We call any xj′ satisfying these two conditions an anchor variable (in respect of
φ and ψ).

Proof. Let α := y1y2y3 . . . ym; then β = φ(y1)φ(y2)φ(y3) . . . φ(ym). Let yk0
be the

leftmost variable such that ψ(φ(yk0
)) 6= yk0

. Now assume to the contrary there is
no anchor variable in α. Then ψ(φ(yk0

)) necessarily equals e as otherwise ψ(β) 6=
α. Hence, |ψ(φ(y1))ψ(φ(y2))ψ(φ(y3)) . . . ψ(φ(yk0

))| = k0 − 1, and obviously, as
there is no anchor variable in α, |ψ(φ(y1))ψ(φ(y2))ψ(φ(y3)) . . . ψ(φ(yk))| ≤ k−1
for every k > k0. Consequently, |ψ(β)| < |α| and therefore ψ(β) 6= α. This
contradiction proves the lemma. ⊓⊔

We now proceed with the patterns that are crucial for our proof of Theorem 1.
Contrary to the simply structured pattern used in [14] as an instrument for the
negative result on binary alphabets, the examples given here unfortunately have
to be rather sophisticated:

Definition 1. The patterns αabc and αabcd are given by

αabc := x1 a x2 x
2
3 x

2
4 x

2
5 x

2
6 a x7 a x2 x

2
8 x

2
4 x

2
5 x

2
6 ,

αabcd := x1 a x2 x
2
3 x

2
4 x

2
5 x

2
6 x

2
7 x8 b x9 a x2 x

2
10 x

2
4 x

2
5 x

2
6 x

2
11 x8 b x12 .

αabc is used in Lemma 2 for the proof of Theorem 1 in case of alphabets with
exactly three letters and αabcd in Lemma 3 for those with four. In these lemmata
we show that L(αabc) and L(αabcd) for their particular alphabets do not have
any telltale in respect of ePAT.

First, due to the intricacy of these patterns, we consider it helpful for the
understanding of the proofs of the lemmata to briefly discuss the meaning of some
of their variables and terminal symbols in our reasoning; we focus on αabc since
αabcd is a natural extension thereof. Our argumentation on the lemmata utilises
the insight that, with regard to E-pattern languages, the ambiguity of a word
decides on the question of whether this word can be a useful part of a telltale.
For instance, concerning the pattern α0 := x2

4x
2
5x

2
6, that makes up the core of our

example patterns, it is shown in [14] and [15] that any telltale of L(α0) necessarily
has to contain particular words which consist of three distinct letters in order to
avoid a specific and unwanted kind of ambiguity. However, if for any substitution
σ that is applied to α1 := x1 a x2x

2
3α0 – which is a prefix of αabc – σ(α0) contains

all three letters of the alphabet and, thus, includes the letter a then σ(α1)
again is ambiguous and always may be generated by a second substitution σ′

with σ′(α0) = e, σ′(x1) = σ(x1 ax2x
2
3)[σ(α0)/ a], σ

′(x2) = [a \σ(α0)]. With σ′,
in turn, we can give an inverse substitution leading to a tailor-made pattern
that assuredly can be part of a passe-partout. Thus, for α1 we can state the
desired gap between, on the one hand, the need of substituting α0 by three
different letters and, on the other hand, the ambiguity of all words that conform
to this requirement. However, due to the unique variable x2 in α1, the language
generated by α1 evidently equals that of α2 := x1 ax2, turning the core substring
α0 to be redundant. Therefore, α1 has to occur at least twice in the pattern (with
an optional separating occurrence of the letter a). Since in the pattern α1 aα1

still both occurrences of the substring α0 are redundant, the second occurrence
of α1 is transformed into α′

1 := x7 ax2x
2
8α0. Hence, αabc = α1 aα

′

1.
With regard to αabcd, the underlying principle is similar. As stated above,

three distinct letters are needed for an appropriate telltale substitution σ of α0.
However, if b, c, d are chosen as these letters, the desired ambiguity of σ(α1)
cannot be guaranteed. Hence, α1 in αabcd is extended to α̂1 := α1x

2
7x8 bx9,

such that every σ(α̂1) is ambiguous as soon as σ(α0) contains the letters a or b.
Furthermore, due to the reasons described above, a modification of α̂1 serves as
suffix of αabcd, namely α̂′

1 := x9 a x2x
2
10α0x

2
11x8 bx12. Contrary to the structure

of αabc, the prefix α̂1 and the suffix α̂′

1 in this case are not separated by a terminal
symbol, but they are overlapping.

Now we specify and formalise the approach discussed above:

Lemma 2. Let Σ := {a, b, c}. Then for αabc and for every finite W ⊂ LΣ(αabc)
there exists a passe-partout β ∈ Pat.

Proof. If W is empty then the claim of Lemma 2 holds trivially. Hence, let
W = {w1, w2, w3, . . . , wn} be non-empty. Then, as W ⊂ LΣ(αabc), for every
wi ∈ W there exists a substitution σi satisfying σi(αabc) = wi. Using these σi

the following procedure constructs a passe-partout β ∈ Pat:

Initially, we define

β0 := γ1,0 a γ2,0 γ
2
3,0 γ

2
4,0 γ

2
5,0 γ

2
6,0 a γ7,0 a γ2,0 γ

2
8,0 γ

2
4,0 γ

2
5,0 γ

2
6,0

with γj,0 := e for every j, 1 ≤ j ≤ 8.

For every wi ∈ W we define an inverse substitution σ̄i : Σ∗ −→ X∗ by

σ̄i(A) :=







x3i−2 , A = a ,
x3i−1 , A = b ,
x3i , A = c .

For every i = 1, 2, 3, . . . , n we now consider the following cases:

Case 1: There is no A ∈ Σ with |σi(x6)|A = 1 and |σi(χ(αabc))|A = 4
Define γj,i := γj,i−1 σ̄i(σi(xj)) for every j, 1 ≤ j ≤ 8.

Case 2: There is an A ∈ Σ with |σi(x6)|A = 1 and |σi(χ(αabc))|A = 4

Case 2.1: A = a

Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x
2
3 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/ a]) ,

γ2,i := γ2,i−1 σ̄i([a \σi(x
2
6)]) ,

γ7,i := γ7,i−1 σ̄i(σi(x7 a x2 x
2
8 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/ a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 8} .

Case 2.2: A = b

Case 2.2.1: σi(x
2
4 x

2
5) ∈ {a}∗ ∪ {c}∗

Define γ4,i := γ4,i−1 σ̄i(σi(x4 x5)) ,

γ5,i := γ5,i−1 σ̄i(σi(x6)) ,

γ6,i := γ6,i−1 ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 7, 8} .

Case 2.2.2: σi(x
2
4 x

2
5) ∈ {a, c}+ \ ({a}+ ∪ {c}+)

Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x
2
3)) σ̄i([σi(x

2
4 x

2
5)/ a]) ,

γ2,i := γ2,i−1 σ̄i([a \σi(x
2
4 x

2
5 x

2
6)]) ,

γ7,i := γ7,i−1 σ̄i(σi(x7 a x2 x
2
8)) σ̄i([σi(x

2
4 x

2
5)/ a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 8} .

Case 2.3: A = c

Adapt case 2.2 replacing c by b in the predicates of cases 2.2.1 and 2.2.2.

Finally, define

βi := γ1,i a γ2,i γ
2
3,i γ

2
4,i γ

2
5,i γ

2
6,i a γ7,i a γ2,i γ

2
8,i γ

2
4,i γ

2
5,i γ

2
6,i .

When this has been accomplished for every i, 1 ≤ i ≤ n, then define β := βn.

Now, in order to conclude the proof, the following has to be shown: β is a
passe-partout for αabc and W , i.e.

