
Interplay of Content and Context

Rudi Belotti, Corsin Decurtins, Michael Grossniklaus,
Moira C. Norrie, and Alexios Palinginis

Institute for Information Systems, ETH Zurich
8092 Zurich, Switzerland

{belotti,decurtins,grossniklaus,norrie,palinginis}@inf.ethz.ch

Abstract. We examine general and abstract approaches to web engi-
neering and context-awareness and how they interact with each other.
This involves considering the appropriateness of approaches to context
when used by a complex application such as a content management sys-
tem, while, at the same time, presenting how a content management
system can use context information to enrich its functionality. We show
that the integration of such systems is feasible only if, in both fields,
we make use of approaches based on strong information models. Last
but not least, we show that the relationship between context engines
and content management systems is not at all a one-sided client-server
scenario, but rather a mutually important symbiosis.

1 Introduction

As the amount of available digital data continues to grow, vast quantities of in-
formation surround us in our everyday life. With the abundance of information
that is accessible to us, the problem no longer is whether information is within
reach, but rather whether the right information can be delivered in the right
form to the right person at the right time. Hence, the value of information is
no longer solely dependent on the quality of the information itself, but is in-
fluenced by other factors as well. Emerging from classical information systems,
content management systems have been developed to attain the goal of adequate
information delivery. These systems extend the traditional functionalities of or-
ganising and accessing data with means to publish, present and deliver content.
Even though content management systems were originally developed for the ad-
ministration of large websites, they have proven to be so successful that a wide
range of other applications use content delivery technologies nowadays.

At the same time, a shift in applications to mobile and ubiquitous informa-
tion environments is clearly noticeable. Applications within this domain require
highly situation-aware computing and it no longer suffices to simply present the
information to the user in the right form. Depending on the user’s situation,
the information must be filtered according to what is important for the user.
Information is no longer static, but highly dynamic as the situation of the user
is altering continually according to an ever-changing environment. Context and
context-aware computing have been recognised as key concepts in reaching this

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 187–200, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



188 R. Belotti et al.

goal and a lot of research has been invested in this topic. Today, application-
specific solutions and context frameworks exist, but a generic context engine
with a semantic model for context is still lacking.

We have developed such a context engine for the management of context
information that can be coupled with existing applications to augment them with
the notion of context. We have also developed a content management system that
supports the delivery of context-dependent content, but does not specify its own
model for context. In this paper, we present the integration and interplay of these
two aspects and components and how they complement each other. As we will
see, the interplay between content and context is not a client-server relationship,
but rather a symbiosis where both counterparts profit from each other.

Sect. 2 presents an overview of related work that has been done in the field
of context-aware computing in general and specifically in the area of content
management systems. In Sect. 3 we then describe our context engine. Our content
management system that is used to demonstrate the interplay of content and
context is outlined at the beginning of Sect. 4 followed with a discussion of how
context influences the content management system. The opposite direction—how
the content management system influences the context engine—is presented in
Sect. 5. Finally, future directions and conclusions are given in Sect. 6.

2 Related Work

From the very beginning of the batch processing era, programs have been de-
signed to produce and present an appropriate output to some given input. Al-
though nowadays the input could be issued interactively and an application may
even accept input from arbitrary sources, the principle of the black-box still
holds. The output is completely determined by the given input. In contrast,
context-aware applications also use implicit information hidden in the applica-
tion’s and user’s environment [1], in addition to explicit input, to determine the
output.

The influence of user behaviour and, in general, the situation of the en-
vironment where an interaction is taking place has been identified as context
and studied by different communities including philosophy, linguistics and social
sciences. Later people in the field of computer science borrowed the term and
applied it in various applications [2,3,4]. With the rise of ubiquitous and perva-
sive computing, context has strongly been associated with information extracted
from the physical environment. Spatial information such as location, orientation
and speed or environmental information such as temperature, light and noise
level are commonly sensed context properties for this application domain.

Context-aware applications have been designed and implemented such as
office and meeting tools [5], tourist guides [6,7] and specific fieldwork enhance-
ments [8]. All those examples propose context models specifically tailored to
each application domain and directly implemented in the application logic. Many
common concepts and components had to be implemented in isolation for each
application. At the same time, some researchers wanted to provide a reusable
and helpful infrastructure and proposed general context frameworks [9,10].



Interplay of Content and Context 189

Based on such a framework, a context-engine can be created to acquire, man-
age and offer context-relevant information. Applications can then use the engine
to gather context information which enriches their behaviour. Furthermore, the
proposals offer an infrastructural solution to the architecture, based on either
a transparent host/port distributed communication [9] or CORBA [10]. Fur-
ther, [9] separates the actual sensor from the abstract context which allows the
decoupling of context acquisition and the application using the context.

Although the functionality and infrastructure offered by such context frame-
works simplifies the implementation of context-aware applications, they still lack
a clear information and conceptual model that describes the context engine. Such
a metamodel can be used as a reference model for context-engines, increasing
the understanding of different approaches and enabling a comparison based on
the concepts introduced in the metamodel. Context information exchange is also
facilitated by using appropriate mappings to transform context-engine specific
data to the metamodel. In [11], we present a general information model for con-
text and, in the next section, we describe a context engine based on that model.

A general purpose context-engine can be used by any type of application.
Nowadays, web-based applications represent a major and common class of appli-
cations as web technologies and infrastructure have become defacto standards for
many application environments. In the field of web engineering, the first steps to-
wards context-awareness were made by introducing adaptation concepts directly
into hypertext models [12,13]. Such Adaptive Hypermedia Systems (AHS) are
based on various user characteristics presented in a user model. Most of the
early examples focus on information collected from the user’s click stream. In
[14], user data, usage data and environment data is distinguished. An exten-
sive discussion on the field of AHS and related work can be found in [15]. We
should mention here that user characteristics such as presented in AHS are not
always necessarily describing context, but rather the user profile in general. For
example, user preferences such as colours, styles and interests might be part of
the current context, i.e. they contribute to the dynamic characterisation of an
interaction situation, but this does not have to be the case.

AHS employs a user model to capture the adaptive relevant properties. After
each interaction, the user model is updated and, based on adaptation rules,
appropriate output is generated. Adaptation is applied to the basic concepts of
hypermedia models, namely, component and link. Rules are defined to control
the composition of components (fragments) or even alter link presentation.

Due to the fact that components encapsulate both notions of content and
presentation in an indistinguishable manner, it is not possible to adapt only
one of them in isolation. This is unfortunate if one considers that a major
adaptation requirement of web applications is context-dependent presentations.
When evaluating AHS, we are confronted with the situation found in other
application-specific approaches. The user model is inspired and specified with
the browser/server environment in mind. Thus, no general approach to context
is taken with important properties such as context history, sensor generality,
quality etc.



190 R. Belotti et al.

To provide a better solution, model-based approaches to web site develop-
ment have recently been studied with respect to adaptation [16] and context-
awareness [17,18,19]. Based on strong and abstract information models, these
approaches have the potential to exploit context-awareness in many dimensions,
keeping the solutions as simple as possible. In [16], delivery channel charac-
teristics can be used to influence the hypertext and navigational model of the
original WebML model [20]. In this approach, no explicit context model is used.
Instead, general data modelling techniques are made available to manage con-
text information. Although the presentation cannot be adapted explicitly, it can
be influenced by adapting similar content units bound to different presentation
templates.

In OMSwe [17], the database management system OMS Pro [21] is extended
with versioning and basic content and presentation management facilities to
empower a web development environment. All relevant information, from the
development process to implementation and application data, is managed by
the database system. Context information is provided in the form of characteris-
tic/value pairs from a context gateway component. This information builds the
request state, based on which, the database will retrieve the most appropriate
versions of the objects involved in the response. eXtensible Content Management
(XCM) [22] takes the approach one step further and defines a full-strength con-
tent management system with well defined general information concepts. Based
on this approach, we present here the interplay between this system and the
general context engine that we developed. Details of XCM are given in Sect. 4.

3 Context Engine

In [11], we consolidated research in the field of context and context-awareness and
presented a model for a generic context engine. The basic and abstract concept
of context is influenced both by the application and framework requirements,
as well as the problems presented by Dourish in [23]. In this section, we use an
example to describe how our context engine works and how application-specific
models can be specified.

Each entity of an application can potentially have a context. An application
schema, for instance, could define the concept of a room. The context of a room
could be described by its physical properties such as the temperature and the
light intensity. For each point in time, the room’s context is composed of the set
of values over its context properties: e.g. temperature=30 and light=40.

Obviously, the values 30 and 40 do not provide any information about the
scales that are used. Moreover, a context engine supplies context information to
many different applications, thus making a quantification even more important.
We therefore use a type system to define concepts within the context engine.

The system distinguishes four kind of types. Base types define common values
such as string, integer, boolean etc. The model allows base type restrictions
as used in XML Schema. Hence, we can create base type restrictions with new
names that represent values with specific semantics. In the example below, we
define a base type celsius as a restriction of real. Restrictions of a type are



Interplay of Content and Context 191

expressed through a constraint that checks the validity of the values acceptable
for the defined type.

btype celsius is real {
constr: ’self(S), S > -273.16’;

};

Our prototype system is implemented in Prolog and the context definition
language (CDL) used here has been developed to define concepts and their types
for an application-specific context schema. Operational components of CDL are
defined in Prolog. For the above example, the constraint is a predicate that
evaluates to true if the given value is legal. To check if a value is appropriate as
a celsius temperature, the value is first retrieved using the predicate self/1
and then checked to be greater than −273.16.

Apart from the base types, the context model uses references to application-
specific types to define and control application entities. Apart from a uniquely
identifiable application type, the context engine does not deal with, and has no
control over, the values composing an application entity. Thus an application ref-
erence type is sufficiently defined by the pattern applicationID:typeID. The
third class of types are the bulk types which designate sets of values of a given
member type. Finally, the model supports context types which define the com-
position of the context itself rather than its values. As a common composite
type, context types are defined over a set of attributes of a given type. In the
following example, we define a context type ctx temperature with one attribute
temperature of type celsius.

contextType ctx temperature characterises app:physical obj {
temperature: celsius;

};

Optionally, the context type designates the type of entity to which it can
be bound. In the above example, the defined context poses the constraint to
characterise application entities of the type physical obj defined in applica-
tion app. Application types could be defined in an is-a hierarchy, designating a
compatibility among them (not shown in this example).

After declaring the types, an application can create context elements and
bind them to some application entity. In the following example we create the
temperature context for app:roomA32, which is an instance of app:room, subtype
of app:physical obj.

context c roomA32 temp: ctx temperature describes app:roomA32

Context elements are either queried directly from client applications or re-
ceived through an event notification mechanism. Such clients play the role of
consumer with respect to the context engine. On the other hand, a sensor ab-
straction exists that encapsulates the context acquisition mechanism. Sensors are
well defined components that are initialised with some parameters and bound
to context elements. Sensors could either be hardware or software in nature. A



192 R. Belotti et al.

hardware sensor could be a thermometer and a software sensor could be a pro-
gram that extracts the current application status with respect to an interaction.

To allow reusability and separation of concerns, we introduced the concept
of a sensor driver. It holds the acquisition logic of the sensor. Multiple sensors
can be instantiated based on a single sensor driver. The next example defines a
temperature sensor that is connected to the serial port of a computer and pro-
vides temperature context information based on the ctx temperature context
type. The last statement initialises the actual thermometer based on the given
sensor driver, providing context information to the c roomA32 temp context.

sensorDriver tempSensor(serial port: integer): ctx temperature;

sensor s thermo1: tempSensor(1) provides c roomA32 temp;

In addition to the sensor driver definition, an implementation is necessary.
For our prototype, it is coded in SICStus Prolog [24] and bindings to Java are
used in cases where the actual sensor offers a Java API. Examples of such sensors
are software sensors that use information collected from the content management
system. More details on such sensors will be given in Sect. 4. For a context-aware
news application, we have developed a prototype sensor driver for the recognition
of people in a room. It is based on the ARToolKit [25] augmented reality library
and recognises people through special tags that are recognised by the ARToolKit
in a stream from a small video camera.

Having presented our context engine, we now go on to explain in the next
section how it can be used to make an existing application context-aware.

4 From Context to Content

To demonstrate the interworking of the previously described context engine with
an application system, we show in this section how it can be integrated with a
content management system. Further, we outline how information flows from the
context engine to the content management system and vice versa. As a content
management system, we have chosen our own eXtensible Content Management
(XCM) [22,18]. The current version of XCM is implemented in Java and based
on OMS Java [26], an object-oriented database management system based on
the Object Model (OM) [27], a model that integrates object-oriented and entity-
relationship concepts. The original version of XCM supports only a rather simple
implementation for context. We are currently working on the extension of XCM
for support of the context engine that we have described in the previous section.

XCM has been designed as a platform that provides support to applications
requiring features typical of content management such as user management,
workflows, personalisation, multi-channel delivery and multi-variant objects. At
the heart of the system stands the separation of content, structure, view and
layout. The concept of content allows data to be accumulated into content ob-
jects and stores metadata about this content. As it is often required that the
same content object may be delivered in different variations, the system sup-
ports what we call “multi-variant objects”. For example, a news article may



Interplay of Content and Context 193

have multiple variants that correspond to the different languages in which it
is available. Multi-variant objects however can comprise much more than the
simple dimension of language. Other dimensions are often required, such as the
target group of users or whether it is free or premium content for which users
have to pay. Our system does not predefine the possible dimensions, but rather
provides support to handle any annotation of content variants that makes sense
in a given application domain. To achieve this, the concept of a content object is
separated from its actual representation while still allowing for strict typing. In
Fig. 1, a metamodel is displayed that shows how XCM represents multi-variant
objects. The notation and semantics is that of the previously mentioned Object
Model (OM).

Fig. 1. Metamodel for XCM Multi-Variant Objects

At the top of the figure, the separation of the concept of an object and its
actual content is clearly visible in the form of Objects linked to a non-empty set
of Variants by means of the association hasVariant. Each variant of a multi-
variant content object can be described by Characteristics that are linked to
the variant over the association describedBy. A characteristic is simply repre-
sented as a (name, value) tuple. For example, to annotate a variant for english,
one would simply associate it with the tuple (language.name, english). As
we will see later, characteristics play an important role in context-aware con-
tent management applications. XCM also manages metadata about the types
of content objects and their variants. Thus, in the metamodel, objects as well
as variants are associated with Types using the hasType and variantType as-
sociations, respectively. This information can then be used by the system to
determine whether the type of a variant matches the type of the corresponding
object. As the cardinality constraints indicate, an object can have more than
one type to support polymorphism and multiple instantiation.

XCM uses the concept of structure to build content hierarchies from multi-
variant content objects. In a content management system, structures are required
to build complex objects such as pages, collection of pages or “folders”. Our
system uses the very simple component-container approach to build these struc-
tures. As a container can hold a number of components and other containers
as well, arbitrary tree-based structures can be represented. Structure objects,
i.e. containers, form the inner nodes of the tree, whereas the actual content is



194 R. Belotti et al.

located in the leaves. Separating the structure from the content makes possible
different access patterns to the same content.

Personalisation in XCM is achieved through the concept of a view. A view
decides which aspects of a multi-variant content object are presented to the user.
Further, it can aggregate other information to the object based on the schema
of the content, thereby augmenting it. Hence, our view concept is not unlike
that found in relational database systems. Managing different views for different
users or situations effectively provides support for personalisation and custom
content delivery.

Finally, the concept of layout encapsulates the graphical representation of
the content. The layout is applied to container and content objects by means
of templates that match the type of the target object. As for all four basic
concepts of our system, layout objects can have multiple variants for different
requirements. For example, a template to render a news article can have one
variant to produce HTML and another variant to display WML. Hence, layout
objects are required to support multiple presentation channels.

Based on this overview of the basic elements of XCM, we now go on to
describe the integration of the context engine into the system. As mentioned
before, our context model allows application entities to be linked to context
elements within the context engine. In the example of the content management
application, it is intuitive to link the application concept of Sessions to various
context elements such as the user’s identity and language, the version of the
browser and other information about the current situation of the requestor. As
sessions are already used in content management systems to store values essential
to the current user, it is only natural to use this concept and augment it with
context information.

Fig. 2. Conceptual Model for the Context Binding

Figure 2 shows the model of the binding between XCM and the context
engine. The parts that physically belong to the context model of our context
component are represented with dashed lines. The four basic concepts have been
unified with a common super concept XCMElements which depends on the values
of a given session. The separation between an object and its variants has been
collapsed into a box with multiple shades to indicate that these objects can have
multiple variants. From the model, it is apparent that not only content, but
also structure, view and layout can have multiple variants and thus adapt to



Interplay of Content and Context 195

context. Again, each variant can be described with characteristics as shown on
the left-hand side of the figure.

This conceptual link between context elements and the application concept
of a session is materialised using the context type definition given in the example
below. The displayed Prolog code first creates a base type for physical internet
addresses by means of a restriction on the type string. Then a context type
is created to represent the browser that is used in a given context. The actual
binding is defined by the third declaration. It defines a type ctx session which
is linked to the concept xcm:session within XCM. It comprises four attributes
that represent the context information available from the sensors. The attribute
user provides the identity of the user of the current session, lang its language
and browser the name and version of the browser used. Finally, the attribute
host gives information about the physical address from which the content man-
agement system is accessed.

btype ip is string {
constr: ’self(S), split(S,".",L), \+ (member(X,L), \+ conv integer(X, ))’;

};
contextType ctx browser {

name: string;
version: string;

};
contextType ctx session characterises xcm:session {

user: xcm:user;
lang: language;
browser: ctx browser;
host: ip;

};

Having explained how the context engine is bound to the content manage-
ment application, we now go on to discuss how such a system reacts to the
information supplied by the context component. In XCM, context information
is used to select the appropriate variant of an object, i.e. the context information
is compared to the characteristics of each variant of such an object and the best
matching version is selected. In practice, this can prove to be quite difficult, as
the characteristics available to the system need not fully match the incoming
context information. It is often the case that the context information comes at
a higher level of detail than the metadata stored in the content management
system. Of course, the opposite case that the metadata is more precise is also
possible. In these cases of “under-” and “over-specified” context information, the
matching process uses heuristics to select from the set of possible variants or to
select a default variant if no match is found at all. A similar matching process
together with heuristics is used in [17,28].

For the mapping of context information to characteristics to work, the names
of the (name, value) tuples have to match. This means that some sort of con-
vention, taxonomy or ontology has to be used that assures a uniform naming
scheme. As the definition of such conventions is clearly beyond the scope of
this work, we adopt the simple approach of what we call “property paths”. A
property path locates a value inside a context element and can be derived from



196 R. Belotti et al.

its context type definition, e.g. the value of the browser version in the current
session would be identified by the path ctx session.browser.version.

Further complexity arises from the fact that XCM supports not only sim-
ple values for characteristics, but also sets and ranges. This is used to spec-
ify, for instance, a set of matching browser versions with the characteristic
(ctx session.browser.version, [5.0, 5.5, 6.0, 6.1]) or a time period
when a variant of an object is valid with (valid, [1/1/2004..31/1/2004]).
XCM also provides the notion of mandatory and “show-stopper” characteristics.
In contrast to unconstrained characteristics, these categories of properties are
not freely matched to the context information, but instead are treated specially.
A mandatory characteristic takes precedence over all other non-mandatory val-
ues, whereas a “show-stopper” property would not allow a certain variant to be
selected if the context value does not match that of the characteristic.

Fig. 3. Overview of the Architecture

Having discussed the integration of the context component into our content
management system, we can finally give an architectural overview of the whole
system. Figure 3 shows a graphical representation of all components. At the bot-
tom, the user is shown that communicates with the content management system
through a browser requesting pages. The content management system then in-
terworks with a private context component to manage the context proprietary
to the system. Further, the private context component is connected to a shared
context component that manages context for several applications and provides
a global notion of context. This shared context component is connected to the
sensors as shown at the top of the figure. The two context components and the
content management application are conceptually connected by the model that
is common to all three of them. As the figure also indicates, information can
always flow in both directions. We discuss the opposite flow of information in
the next section.



Interplay of Content and Context 197

5 From Content to Context

In the previous section, we described how the content management system can
use the context engine to provide context-aware content for a user. In this section,
we describe the reverse relationship. The content management system can also
act as a provider of information for the context engine. This context information
can then be used either by the content management system itself, or by another
context-aware application of an information environment.

In Sect. 3, we introduced the abstract concept of a sensor. A sensor is basi-
cally any piece of software or hardware that generates context values for a given
context element. Sensors can be classified into two categories, depending on the
environment that they target: Physical sensors acquire context information from
the physical environment, e.g. from a room, the human body or a physical ob-
ject. Software sensors, on the other hand, gather information from the virtual
environment formed by the logic and data of an application. The content man-
agement system is such an application to which software sensors can be applied.
As XCM is implemented in Java, the corresponding software sensors would be
implemented in the same language. The binding of the sensors to the context
engine is done through the mechanism of a sensor driver as mentioned in Sect. 3.

The concepts of interest are the same for both physical and software sensors.
From the main areas described in [29], the user environment is of special im-
portance for information environments. Whereas the physical part of the user
environment (e.g. location and orientation of a person) is usually relatively easy
to acquire with appropriate sensors, the mental state of a user is much harder
to obtain. The content management system is able to provide very valuable con-
text information in this area such as what the user is currently working on,
which topics are of interest, how busy the user is and whether they are currently
working on a precise topic or just browsing an information space.

Context information can be extracted from application data, content data,
the local context model of the content management system or the user sessions.
Some of this context information, e.g. the level and type of activity, is indepen-
dent of the actual application data in the content management system and relies
only on its metadata. Software sensors can be provided that extract this con-
text information in a generic way. However, for the other examples mentioned
above, the actual data model of the application is very important. The fact that
we have an expressive semantic data model in our content management system
greatly simplifies the task. Actually, the extraction of semantic context infor-
mation would be very difficult, if not impossible, without a proper application
model in the content management system. Imagine, for instance, a news applica-
tion where individual news messages are categorised with respect to their topics.
In some traditional content management systems that do not support customised
data models, this could be modelled with a page for each topic containing a list
of news messages in the form of paragraphs, links etc. and a page for each news
message with more details. In this setup, it is not possible to extract the topics
in which the user is currently interested. As we have described in Sect. 3, in
our content management system, the application data is not stored in the form
of paragraphs, links and pages, but rather according to a semantic application



198 R. Belotti et al.

model. A customised software sensor could thus easily retrieve the categories of
the news messages that the user is currently browsing and store corresponding
entries in the context engine. In contrast to other context frameworks such as [9],
as described in Sect. 3, we are also able to use application objects as context
values through reference types. This means that the content management system
can store the actual object that represents the category in the context engine,
rather than just the name of the category.

It is important not to confuse the extraction of context information with
general data mining, e.g. for user profiling. Similar technologies and algorithms
can be used for both of them, but whereas data mining focusses on general facts
and information, for example about users, context mining is only concerned
with the current state of the user. This might include historical information, but
usually, context information is of interest for a limited time only.

The extracted context information can be used for a variety of applications.
Of special interest to us are information environments and corresponding plat-
forms that integrate multiple context-aware applications for a physical location
or virtual community. We have implemented a context-aware news application
for such an information environment that uses a content management system
for the delivery of information and adapts according to the people in a room.
Currently, we are working on the extension of this news application towards the
inclusion of virtual rooms and the integration of the context engine described
previously.

Another example are community awareness applications that visualise the
presence and activities of other users. This is context information of the user. A
content management system as part of an information environment of a commu-
nity could provide some of this context information, for example, for an applica-
tion such as the context-aware instant messaging and chat application described
in [30]. It visualises a list of users that are present along with their current
state (present, busy, free-for-chat etc.). Another interesting example is the area
of Computer-Supported Cooperative Work (CSCW) or collaborative systems in
general. In this context, the content management system could also provide con-
text information for a community of users, such as users working on specific
topics, rather than just for individuals. This information could be displayed by
other context-aware applications or the context management system itself.

6 Conclusions and Future Work

We have discussed the interplay between context and content in terms of the
relationship between the basic concepts of context engines and content man-
agement systems, respectively. We used the example of our own content man-
agement system to demonstrate how our generic context engine enabled us to
seamlessly adapt all dimensions of content delivery—content, view, structure and
presentation—through a process of matching context to multi-variant objects for
these dimensions.

Moreover, we showed that a content management system can be, not only a
client to the context engine, but also a potential provider of context information.



Interplay of Content and Context 199

Our system XCM exhibits two features that make it an ideal component for de-
termining the computation context: It consolidates well organised information
from arbitrary sources and acts as a bridge between the user and the organi-
sation through multiple communication channels. We showed how this crucial
and complete information provides context and how we use XCM as a software
sensor to the context engine.

We are currently working on a platform for a context-aware information
environment (SOPHIE) that combines features from pervasive computing and
information systems. The SOPHIE platform is based on content management
technologies and context engines and represents an important step forward in the
integration and extension of these technologies to cater for information delivery
and interaction in environments that span the physical and digital worlds and
involve multiple interrelated users and devices.

References

1. Lieberman, H., Selker, T.: Out of Context: Computer Systems that Adapt to and
Learn from Context. IBM Systems Journal 39 (2000)

2. Brown, P.J.: The Stick-e Document: a Framework for Creating Context-aware
Applications. In: Proc. EP’96, Palo Alto. (1996)

3. Dey, A.K., Salber, D., Abowd, G.D., Futakawa, M.: The Conference Assistant:
Combining Context-Awareness with Wearable Computing. In: ISWC. (1999)

4. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College
(2000)

5. Want, R., Hopper, A., Falc o, V., Gibbons, J.: The Active Badge location system.
ACM Transactions on Information Systems 10 (1992)

6. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyber-
guide: A mobile context-aware tour guide (1997)

7. Davies, N., Mitchell, K., Cheverst, K., Blair, G.: Developing a Context Sensitive
Tourist Guide (1998)

8. Ryan, N.S., Pascoe, J., Morse, D.R.: Enhanced Reality Fieldwork: the Context-
aware Archaeological Assistant. In Gaffney, V., van Leusen, M., Exxon, S., eds.:
Computer Applications in Archaeology 1997. British Archaeological Reports, Ox-
ford (1998)

9. Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the Develop-
ment of Context-Enabled Applications. In: Proceedings of the 1999 Conference on
Human Factors in Computing Systems (CHI ’99), Pittsburgh, PA (1999)

10. Hess, C.K., Ballesteros, F., Campbell, R.H., Mickunas, M.D.: An Adaptive Data
Object Service Framework for Pervasive Computing Environments (2001)

11. Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M.C., Palinginis, A.: Modelling
Context for Information Environments. In: Ubiquitous Mobile Information and
Collaboration Systems (UMICS), CAiSE Workshop Proceedings. (2004)

12. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Modeling
and User-Adapted Interaction 6 (1996)

13. Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interac-
tion 11 (2001)



200 R. Belotti et al.

14. Kobsa, A., Müller, D., Nill, A.: KN-AHS: An Adaptive Hypertext Client of the User
Modeling System BGP-MS. In: Proc. of the Fourth Intl. Conf. on User Modeling,
Hyannis, MA (1994)

15. Wu, H.: A Reference Architecture for Adaptive Hypermedia Systems. PhD thesis,
Technical University Eindhoven (2002)

16. Ceri, S., Daniel, F., Matera, M.: Extending WebML for Modeling Multi-Channel
Context-Aware Web Applications. In: Proc. MMIS’2003, Intl. Workshop on Mul-
tichannel and Mobile Information Systems, WISE 2003. (2003)

17. Norrie, M.C., Palinginis, A.: Empowering Databases for Context-Dependent In-
formation Delivery. In: Ubiquitous Mobile Information and Collaboration Systems
(UMICS 2003), Klagenfurt/Velden, Austria (2003)

18. Grossniklaus, M., Norrie, M.C., Büchler, P.: Metatemplate Driven Multi-Channel
Presentation. In: Proc. MMIS 2003, Intl. Workshop on Multi-Channel and Mobile
Information Systems, WISE 2003, Roma, Italy (2003)

19. Perkowitz, M., Etzioni, O.: Towards adaptive Web sites: conceptual framework
and case study. Computer Networks (1999)

20. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language For Designing Web Sites. Computer Networks (2000)

21. Norrie, M.C., Würgler, A., Palinginis, A., von Gunten, K., Grossniklaus, M.: OMS
Pro 2.0 Introductory Tutorial. Inst. for Information Systems, ETH Zürich. (2003)

22. Michael Grossniklaus and Moira C. Norrie: Information concepts for content man-
agement. In: Proc. DASWIS 2002, Intl. Workshop on Data Semantics in Web
Information Systems, WISE 2002, Singapore, Republic of Singapore (2002)

23. Dourish, P.: What We Talk About When We Talk About Context. Personal and
Ubiquitous Computing 8 (2004)

24. Swedish Institute of Computer Science S-164 28 Kista, Sweden: SICStus Prolog
User’s Manual. (1995)

25. Kato, D.H., of Washington, H.L.U., of Canterbury, H.L.U.: Artoolkit.
http://www.hitl.washington.edu/artoolkit/ (2003)

26. Kobler, A., Norrie, M.C.: OMS Java: Lessons Learned from Building a Multi-Tier
Object Management Framework. In: Proc. OOPSLA’99, Workshop on Java and
Databases: Persistence Options. (1999)

27. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management
in Object-Oriented Systems. In: Proc. ER’93, 12th Intl. Conf. on the Entity-
Relationship Approach. (1993)

28. Norrie, M.C., Palinginis, A.: Versions for Context Dependent Information Services.
In: Proc. COOPIS 2003, Conf. on Cooperative Information Systems. (2003)

29. Schilit, B.N.: A System Architecture for Context-Aware Mobile Computing. PhD
thesis, Columbia University (1995)

30. Ranganathan, A., Roy H. Campbell, A.R., Mahajan, A.: ConChat: A Context-
Aware Chat Program. Pervasive Computing 1 (2002)


	Introduction
	Related Work
	Context Engine
	From Context to Content
	From Content to Context
	Conclusions and Future Work



