
Requirements Engineering: Problem Analysis

and Solution Specification
(Extended Abstract)

R.J. Wieringa

University of Twente, the Netherlands
roelw@cs.utwente.nl

1 Introduction

Taken literally, the term “requirements engineering” (RE) is a misnomer. A
requirement is something that is wanted; engineering, according to Webster’s, is
calculated manipulation. If our wants would arise by calculated manipulation,
then something would be wrong. Our wants should not be engineered. What
should be engineered, are solutions that meet our wants.

So what is requirements engineering? In this talk I discuss two views of RE,
as problem analysis and as solution specification, and show that these two views
meet in the discipline of IT systems architecting.

Architecture is central to web engineering because the web is an infrastruc-
ture for distributed coordination. Requirements engineering for web aplications
therefore must deal with a distributed and sometimes fuzy set of stakeholders
and with evolving requirements that will change once people use the application
and explore new coordination mechanisms. In this context, requirements engi-
neering is a distributed and concurrent process of problem analysis and solution
specification.

2 Requirements Engineering and Problem Solving

The frequently heard mantra of software engineers is that requirements specify
what a system should do, whereas a design says how it should do it. But the
distinction between “what” and “how” is meaningless. We can ask how a system
behaves externally and what its internal structure is, just as we can ask what its
external behavior is and how it is structured internally. A better distinction is
that between problem and solution. A problem is a difference between what is
perceived to be the case and what is desired, that we want to reduce; a solution
is an action that reduces this difference [1, 2]. One view of requirements is that
they specify a problem; another view is that they specify a solution. I discuss
both views in this talk.

Note that problem analysis and solution specification need not be sequentially
related. In general, problem analysis and solution specification proceed jointly,
with the engineer spending most, but not all of her time on problem analysis at

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 13−16, 2004.
 Springer-Verlag Berlin Heidelberg 2004



the start of the process, and spending most, but not all of her time on solution
specificatioon towards the end of the process [3, 4].

3 Requirements Engineering as Problem Analysis

If requirements specify a problem, then a requirements specification should de-
scribe

– what the problematic phenomena are,
– what the cause relationships between these phenomena are,
– by which norms these phenomena are problematic, and
– which stakeholders have these norms.

An example of this approach to RE is goal-oriented RE, which starts from a top-
down analysis of user goals and refines these until desired properties of solutions
are found [5–8]. Another example is the problem frame approach of Michael
Jackson, in which frequently occurring problem structures are identified and are
related to a frame concern, which relates the solution specification to a goal
in the problem domain. A third approach sees problem-oriented RE as theory-
building, in which a theory of the problematic phenomena is built, that will help
us to specify a solution that takes away the causes of the problems [9]. All these
approaches take a rather top-down approach in which the assumption is that
users can specify their goals (even if these may be mutually inconsistent). In cases
where users cannot specify their goals, yet other approaches are suitable, such as
the task-support style of requirements specification proposed by Lauesen [10] or
an evolutionary approach in which users are observed in their work, from which
conclusions about their requirements are drawn [11, 12].

4 Requirements Engineering as Solution Specification

The view RE as solution specification is taken by the IEEE 830 standard [13]
and by other authors on requirements [14, 15]. In this view, a requirements spec-
ification consists of

– a specification of the context in which the system will operate,
– a list of desired system functions of the system,
– a definition of the semantics of these functions,
– and a list of of quality attributes of those functions.

Classical techniques for software solution specification are structured analy-
sis and, to some extent, object-oriented techniques [16, 17]. Note however that
object-oriented techniques such as the UML are primarily oriented towards spec-
ifying the internal structure of software solutions, not towards specifying their
requirements.

14 R.J. Wieringa



5 IT Systems Architecture

The two views of requirements come together in the concept of system architec-
ture. I define an architecture as the set of relationships between the components
of a system, that jointly ensure emergent properties of the system as a whole.
The architecture of a building is the set of relationships between parts of the
building that cause the building to have desired properties, such as room, shelter,
functionality and appearance. In the same way, the architecture of a software
system is the set of relationships between its components that cause the system
to have desired properties, such as a desired functionality, behavior, semantics,
and quality of service.

