Skip to main content

A Function Representation for Learning in Banach Spaces

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3120))

Abstract

Kernel–based methods are powerful for high dimensional function representation. The theory of such methods rests upon their attractive mathematical properties whose setting is in Hilbert spaces of functions. It is natural to consider what the corresponding circumstances would be in Banach spaces. Led by this question we provide theoretical justifications to enhance kernel–based methods with function composition. We explore regularization in Banach spaces and show how this function representation naturally arises in that problem. Furthermore, we provide circumstances in which these representations are dense relative to the uniform norm and discuss how the parameters in such representations may be used to fit data.

This work was supported by NSF Grant No. ITR-0312113.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, K., Bredensteiner: Duality and geometry in support vector machine classifiers. In: Langley, P. (ed.) Proc. of the 17–th Int. Conf. on Machine Learning, pp. 57–63. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  2. Canu, S., Mary, X., Rakotomamonjy, A.: Functional learning through kernel. In: Suykens, J., et al. (eds.) In Advances in Learning Theory: Methods, Models and ApplicationsNATO Science Series III: Computer and Systems Sciences, vol. 190, pp. 89–110. IOS Press, Amsterdam (2003)

    Google Scholar 

  3. Carnicer, J.M., Bastero, J.: On best interpolation in Orlicz spaces. Approx. Theory and its Appl. 10(4), 72–83 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Dahmen, W., Micchelli, C.A.: Some remarks on ridge functions. Approx. Theory and its Appl. 3, 139–143 (1987)

    MATH  MathSciNet  Google Scholar 

  5. Deutsch, F.: Best Approximation in inner Product Spaces CMS Books in Mathematics. Springer, Heidelberg (2001)

    Google Scholar 

  6. Hein, M., Bousquet, O.: Maximal Margin Classification for Metric Spaces. In: Proc. of the 16–th Annual Conference on Computational Learning Theory, COLT (2003)

    Google Scholar 

  7. Kimber, D., Long, P.M.: On-line learning of smooth functions of a single variable. Theoretical Computer Science 148(1), 141–156 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lorenz, G.G.: Approximation of Functions, 2nd edn. Chelsea, New York (1986)

    Google Scholar 

  9. Gentile, C.: A new approach to maximal margin classification algorithms. Journal of Machine Learning Research 2, 213–242 (2001)

    Article  MathSciNet  Google Scholar 

  10. Leshno, M., Schocken, S.: Multilayer Feedforward Networks with a Non–Polynomial Activation Function can Approximate any Function. Neural Networks 6, 861–867 (1993)

    Article  Google Scholar 

  11. Matousek, J.: Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry. Springer, Berlin (2003)

    MATH  Google Scholar 

  12. Mhaskar, H.N., Micchelli, C.A.: Approximation by superposition of sigmoidal functions. Advances in Applied Mathematics 13, 350–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Micchelli, C.A., Pontil, M.: A function representation for learning in Banach spaces. Research Note RN/04/05, Dept. of Computer Science, UCL (February 2004)

    Google Scholar 

  14. Micchelli, C.A. Pontil, M.: Regularization algorithms for learning theory. Working paper, Dept. of Computer Science, UCL (2004)

    Google Scholar 

  15. Micchelli, C.A., Utreras, F.I.: Smoothing and interpolation in a convex subset of a hilbert space. SIAM J. of Scientific and Statistical Computing 9, 728–746 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Morrison, T.J.: Functional Analysis: An Introduction to Banach Space Theory. John Wiley Inc. New York (2001)

    MATH  Google Scholar 

  17. Orlicz, W.: Linear Functional Analysis. World Scientific, Singapore (1990)

    Google Scholar 

  18. Pinkus, A.: n–Widths in Approximation Theory. Springer, Ergebnisse (1985)

    MATH  Google Scholar 

  19. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143–196 (1999)

    Article  MathSciNet  Google Scholar 

  20. Rao, M.M., Ren, Z.D.R.: Theory of Orlicz Spaces. Marcel Dekker, Inc. New York (1992)

    Google Scholar 

  21. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York (1988)

    MATH  Google Scholar 

  22. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge (2002)

    Google Scholar 

  23. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (1999)

    Google Scholar 

  24. von Luxburg, U., Bousquet, O.: Distance–based classification with Lipschitz functions. In: Proc. of the 16–th Annual Conference on Computational Learning Theory, COLT (2003)

    Google Scholar 

  25. Wahba, G.: Splines Models for Observational Data. Series in Applied Mathematics, SIAM, Philadelphia, vol. 59 (1990)

    Google Scholar 

  26. Zhang, T.: On the dual formulation of regularized linear systems with convex risks. Machine Learning 46, 91–129 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Micchelli, C.A., Pontil, M. (2004). A Function Representation for Learning in Banach Spaces. In: Shawe-Taylor, J., Singer, Y. (eds) Learning Theory. COLT 2004. Lecture Notes in Computer Science(), vol 3120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27819-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27819-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22282-8

  • Online ISBN: 978-3-540-27819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics