
N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 74–87, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Behavioral Semantics of OOHDM Core Features
and of Its Business Process Extension

Hans Albrecht Schmid and Oliver Herfort

University of Applied Sciences,
Brauneggerstr. 55

D - 78462 Konstanz
xx49-07531-206-631 or -500

schmidha@fh-konstanz.de

Abstract. OOHDM models hypermedia-based Web applications by an object
model on three layers. Recently, an OOHDM extension by business processes
has been proposed. In all cases, the definition includes a formal description of
the syntactical aspects and a verbal description of the semantics. In this paper,
we give a behavioral definition of the semantics of the OOHDM core features:
navigation and advanced navigation; and of the proposed extension by business
processes. We derive application-specific model classes from predefined
behavioral model classes that have operations with a well-defined semantics.
The behavioral model classes collaborate with a Web Application virtual
Machine (WAM). The WAM models basic Web-browser characteristics, i.e.
HTTP-HTML characteristics. Thus, the semantics of an OOHDM Web
application model is precisely defined in an executable way.

1 Introduction

The Object-Oriented Hypermedia Design Method OOHDM by Schwabe and Rossi
[SR98] is a modeling and design method for Web applications, which describes
hypermedia-based navigation by an object model on three levels, the conceptual
level, the navigational level and the interface level. Recently, Schmid and Rossi
proposed an extension of OOHDM by business processes [SR02] [SR04]. The
definition of OOHDM includes a formal description of syntactical aspects and a
verbal description of the semantics.

However, verbal descriptions like that are not always precise, but often vague and
open to misunderstandings and doubts. A formal definition of the semantics is
required to cope with this problem. Since OOHDM uses object models, it lends itself
to a behavioral definition of the semantics in form of the object behavior.

We focus in this paper on a behavioral definition of the semantics of the OOHDM
core features, which are navigation and advanced navigation; and of the proposed
OOHDM business process extension. OOHDM models a Web application by
application-specific classes with a semantics that is given verbally. Our approach is to

A Behavioral Semantics of OOHDM Core Features 75

derive these classes from predefined behavioral model classes that have operations
with an executable semantics definition. The behavioral model classes, called shortly
model classes, collaborate with a Web Application virtual Machine (WAM). The
WAM models basic Web-browser characteristics, i.e. HTTP-HTML characteristics.
Thus, the semantics of an OOHDM model of a Web application is precisely defined
in an executable way.

We present and explain an OOHDM model of a Web shop that includes
navigation, advanced navigation and a business process in section 2. Section 3
introduces the Web Application virtual Machine WAM and related classes and
services. Section 4, 5 and 6 define the semantics of the OOHDM navigation,
advanced navigation and business process constructs by a behavioral model. Section
7 surveys shortly related work.

2 The Web Shop as an Example for an OOHDM Model

We use the Web shop presented in [SR04] as an example for an OOHDM model that
includes navigation, advanced navigation and a business process. OOHDM (for
details see [SR98]) models the objects forming the application domain in a conceptual
schema (see Figure 1); it models abstracted Web pages and the navigation
possibilities among them in a navigational schema (see Figure 2); and the
presentation aspects of Web pages (which we disregard) in an interface schema.

The conceptual schema is partitioned in entities (bottom) and in processes with
classes and activities (top), and the navigational schema in entity nodes, among which
you may navigate (left), and in activity nodes that belong to processes (right). UML
stereotypes, which OOHDM considers just as a classification, indicate the category to
which each object class belongs. But for the behavioral model definition, each
stereotype indicates the model class an application-specific class is derived from.
Note that the classes shown in Figure 1 and 2 do not give a complete application
model of the example Web shop, to avoid an overloading with details. The required
details will be given in sections 4-6.

The relationship between objects in the conceptual and navigational schema, like
that between an entity node CDNode and an entity CD, is given explicitly in the
OOHDM node definition syntax [SR98], but represented in the schemas only by the
correspondence of the names.

Pure Navigation
Consider, for example, the navigation possibilities in the CD store. On the left of the
navigational schema (see Figure 2), you find entity nodes (which are an abstraction of
Web pages) like CDNode or ShoppingCartNode. Links among nodes are represented
as directed edges which may be labeled with the link name. There are links
representing the navigation possibilities from the customer HomePageNode to the
CDNode or to the ShoppingCartNode, from the CDNode to the ShoppingCartNode
and back, and from one CD to other related CDs by using the “related” link between
CDNode’s.

76 H.A. Schmid and O. Herfort

Advanced Navigation
More advanced hypermedia applications are not composed of read-only pages; they
use Web pages as the interface for triggering different kind of actions that may
change the internal state of the application. An atomic action, like adding a product to
a shopping cart, calls an operation of an entity like ShoppingCart. When the user
presses the “add to shopping cart” button on the Web page that displays the CDNode,
called CDNode interface on the OOHDM interface layer, that button invokes, as
described on the OOHDM interface layer, the addToCart operation of the selected
CDNode. The CDNode sends the message add(CD) to the ShoppingCart object,
which changes its state.

+start()
+run()
+suspend()
+resume()
+commit()
+next()

-commitLink : FixedPageLink
-children[] : BasicActivity

«root activity»
CheckOut

+suspend()
+resume()

«basic activity»
ConfirmItems

«basic activity»
SelectShippingAddress

«basic activity»
SelectDeliveryOptions

+start()
+commit(d:PaymentData)()

«basic activity»
SelectPaymentOptions

+start()
+next(d:LoginData)()

«basic activity»
Login

«entity»
Customer

«entity»
ShippingAddress

«entity»
DeliveryOptions

«entity»
Order

+add(key:CD)()

«entity»
ShoppingCart

«entity»
CD

«entity»
PaymentOptions

Fig. 1. OOHDM conceptual schema of a Web shop including entities and a business process

Business Processes
An entity object like CD or Customer has a permanent lifetime and state; a process
object like CheckOut has a temporary state and no permanent lifetime (see [S99]
[SR04]). Processes and activities are modeled in the OOHDM conceptual schema (see
Figure 1 top), and activity nodes in the OOHDM navigational schema (see Figure 2
right).

Typically, a business process like CheckOut (see Figure 1 top) is composed of
several activities like Login, ConfirmItems, SelectShippingAddress, etc. This is
represented by an aggregation relationship in the conceptual schema. We consider a
business process as a root activity that may consist itself of a set of activities. An

A Behavioral Semantics of OOHDM Core Features 77

activity is either basic, like Login etc., or composed from other activities, like
CheckOut, following the composite pattern [GHJV95]. An activity collaborates with
application entities, like Login with Customer. An activity provides operations like
start, next, commit, suspend and resume, that allow to execute a business process.

+fd()
+rwer()
+rwer()
+fsdfsd()
+fsf()
+fdsf()
+fsd()
+()
+ds()
+d()
+d()
+d()
+d()
+d()
+d()
+f()
+f()
+d()
+d()
+d()

«activity node container»
CheckOutNodeContainer

«fixed entity node»
HomePageNode

+addToCart()
+resumeCheckout()

«dyn entity node»
CDNode

+startCheckout()

«dyn entity node»
ShoppingCartNode

+commit()

«activity node»
SelectPaymentOptionsNode

+next()

«activity node»
SelectDeliveryOptionsNode

+next()

«activity node»
SelectShippingAddressNode

+suspendCheckout()
+next()

«activity node»
ConfirmItemsNode

+next()

«activity node»
LoginNode

start

next

nextnext

next
suspend

resume

terminate

addToCart() {
 value = this.getField(key);
 shoppingCart.add(value); }

related

Fig. 2. OOHDM navigational schema of a Web shop including navigation, advanced
navigation and a business process

An activity node like LoginNode models abstractly a Web page, presenting the
output of an activity and accepting its input. The OOHDM interface layer (not shown)
describes which buttons, like commit or next, a node contains. Pressing a button
triggers a matching method of the activity node, like next of LoginNode, which calls
the matching method of the activity, like next(d:LoginData) of Login, passing the user
input. An activity node is shown in the context that is created by its process. This
context is represented as an ActivityNodeContainer, like CheckOutNodeContainer
(Figure 2 right).

An edge labeled with a reserved label start, terminate, suspend, resume or next
does not represent a navigational link, but the possibility to go from or to get to an
activity node by process execution. Informally, the edge semantics is as follows (see
[SR04]). The start edge from the ShoppingCartNode to the CheckOutNodeContainer
represents starting the CheckOut process from navigation, the terminate edge
terminating it and taking navigation up again. A next edge among activity nodes, e.g.
from LoginNode to ConfirmItemsNode, represents the transition from one to the next
activity, including the completion of the first and the starting of the next activity. An
activity diagram (not shown) that forms part of the conceptual schema shows the
possible flow of control among the activities.

A Web application may allow that a business process is suspended to do
temporarily some navigation. E.g., a user may suspend checking out at the
ConfirmItemsNode and navigate to the CDNode to get more information about CDs
he is buying. This is represented by a suspend edge. A resume edge from an entity

78 H.A. Schmid and O. Herfort

node to an activity node container, like the one leading from CDNode to
CheckoutNodeContainer, represents returning from the temporary navigation and
resuming the business process at the state it was suspended.

3 Model Classes and the Web Application Virtual Machine

To define the semantics of application-specific classes like those presented in Figure
1 and 2, we derive them from behavioral model classes with a predefined semantics.
We use the UML stereotype “model“ to label a model class. The basic model classes
are: Entity, RootActivity, and BasicActivity on the conceptual layer; Node and Link
on the navigation layer; and InteractionElement on the interface layer. Node, Link
and InteractionElement are specialized as described in the next paragraphs and Figure
3. The model classes collaborate with the Web Application virtual Machine,
abbreviated WAM. The WAM models basic Web-browser characteristics, i.e. HTTP-
HTML characteristics as seen from a Web application.

+getPage() : WebPage
+getField(n:Name)() : Value
+setField(n:Name,v :Value)()
+getFieldNames() : Name[]

«model»
Node

«model»
Button

«model»
DynEntityNode

«model»
FixedEntityNode

+trav erse()

«model»
FixedPageLink

+trav erse(k:Key)()

«model»
DynPageLink

«model»
DynPageAnchor

«model»
FixedPageAnchor

«model»
Link

+nav igate()

«model»
Anchor

+clicked()

«model»
InteractionElement

«model»
ActivityNode

«model»
EntityNode

Fig. 3. Specialized behavioral model classes Node, InteractionElement and Link

The model class Node models a Web page abstracting from many of its concrete
characteristics, and the model class InteractionElement models interaction elements
like anchors and buttons.

The class InteractionElement defines the operation clicked() which is called when
an end user clicks at the interaction element. We refine the class InteractionElement
in Anchor and Button, and Anchor in FixedPageAnchor and DynPageAnchor. Their
detailed characteristics are presented in section 4 and 5.

The class Node defines the (abstract) operations getPage(): WebPage, getField(
n:Name): Value, setField(n: Name, v: Value), getFieldNames(): Name []. It contains
an array of InteractionElements. We refine a Node into EntityNode and

A Behavioral Semantics of OOHDM Core Features 79

ActivityNode: an EntityNode may contain Anchor’s and Button’s, an ActivityNode
only Button’s as InteractionElements. The class Link is refined into FixedPageLink
with a method traverse(), and DynPageLink with a method traverse(k: Key).

The WAM has the attribute currentNode, a reference to the currently displayed
Node, and an operation display(n:Node) {currentNode=n; showPage(n.getPage());}.
When a user enters or edits data on the currently displayed page, the WAM calls the
setField-method of the currentNode to change the state of the Node. When a user
clicks at an interaction element, the WAM calls the operation clicked of the
corresponding Anchor or Button of the currentNode.

In the following sections, the behavioral model gives the executable definition of
the operations in the form of UML notes in Java. As an alternative to Java, we might
use the action semantics of UML 1.5/2.0. Operations defined by the behavioral model
are printed in bold fonts to distinguish them from application-specific operations. For
lack of space, the behavioral model presented does not include items like error cases.

4 The Behavioral Semantics of Navigation

Navigation allows a user to navigate from a given node to a linked node by clicking
at the link. Its main characteristic is that the state of navigation is determined only by
the page displayed by the browser and its content [SR04]. The behavioral model of
navigation mirrors this characteristic: it shows that navigation does not cause any
state changes but that of the current node of the WAM.

We distinguish two kinds of navigation, navigation among Web pages with a fixed
content and navigation among Web pages with a dynamic content.

Navigation Among Web Pages with a Fixed Content
Fixed page navigation follows a link to a node without dynamically generated
content, like the link from CDNode to HomePageNode in the navigational schema
Figure 2. The behavioral model shown in Figure 4 contains, besides the user-defined
classes for the source and target node of the link, only the model classes: Anchor,
FixedPageAnchor, and FixedPageLink; which are instantiated and configured to work
together. These model classes have executable definitions of the methods clicked,
navigate and traverse.

A node like the CDNode contains a FixedPageAnchor instance, which references a
FixedPageLink instance, which, in turn, references the target node of the link. Each
reference is set by a constructor parameter. When the WAM displays a Web page, i.e.
a Node, and a user clicks at the Anchor of a fixed page link, the WAM calls the
clicked-operation. This forwards the call to the navigate operation of the
FixedPageAnchor, which calls the traverse-operation of the FixedPageLink. The
traverse-operation calls the display-operation of the WAM with the target node as a
parameter. The WAM sets, as described in section 3, that node as the current node
and calls its getPage-operation in order to display the page.

80 H.A. Schmid and O. Herfort

+clicked()
+abstract navigate()

«model»
Anchor

clicked() {
 this.navigate(); }

+addToCart()

-concreteAnchor : Anchor

«dyn entity node»
CDNode

1 *

navigate() {
 theLink.traverse(); }

+traverse()

-targetNode : FixedEntityNode

«model»
FixedPageLink

«fixed entity node»
HomePageNode

traverse() {
 WAM.display(targetNode); }

getPage() {
 return page; }

11

1

1

+navigate()

-theLink : FixedPageLink

«model»
FixedPageAnchor

+getPage() : Page

«model»
FixedEntityNode

Fig. 4. Static navigation from CDNode to HomePageNode

clicked() {
 this.navigate(); }+getLinkKey() : Key

-concreteAnchor : Anchor

«dyn entity node»
ShoppingCartNode

1 *

navigate() {
 theLink.traverse(myNode.getLinkKey()); }

+traverse(k:Key)()

-targetNode : DynEntityNode

«model»
DynPageLink

+addToCart()
+find(k:Key)()
+set()

«dyn entity node»
CDNode

traverse(k:Key) {
 targetNode.find(k);
 targetNode.set();
 WAM.display(targetNode); }

11

1

1

+clicked()
+abstract navigate()

«model»
Anchor

+navigate()

-theLink : DynPageLink
-myNode : EntityNode

«model»
DynPageAnchor

+getPage() : Page
+abstract find(k:Key)()
+abstract set()

«model»
DynEntityNodegetPage() {

 return page; }

+static find(k:Key)()

«entity»
CD

Fig. 5. Dynamic navigation from ShoppingCart Node to CDNode

Navigation to Web Pages with a Dynamically Generated Content
Navigation to a dynamic page is similar to fixed page navigation, except for the key
required to identify the dynamic content (see Figure 5). The differences are:

- A source node of a dynamic link has an operation getLinkKey that returns a key
identifying the dynamic content of the target node.

- A DynEntityNode defines an operation find(k: Key) that fetches the dynamic
node content from the associated entity (calling its static find(k:Key)-operation), and
a set-operation to set the (found) dynamic content into the attribute fields.

- The class DynPageAnchor has a navigate-operation that fetches the key of the
dynamic content from the source node, called myNode, and passes it as a parameter
with the call of the traverse-operation. The traverse-method of the DynPageLink

A Behavioral Semantics of OOHDM Core Features 81

class calls the find-operation of its target node of type DynEntityNode with the key as
a parameter, and then its set-operation so that the target node sets its dynamically
generated content. Last, it calls the display-operation of the WAM with the target
node as a parameter.

5 The Behavioral Semantics of Advanced Navigation

Advanced navigation allows a user to trigger an atomic action by pressing a button on
a Web page. An atomic action enters or edits information in a Web application,
modifying the state of application objects that are modeled in the conceptual schema.
Consequently, the Web application state is composed by the state of the current node
displayed by the browser, and by the state of the application objects. The behavioral
model of advanced navigation shows that not only the current node of the WAM, but
also application domain objects may change their state.