Architecture links requirements as problem characteristics to requirements as
solution properties. Consider a set of problem-oriented requirements, that char-
acterize a business problem, and a set of solution-oriented requirements, that
specify desired solution properties. If part of this solution is a software system,
then other parts may be novel work procedures and a new physical layout of
an office. Thus, the solution has an architecture that is expected to solve the
business problem and the desired software system plays a role in this architec-
ture. And it is the architecture that links the software solution to the business
problem. The same holds, mutatis mutandis, at lower levels of the aggregation
hierarchy. For example, the component architecture of a software system links
the component specifications to the software problem that they are intended to
solve.

Architecture is the central problem in web applications because these appli-
cations should enable distributed coordination between people, and the architec-
ture of these coordination mechanisms evolves by itself as well as is designed by
people. As far as it evolves by itself, it may link unforeseen solution properties to
unforeseen problems. If left to its own, evolutionary processes tend to deteriorate
the architecture of a system. The challenge of requirements engineering for web
applications is therefore to design architectures that enable this process.

References

1. Dewey, J.: How We Think: A Restatement of the Relation of Reflective Thinking
to the Educative Process. D.C. Heath and Company (1933)

2. Gause, D., Weinberg, G.: Exploring Requirements: Quality Before Design. Dorset
House Publishing (1989)

3. Cross, N.: Design cognition: results from protocol and other empirical studies of
design activity. In Eastman, C., McCracken, W., Newstetter, W., eds.: Design
Knowing and Learning: Cognition in Design Education. Elsevier (2001) 79–103

4. Wieringa, R.: Requirements Engineering: Frameworks for Understanding. Wiley
(1996)

5. Antón, A., Potts, C.: The use of goals to surface requirements for evolving systems.
In: International Conference on Software Engineering (ICSE’98), IEEE Computer
Society (1998) 157–166

6. Dardenne, A., Lamsweerde, A.v., Fickas, S.: Goal-directed requirements acquisi-
tion. Science of Computer Programming 20 (1993) 3–50

15Requirements Engineering: Problem Analysis and Solution Specification



7. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Communications of the ACM 42 (1999) 31–37

8. Yu, E.: An organization modelling framework for information systems requirements
engineering. In: Proceedings of the Third Workshop on Information Technologies
and Systems (WITS’93). (1993)

9. Wieringa, R., Heerkens, H.: Requirements engineering as problem analysis:
Methodology and guidelines. Technical report, University of Twente (2003)

10. Lauesen, S.: Software Requirements: Styles and Techniques. Addison-Wesley
(2002)

11. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Sys-
tems. Morgan kaufmann (1998)

12. Bondarouk, T., Sikkel, N.: Implementation of collaborative technologies as a learn-
ing process. In Cano, J., ed.: Critical Reflections on Information Systems–A Sys-
temic Approach. Idea Group Publishing (2003) 227–245

13. IEEE: IEEE Guide to Software Requirements Specifications. In: Software Engi-
neering Standards. IEEE Computer Science Press (1993) IEEE Std 830-1993.

14. Davis, A.M.: Software Requirements: Objects, Functions, States. Prentice-Hall
(1993)

15. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-
Wesley (1999)

16. Wieringa, R.: A survey of structured and object-oriented software specification
methods and techniques. ACM Computing Surveys 30 (1998) 459–527

17. Wieringa, R.: Design Methods for Reactive Systems: Yourdon, Statemate and the
UML. Morgan Kaufmann (2003)

16 R.J. Wieringa


	1 Introduction
	2 Requirements Engineering and Problem Solving
	3 Requirements Engineering as Problem Analysis
	4 Requirements Engineering as Solution Specification
	5 IT Systems Architecture