1. W ⊆ L(β) and
2. L(β) ⊂ L(αabc).

ad 1. For every i, 1 ≤ i ≤ n, we define a substitution σ′

i by

σ′

i(xj) :=















a , j = 3i− 2 ,
b , j = 3i− 1 ,
c , j = 3i ,
e , else .

If wi satisfies case 1 then obviously σ′

i(β) = wi; if wi satisfies case 2 then wi

necessarily is ambiguous and therefore in that case σ′

i(β) = wi as well. Thus,
W ⊆ L(β).

ad 2. Obviously, αabc and β are similar and there are two letters in Σ, namely b

and c, that do not occur in these patterns. Consequently, the inclusion criterion
given in Fact 1 is applicable. According to this, L(β) ⊆ L(αabc) since there exists
a morphism φ : var(αabc) −→ var(β)∗ with φ(αabc) = β, given by φ(xj) = γj,n

for every xj ∈ var(αabc).
We now prove that L(β) is a proper subset of L(αabc). More precisely, we show

that there is no morphism ψ : var(β) −→ var(αabc)
∗ with ψ(β) = αabc. For that

purpose, assume to the contrary there is such a morphism ψ. Then, as there is no
variable in var(αabc) with more than four occurrences in αabc, ψ(xk) = e for all
xk ∈ var(β) with |β|xk

≥ 5. With regard to the variables in var(γ6,n), this means
the following: If every letter in σi(x6) occurs more than four times in σi(χ(αabc))
then case 1 is satisfied and, consequently, every variable that is added to γ6,i

occurs at least five times in β. If any letter A in σi(x6) occurs exactly four times in
σi(χ(αabc)) – and, obviously, it must be at least four times as |αabc |x6

= 4 – then
case 2 is applied, which, enabled by the ambiguity of wi in that case, arranges the
newly added components of γ6,i such that σ̄i(σi(A)) is shifted to a different γj,i.
Consequently, |β|xk

≥ 5 for all xk ∈ var(γ6,n) and, therefore, ψ(γ6,n) = e 6= x6.
Hence, we analyse whether or not var(αabc) contains an anchor variable xj′ in
respect of φ and ψ (cf. Lemma 1). Evidently, j′ 6∈ {1, 7}; for j′ ∈ {3, 4, 5, 8},
xj′ being an anchor variable implies that ψ(γ2

j′,n) = xkxk′δxkxk′δ with variables
xk, xk′ and δ ∈ X∗, but there is no substring in αabc that equals the given shape
of ψ(γ2

j′,n). Finally, x2 cannot be an anchor variable since ψ(γ2,n) had to equal
both x2x3δ and x2x8δ for a δ ∈ X∗. Consequently, there is no anchor variable
in var(αabc). This contradicts ψ(γ6,n) = e 6= x6 and therefore the assumption is
incorrect. Thus, L(β) 6⊇ L(αabc) and, finally, L(β) ⊂ L(αabc). ⊓⊔

Lemma 3. Let Σ := {a, b, c, d}. Then for αabcd and for every finite W ⊂
LΣ(αabcd) there exists a passe-partout β ∈ Pat.

Proof. We can argue similar to the proof of Lemma 2: For an empty W the claim
of Lemma 2 holds obviously. For any non-empty W = {w1, w2, w3, . . . , wn} ⊂
LΣ(αabcd) there exist substitutions σi, 1 ≤ i ≤ n, satisfying σi(αabcd) = wi.
With these σi we give the following procedure that constructs a passe-partout
β ∈ Pat:

Initially, we define

β0 := γ1,0 a γ2,0γ
2
3,0γ

2
4,0γ

2
5,0γ

2
6,0γ

2
7,0γ8,0 b γ9,0 a γ2,0γ

2
10,0γ

2
4,0γ

2
5,0γ

2
6,0γ

2
11,0γ8,0 b γ12,0

with γj,0 := e for every j, 1 ≤ j ≤ 12.

For every wi ∈ W we define an inverse substitution σ̄i : Σ∗ −→ X∗ by

σ̄i(A) :=















x4i−3 , A = a ,
x4i−2 , A = b ,
x4i−1 , A = c ,
x4i , A = d .