For example, consider the addToCart operation of the CDNode in Figure 2, which
is triggered by the AddToCartButton. The behavioral model for advanced navigation
(see Figure 6) shows the model class Button with the operations clicked and action. A
derived application-specific class, like AddToCartButton, implements the action-
method, which calls an operation of the source node, like addToCart of CDNode.

+action()

-sourceNode : CDNode

«button»
AddToCartButton

+addToCart()
+getField(n:Name)() : Value

-name : String
-performer : String
-price : String
-concreteButton : Button
-shoppingCart : ShoppingCart
-key : Key

«entity node»
CDNode

1 *

addToCart() {
 value = this.getField(key);
 shoppingCart.add(value); }

+clicked()
+abstract action()

«model»
Button

action() {
 sourceNode.addToCart(); }

clicked() {
 this.action(); }

1

1

Fig. 6. Triggering the execution of the atomic addToCart-action by a button

When the WAM displays a Web page, i.e. a node, and a user clicks at a button on
this page, the WAM calls the operation clicked of this button. The clicked-method
forwards the call to the action-method, which forwards the call to the addToCart-
method of the CDNode. This method fetches the value from the key-field of the
(currently presented) CD and sends the message add(value) to the ShoppingCart
object, which changes the state of the shopping cart.

Note that the execution of an atomic action does not imply the navigation to
another node. This would have to be modeled by adding a Link to CDNode and
addToCart calling additionally the traverse-method of the link.

82 H.A. Schmid and O. Herfort

6 The Behavioral Semantics of Business Processes

The main characteristics of a business process (see [SR04]) are that it:
• drives the user through its activities. This means it defines the set of activities to

be executed, and the possible control flow among them.
• keeps its state internally. The state can be changed only by the process itself on a

user interaction, but not by the user pressing a browser button.
The behavioral semantics of a business process mirrors these characteristics. The

behavioral model defines the semantics of process state transitions, which are
represented by process-related edges like start and next in the navigational schema
(see Figure 2): it shows that a business process changes its state only when a process
state transition is triggered by the user, and that, in general, the process, and not the
user, selects the next activity for execution.

To make the behavioral model not unnecessarily difficult to understand, we make
the restriction (not made by [SR04]) that there are only two levels of process
execution, i.e. a process consists of a root activity with basic activities as children.
The behavioral model defines the classes RootActivity and BasicActivity, with
operations like start, run, next, commit, suspend, and resume with a predefined
semantics, given by final methods or inherited from class Thread. Application-
specific activity classes are derived from them.

A business process is executed independently from navigation in an own thread, so
that it can preserve its state when suspended, and be resumed at the point of the
suspension. We use Java threads to model the business process threads and navigation
thread. The model class RootActivity, derived from Thread, inherits Thread-
operations to start, suspend, resume and complete a business process thread.

6.1 Starting and Terminating a Business Process and an Activity

A business process is started from an action method of an entity node. E.g., the
startCheckout-method of the ShoppingCartNode (see Figure 2 and 7), triggered by a
user pressing a StartButton, starts the Checkout process and suspends the navigation
thread, calling suspend of the Thread under which it runs. The mechanics of buttons
and invocation of the action-method is exactly the same as described in section 5; so
we do not present it again here and in the following examples and figures.

The behavioral model for starting and terminating a business process is shown in
Figure 7. The start-method that Checkout inherits from Thread calls the predefined
run-operation of the business process thread. The final run-method of the model class
RootActivity, which realizes that operation, is a template method [GHJV95] that is
inherited by the application-specific Checkout root activity. It calls the application-
specific methods startHook for initialization and getNextActivity to select the basic
activity to be executed, sets this activity, like Login, as current (-ly executed) activity,
and starts it.

A Behavioral Semantics of OOHDM Core Features 83

Starting a Basic Activity
The predefined start-operation of the model class BasicActivity initializes the content
data of the associated activity node and displays it as Web page. It is a template
method that is inherited by an application-specific activity like Login. The start-
method calls the application-specific startHook-method. This method usually gets the
data to be presented to the user from the application domain objects and puts them
into the attribute fields of the associated ActivityNode; but the Login activity presents
no data in the LoginNode. Then the start-method calls the display-method of the
WAM passing the activity node like LoginNode as a parameter, so that the WAM
displays it as a Web page.

Completing a Basic Activity
All activity nodes of the Checkout process have a next-button to complete the activity
and go to the next one, except for the SelectPaymentOptionsNode which has a
commit-button, since it completes the SelectPaymentOptions activity and then the
Checkout process.

+startHook()
+getNextActivity() : BasicActivity
+commitHook()
+traverseCommitLink()

-children[] : BasicActivity
-commitLink : FixedPageLink

«root activity»
Checkout

+startHook()
+next(d:LoginData)()

-myNode : LoginNode

«basic activity»
Login

+final run()
+final next()
+final commit()
+abstract startHook()
+abstract getNextActivity() : BasicActivity
+abstract commitHook()
+abstract traverseCommitLink()

-current : BasicActivity

«model»
RootActivity extends Thread

+final start()
+abstract startHook()

-myNode : ActivityNode
-parent : RootActivity extends Thread

«model»
BasicActivity

+next()
-fetchLoginData() : LoginData

+myActivity : Login
+loginData : LoginData

«activity node»
LoginNode

run() {
 startHook();
 current = getNextActivity();
 current.start(); }

start() {
 startHook();
 WAM.display(myNode); }

+startCheckout()

-checkout : RootActivity extends Thread

«dyn entity node»
ShoppingCartNode

startCheckout() {
 checkout.start();
 //suspend NavigationThread
 this.suspend(); }

+startHook()
+commit(d:PaymentData)()

-myNode : SelectPaymentOptionsNode
-parent : Checkout

«basic activity»
SelectPaymentOptions

+commit()
-fetchPaymentData() : PaymentData

+myActivity : SelectPaymentOptions
+paymentData : PaymentData

«activity node»
SelectPaymentOptionsNode

next() {
 current = getNextActivity();
 current.start(); }

commit() {
 commitHook();
 navThread.resume();
 traverseCommitLink();
 //BusinessProcessThread
 //completed }

+traverse()

-targetNode : FixedEntityNode

«model»
FixedPageLink

next() {
 loginData = fetchLoginData();
 myActivity.next(loginData); }

commit() {
 paymentData = fetchPaymentData();
 myActivity.commit(paymentData); }

commit(d:PaymentData) {
 //check data
 //store in PaymentOptions entity
 parent.commit(); }

next(d:LoginData) {
 //compare password
 if successful
 parent.next(); }

Fig. 7. Starting the CheckOut process from the ShoppingCartNode and completing it from the
SelectPaymentOptionsNode.

For example, the LoginNode has a next button which triggers its next-method. This
method fetches the data from the LoginNode which the user has entered during the
Login activity, and passes them as parameters with the call of the method next(
d:LoginData) of the Login activity. This method compares the entered user name and
password with the associated Customer object, and calls, if the check is successful,
the next-method of Checkout. This method is a template method inherited from the
model class RootActivity; it selects the activity to be executed next by calling the

84 H.A. Schmid and O. Herfort

application-specific hook method getNextActivity, sets this activity as current (-ly
executed) activity and starts it.

Terminating the Checkout Business Process
A business process like Checkout is terminated when it has completed its work, that is
when the last of its child activities, SelectPaymentOptions, has completed its work
and Checkout has completed the customer order and sent it off.

The SelectPaymentOptions activity completes its work when the commit-button
triggers the commit-method of the SelectPaymentOptionsNode (see Figure 7 bottom
right). This method fetches the payment options data, which the user has entered
during the SelectPaymentOptions activity, and passes them as parameters with the
call of the commit(d: PaymentData) method of the SelectPaymentOptions activity.
This method checks the entered data and stores them in the PaymentOptions object.
Then it calls the commit-method of its parent activity Checkout.

The Checkout activity inherits the template method commit from the model class
RootActivity. The commit-method calls the application-specific commitHook to
complete the processing of the order before it resumes the navigation thread (with the
Thread resume-operation) and calls the application-specific traverseCommit Link-
method. This method calls the traverse-operation of the FixedPageLink to the
HomePageNode, so that the WAM presents the home page to the user. The business
process thread is completed with the end of the commit-method.

6.2 Suspending and Resuming a Business Process

A business process like Checkout may be suspended only from activity nodes where
this is provided for by a Web application designer. E.g., the ConfirmItemsNode has a
method suspendCheckout that is triggered by a user pressing a NavigateToCD-button.
The behavioral model for suspending and resuming a business process is given in
Figure 8.

The suspendCheckout-method of ConfirmItemsNode calls the resume-operation of
the navigation thread, and the traverse-method of the suspendLink in order to
navigate to the CDNode, before it calls suspend of ConfirmItems to suspend the
business process.

The ConfirmItems activity inherits the suspend-method, which is a template
method, from the model class BasicActivity. This method calls the suspendHook,
which saves the activity state if required, as e.g. after user inputs during the activity,
and stores it temporarily in the activity state, and then the suspendBP-method of the
Checkout activity. The suspendBP-method, which the Checkout activity inherits from
the model class RootActivity, calls the application-specific suspendHook that
performs application-specific actions before the suspension, and then the Thread
suspend-operation to suspend the business process thread.

Resuming the Checkout Business Process
A business process like Checkout may be resumed only from entity nodes where this
is provided for by a Web application designer. E.g., CDNode has a resumeCheckout-

A Behavioral Semantics of OOHDM Core Features 85

method that is triggered by a user pressing a ResumeCheckout-Button during the
temporary navigation. Figure 8 gives the behavioral model for resuming a business
process, which suspends the navigation thread.

The resumeCheckout-method of CDNode calls resume of the Checkout process (if
Checkout is not suspended, an exception is returned) and then the suspend-method
that the navigation thread inherits from Thread. The resume-method, which Checkout
has inherited via the model class RootActivity from Thread, resumes the business
process thread which has been suspended in the suspendBP-method. When this
method is resumed, it calls the application-specific resumeHook, which may e.g.
restore some state if required. Finally, it calls the resume-method of the basic activity
like ConfirmItems that was active when the business process was suspended.

+suspendHook()
+resumeHook()

«root activity»
Checkout

+suspendHook()
+resumeHook()
+getNode() : Node

-myNode : ConfirmItemsNode

«basic activity»
ConfirmItems

+final suspendBP()
+abstract suspendHook()
+abstract resumeHook()

-current : BasicActivity

«model»
RootActivity extends Thread

+final suspend()
+final resume()
+abstract suspendHook()
+abstract resumeHook()
+abstract getNode() : Node

-parent : ParentActivity

«model»
BasicActivity

+suspendCheckout()
+getCDKey() : Key

+myActivity : ConfirmItems
+suspendLink : DynPageLink

«activity node»
ConfirmItemsNode

+resumeCheckout()

-checkout : Checkout

«entity node»
CDNode

+traverse(k:Key)()

«model»
DynPageLink

suspendBP() {
 suspendHook();
 suspend(); //this Thread
 resumeHook();
 current.resume(); }

suspend() {
 suspendHook();
 parent.suspendBP(); }

resume() {
 resumeHook();
 WAM.display(getNode()); }

resumeCheckout() {
 checkout.resume(); //Thread
 suspend(); //this Thread }

suspendCheckout() {
 navThread.resume(); //Thread
 suspendLink.traverse(getCDKey());
 myActivity.suspend(); }

11

1

1

Fig. 8. Suspending the CheckOut process from ConfirmItemsNode and resuming it from
CDNode

ConfirmItems has inherited the resume-method from the BasicActivity class. The
resume-method calls first the application-specific resumeHook. This method restores
the data, which were presented to the user and saved when the activity was
suspended, from the application state or temporary objects, and puts them into the
attribute fields of the associated ActivityNode, like ConfirmItemsNode. The resume-
method calls then the display-method of the WAM passing the ConfirmItemsNode as

86 H.A. Schmid and O. Herfort

a parameter so that the WAM displays the ConfirmItemsNode as a Web page, and the
user can go on with the execution of the Checkout process.

7 Related Work

Many Web application design methods proposed in the last years, like WebML by
Ceri, Fraternali, and Paraboschi [C00] and W2000 by Baresi, Garzotto, and Paolini
[B00], do not have special constructs to model business processes. Recent proposals
like UWE by Koch and Kraus [KKCM03], OO-H by Cachero and Melia [KKCM03],
and OOWS by Pastor, Fons and Pelechano [PFP03] have constructs for the modeling
of business processes., but do not give a formal definition of the semantics of the
model constructs. OOWS captures functional system requirements formally to
construct from them the Web application.

8 Conclusions

We have given a behavioral definition of the semantics of OOHDM and of its
business process extension. The definition is not complex and easy to understand.
One reason for that seems to be that the OOHDM designers did an excellent work: the
OOHDM conceptual and navigational layers, and a few aspects of the interface layer,
seem to focus exactly on all important aspects of a Web applications, without giving
unnecessary details nor a description of platform- or technology dependent aspects.
Another reason seems to be that OOHDM as an object-oriented approach lends itself
to a behavioral definition of the semantics.

We have defined a Web Application virtual Machine WAM. Application-specific
classes and behavioral model classes collaborate with it. A version of the WAM that
neglects the Web page layout given by the OOHDM interface schema, is easy to
implement. With that WAM version, both the behavioral definition of the OOHDM
semantics and an OOHDM model of a Web application can be directly executed and
tested.

Another very promising aspect is the use of the behavioral OOHDM semantics
definition for a model driven architecture approach. For example, the entities from
the conceptual layer may either model e.g. Corba or Enterprise JavaBean application
objects from an existing back-end application, or they may conceptualize non-
existing lightweight entities that provide just an interface to a database management
system. In the first case, a generator just generates code to invoke the existing
application objects from the servlets that realize the OOHDM nodes, whereas in the
second case, a generator generates servlets that realize the OOHDM nodes and
embody the database access provided by the lightweight entities.

A Behavioral Semantics of OOHDM Core Features 87

Acknowledgements. Our thanks for a partial support of the project are due to the
International Bureau of the BMBF, Germany, Bilateral Cooperation with Argentina,
and SeCTIP, Argentina; and to the Ministerium fuer Wissenschaft, Forschung und
Kunst, Baden-Württemberg.

References

[B00] L. Baresi, F. Garzotto, and P. Paolini. ”From Web Sites to Web Applications:
New issues for Conceptual Modeling”. In Procs. Workshop on The World Wide
Web and Conceptual Modeling, Salt Lake City (USA), October 2000.

[C00] S. Ceri, P. Fraternali, S. Paraboschi: ”Web Modeling Language (WebML): a
modeling language for designing Web sites”. Procs 9th. International World
Wide Web Conference, Elsevier 2000, pp 137-157

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: “Design Patterns: Elements of
Reusable Object-Oriented Software“. Addison-Wesley, 1995

[KKCM03] N.Koch, A.Kraus, C.Cachero, S.Melia: “Modeling Web Business Processes with
OO-H and UWE“. IWWOST 03, Proceedings 3rd International Workshop on
Web-Oriented Software Technology, Oviedo, Spain, 2003

[PFP03] O. Pastor, J. Fons, V. Pelechano: “OOWS: A Method to Develop Web
Applications from Web-Oriented conceptual Models“. IWWOST 03, Proceedings
3rd International Workshop on Web-Oriented Software Technology, Oviedo,
Spain, 2003

[S99] H.A. Schmid: ”Business Entity Components and Business Process Components”;
Journal of Object Oriented Programming, Vol.12, No.6, Oct. 99

[SR02] H.A. Schmid, G. Rossi: “Designing Business Processes in E-Commerce
Applications“. In E-Commerce and Web Technologies, Springer LNCS 2455,
2002

[SR04] H. A. Schmid, G. Rossi “ Modeling and Designing Processes in E-Commerce
Applications“. IEEE Internet Computing, January 2004

[SR98] D. Schwabe, G. Rossi: ”An object-oriented approach to web-based application
design”. Theory and Practice of Object Systems (TAPOS), Special Issue on the
Internet, v. 4#4, pp. 207-225, October, 1998

	1 Introduction
	2 The Web Shop as an Example for an OOHDM Model
	3 Model Classes and the Web Application Virtual Machine
	4 The Behavioral Semantics of Navigation
	5 The Behavioral Semantics of Advanced Navigation
	6 The Behavioral Semantics of Business Processes
	6.1 Starting and Terminating a Business Process and an Activity
	6.2 Suspending and Resuming a Business Process

	7 Related Work
	8 Conclusions
	References