For every i = 1, 2, 3, . . . , n we now consider the following cases:

Case 1: There is no A ∈ Σ with |σi(x6)|A = 1 and |σi(χ(αabcd))|A = 4
Define γj,i := γj,i−1 σ̄i(σi(xj)) for every j, 1 ≤ j ≤ 12.

Case 2: There is an A ∈ Σ with |σi(x6)|A = 1 and |σi(χ(αabcd))|A = 4

Case 2.1: A = a

Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x
2
3 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/ a]) ,

γ2,i := γ2,i−1 σ̄i([a \σi(x
2
6)]) ,

γ9,i := γ9,i−1 σ̄i(σi(x9 a x2 x
2
10 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/ a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 10} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {7, 8, 11, 12} .

Case 2.2: A = b

Define γ8,i := γ8,i−1 σ̄(σi(x
2
4 x

2
5)) σ̄i([σi(x

2
6)/ b]) ,

γ9,i := γ9,i−1 σ̄i([b \σi(x
2
6 x

2
7 x8 b x9)]) ,

γ12,i := γ12,i−1 σ̄i([b \σi(x
2
6 x

2
11 x8 b x12)]) ,

γj,i := γj,i−1, j ∈ {4, 5, 6, 7, 11} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 10} .

Case 2.3: A = c

Case 2.3.1: σi(x
2
4 x

2
5) ∈ {a}∗ ∪ {b}∗ ∪ {d}∗

Define γ4,i := γ4,i−1 σ̄i(σi(x4 x5)) ,

γ5,i := γ5,i−1 σ̄i(σi(x6)) ,

γ6,i := γ6,i−1 ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12} .

Case 2.3.2: σi(x
2
4 x

2
5) ∈ {a, d}+ \ ({a}+ ∪ {d}+)

Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x
2
3)) σ̄i([σi(x

2
4 x

2
5)/ a]) ,

γ2,i := γ2,i−1 σ̄i([a \σi(x
2
4 x

2
5 x

2
6)]) ,

γ9,i := γ9,i−1 σ̄i(σi(x9 a x2 x
2
10)) σ̄i([σi(x

2
4 x

2
5)/ a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 10} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {7, 8, 11, 12} .

Case 2.3.3: σi(x
2
4 x

2
5) ∈ {a, b, d}+ \ ({a}+ ∪ {b}+ ∪ {d}+ ∪ {a, d}+)

Define γ8,i := γ8,i−1 σ̄([σi(x
2
4 x

2
5)/ b]) ,

γ9,i := γ9,i−1 σ̄i([b \σi(x
2
4 x

2
5 x

2
6 x

2
7 x8 b x9)]) ,

γ12,i := γ12,i−1 σ̄i([b \σi(x
2
4 x

2
5 x

2
6 x

2
11 x8 b x12)]) ,

γj,i := γj,i−1, j ∈ {4, 5, 6, 7, 11} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 10} .

Case 2.4: A = d

Adapt case 2.3 replacing d by c in the predicates of cases 2.3.1, 2.3.2 and
2.3.3.

Finally, define

βi := γ1,i a γ2,iγ
2
3,iγ

2
4,iγ

2
5,iγ

2
6,iγ

2
7,iγ8,i b γ9,i a γ2,iγ

2
10,iγ

2
4,iγ

2
5,iγ

2
6,iγ

2
11,iγ8,i b γ12,i .

When this has been accomplished for every i, 1 ≤ i ≤ n, then define β := βn.

For the proof that β indeed is a passe-partout for αabcd and W , see the proof
of Lemma 2, mutatis mutandis. ⊓⊔

Concluding the proof of Theorem 1, we state that it directly follows from
Lemma 2, Lemma 3, and Fact 2: Obviously, any indexed family (Li)i∈N with
{Li | i ∈ N} = ePAT necessarily contains all languages generated by potential
passe-partouts for αabc and αabcd, respectively. Thus, LΣ(αabc) has no telltale in
respect of ePATΣ if |Σ| = 3 and LΣ(αabcd) has no telltale in respect of ePATΣ if
|Σ| = 4. Consequently, ePATΣ is not learnable for these two types of alphabets.

3.2 Some Remarks

Clearly, both procedures constructing the passe-partouts implement only one
out of many possibilities. The definition of the γj,i in case 2.3.1 in the proof of
Lemma 3, for instance, could be separated in cases 2.3.1.1 and 2.3.1.2 depending
on the question whether or not σi(x

2
4x

2
5) ∈ {a}+. If so then case 2.3.1.1 could

equal case 2.3.2, possibly leading to a different passe-partout. It can be seen
easily that there are numerous other options like this. On the other hand, there
are infinitely many different succinct patterns that can act as a substitute for
αabc and αabcd in the respective lemmata. Some of these patterns, for instance,
can be constructed replacing in αabc and αabcd the substring α0 = x2

4x
2
5x

2
6 by

any α′

0 = x2
px

2
p+1 . . . x

2
p+q, p > max{j | xj ∈ var(αabcd)}, q ≥ 4. Hence, the phe-

nomenon described in Lemma 2 and Lemma 3 is ubiquitous in ePAT. Therefore

we give some brief considerations concerning the question on the shortest pat-
terns generating a language without telltale in respect of ePAT. Obviously, even
for the proof concept of Lemma 2 and Lemma 3, shorter patterns are suitable. In
αabc, e.g., the substring x2

3 and the separating terminal symbol a in the middle
of the pattern can be removed without loss of applicability; for αabcd, e.g., the
substrings x2

3 and x2
7 can be mentioned. Nevertheless, we consider both patterns

in the given shape easier to grasp, and, moreover, we assume that the indicated
steps for shortening αabc and αabcd lead to patterns with minimum length:

Conjecture 2. Let the alphabets Σ1 and Σ2 be given by Σ1 := {a, b, c} and
Σ2 := {a, b, c, d}. Let the patterns αabc

′ and αabcd
′ be given by

αabc

′ := x1 a x2 x
2
4 x

2
5 x

2
6 x7 a x2 x

2
8 x

2
4 x

2
5 x

2
6,

αabcd

′ := x1 a x2 x
2
4 x

2
5 x

2
6 x8 b x9 a x2 x

2
10 x

2
4 x

2
5 x

2
6 x

2
11 x8 b x12.

Then LΣ1
(αabc

′) has no telltale in respect of ePATΣ1
, LΣ2

(αabcd
′) has no telltale

in respect of ePATΣ2
and there do not exist any shorter patterns in Pat with

this respective property.

Finally, we emphasise that we consider it necessary to prove our result for
both alphabet types separately. Obviously, for our way of reasoning, this is
caused by the fact that the proof of Lemma 2 cannot be conducted with αabcd

since this pattern – in combination with any passe-partout an adapted procedure
could generate – does not satisfy the conditions of Fact 1 for alphabets with three
letters. In effect, the problem is even more fundamental: Assume there are two
alphabets Σ1 and Σ2 with Σ1 ⊂ Σ2. If for some α ∈ PatΣ1

there is no telltale
Tα ⊆ LΣ2

(α) – as shown to be true for αabcd – then, at first glance, it seems
natural to expect the same for LΣ1

(α) since LΣ1
(α) ⊂ LΣ2

(α). These considera-
tions, however, immediately are disproven, for instance, by the fact that ePAT is
learnable for unary, but not for binary alphabets (cf. [11] and [14]). This can be
illustrated easily, e.g., by αabc and the pattern α = a ax1 a. With Σ1 = {a} and
Σ2 = {a, b} we may state LΣ1

(α) = LΣ1
(αabc), but LΣ2

(α) ⊂ LΣ2
(αabc). Thus,

for Σ1 both patterns generate the same language and, consequently, they have
the same telltale, whereas any telltale for LΣ2

(αabc) has to contain a word that is
not in LΣ2

(α). The changing equivalence of E-pattern languages is a well-known
fact for pairs of alphabets if the smaller one contains at most two distinct letters,
but, concerning those pairs with three or more letters each, [12] conjectures that
the situation stabilises. This is examined in the following section.

4 αabcd and the Equivalence Problem

The equivalence problem for E-pattern languages – one of the most prominent
and well discussed open problems on this subject – has first been examined in
[7] and later in [8], [5], and [12]. The latter authors conjecture that, for patterns
α, β ∈ Pat and any alphabet Σ, |Σ| ≥ 3, LΣ(α) = LΣ(β) if and only if there are
morphisms φ : var(α) −→ var(β) and ψ : var(β) −→ var(α) such that φ(α) = β

and ψ(β) = α (cf. [12], paraphrase of Conjecture 1). Furthermore, derived from
Fact 1 and Theorem 5.3 of [7], the authors state that the equivalence problem
is decidable if the following question (cf. [12], Open Question 2) has a positive
answer: For arbitrary alphabets Σ1, Σ2 with |Σ1| ≥ 3 and Σ2 = Σ1∪{d}, d 6∈ Σ1,
and patterns α, β ∈ PatΣ1

, does the following statement hold: LΣ1
(α) = LΣ1

(β)
iff LΣ2

(α) = LΣ2
(β)? In other words: Is the equivalence of E-pattern languages

preserved under alphabet extension?
We now show that for |Σ1| = 3 this question has an answer in the negative,

using αabcd – which for the learnability result in Section 3 is applied to |Σ| = 4 –
and the following pattern: α∼ := x1 a x2 x

2
3 x

2
4 x

2
7 x8 b x9 a x2 x

2
10 x

2
4 x

2
11 x8 b x12.

Theorem 2. Let the alphabets Σ1 and Σ2 be given by Σ1 := {a, b, c} and Σ2 ⊇
{a, b, c, d}. Then LΣ1

(αabcd) = LΣ1
(α∼), but LΣ2

(αabcd) 6= LΣ2
(α∼).

Proof. We first show that LΣ1
(αabcd) = LΣ1

(α∼). Let σ : (Σ1 ∪X)∗ −→ Σ1 be
any substitution that is applied to α∼. Then, obviously, the substitution σ′ with
σ′(xj) = σ(xj) for all xj ∈ var(α∼) and σ′(xj) = e for all xj 6∈ var(α∼) leads to
σ′(αabcd) = σ(α∼) and, thus, LΣ1

(α∼) ⊆ LΣ1
(αabcd).

Now, let σ be any substitution that is applied to αabcd. We give a second sub-
stitution σ′ that leads to σ′(α∼) = σ(αabcd) and, thus, LΣ1

(α∼) = LΣ1
(αabcd):

Case 1: σ(x2
4 x

2
5 x

2
6) ∈ {a, b, c}+ \ {b, c}+

Define σ′(x1) := σ(x1 a x2 x
2
3) [σ(x2

4 x
2
5 x

2
6)/ a],

σ′(x2) := [a \σ(x2
4 x

2
5 x

2
6)],

σ′(x9) := σ(x9 a x2 x
2
10) [σ(x2

4 x
2
5 x

2
6)/ a],

σ′(xj) := σ(xj), j ∈ {7, 8, 11, 12},

σ′(xj) := e, j ∈ {3, 4, 10}.

Case 2: σ(x2
4 x

2
5 x

2
6) ∈ {b, c}+ \ {c}+

Define σ′ symmetrically to case 1 using x9 for x1, x8 for x2, and x12 for x9

(cf., e.g., case 2.2 in the proof of Lemma 3).

Case 3: σ(x2
4 x

2
5 x

2
6) ∈ {c}∗

Define σ′(x4) = σ(x4 x5 x6) and σ′(xj) = σ(xj) for xj ∈ var(α∼), j 6= 4.

The proof for LΣ2
(α∼) 6= LΣ2

(αabcd) uses Fact 1 and Lemma 1 and is similar to
the argumentation on L(β) ⊂ L(αabc) in the proof of Lemma 2. ⊓⊔

Moreover, the reasoning on Theorem 2 reveals that Conjecture 1 in [12] – as
cited above – is incorrect:

Corollary 1. Let Σ be an alphabet, |Σ| = 3. Then LΣ(αabcd) = LΣ(α∼) and
there exists a morphism φ : var(αabcd) −→ var(α∼) with φ(αabcd) = α∼, but there
does not exist any morphism ψ : var(α∼) −→ var(αabcd) with ψ(α∼) = αabcd.

Note that the argumentation on Theorem 2 and Corollary 1 can be conducted
with a pattern that is shorter than αabcd (e.g., by removing x6).

In [16], that solely examines the above questions for the transition between
alphabets with four and alphabets with five letters, some methods of the present
section are adopted and, thus, they are explained in more detail.

References

[1] D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21:46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data. Inf.

Control, 45:117–135, 1980.
[3] D. Angluin and C. Smith. Inductive inference: Theory and methods. Comput.

Surv., 15:237–269, 1983.
[4] Ja.M. Barzdin and R.V. Freivald. On the prediction of general recursive functions.

Soviet Math. Dokl., 13:1224–1228, 1972.
[5] G. Dány and Z. Fülöp. A note on the equivalence problem of E-patterns. Inf.

Process. Lett., 57:125–128, 1996.
[6] E.M. Gold. Language identification in the limit. Inf. Control, 10:447–474, 1967.
[7] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with

and without erasing. Int. J. Comput. Math., 50:147–163, 1994.
[8] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns. J.

Comput. Syst. Sci., 50:53–63, 1995.
[9] S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern lan-

guages. New Generat. Comput., 8:361–370, 1991.
[10] A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages.

RAIRO Inform. théor., 28(3–4):233–253, 1994.
[11] A.R. Mitchell. Learnability of a subclass of extended pattern languages. In Proc.

COLT 1998, pages 64–71, 1998.
[12] E. Ohlebusch and E. Ukkonen. On the equivalence problem for E-pattern lan-

guages. Theor. Comp. Sci., 186:231–248, 1997.
[13] D. Reidenbach. A non-learnable class of E-pattern languages. Theor. Comp. Sci.,

to appear.
[14] D. Reidenbach. A negative result on inductive inference of extended pattern

languages. In Proc. ALT 2002, volume 2533 of LNAI, pages 308–320, 2002.
[15] D. Reidenbach. A discontinuity in pattern inference. In Proc. STACS 2004,

volume 2996 of LNCS, pages 129–140, 2004.
[16] D. Reidenbach. On the equivalence problem for E-pattern languages over four

letters. In Proc. MFCS 2004, LNCS, 2004. Submitted.
[17] R. Reischuk and T. Zeugmann. Learning one-variable pattern languages in linear

average time. In Proc. COLT 1998, pages 198–208, 1998.
[18] H. Rogers. Theory of Recursive Functions and Effective Computability. MIT

Press, Cambridge, Mass., 1992. 3rd print.
[19] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, volume 1.

Springer, Berlin, 1997.
[20] T. Shinohara. Polynomial time inference of extended regular pattern languages.

In Proc. RIMS Symp., volume 147 of LNCS, pages 115–127, 1982.
[21] T. Shinohara and S. Arikawa. Pattern inference. In Algorithmic Learning for

Knowledge-Based Systems, volume 961 of LNAI, pages 259–291. Springer, 1995.
[22] A. Thue. Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I Mat.

Nat. Kl., 7, 1906.
[23] R. Wiehagen and T. Zeugmann. Ignoring data may be the only way to learn

efficiently. J. Exp. Theor. Artif. Intell., 6:131–144, 1994.
[24] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning re-

cursive languages. In Algorithmic Learning for Knowledge-Based Systems, volume
961 of LNAI, pages 190–258. Springer, 1995.

