Comparison of Two Approaches for Automatic
Construction of Web Applications:
Annotation Approach and Diagram Approach

Mitsuhisa Taguchi, Kornkamol Jamroendararasame,
Kazuhiro Asami, and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan
{mtaguchi, konkamol, asami, tokuda}@tt.cs.titech.ac.jp

Abstract. In order to support development of consistent and secure
Web applications, we have designed a number of Web application gen-
erators. These generators can be classified into two types of approaches:
annotation approach and diagram approach. In this paper, we try to
make the roles of these generators clear, and compare two approaches
in terms of target applications, developing processes and target users.
While both approaches are powerful and flexible enough to construct
typical Web applications efficiently, we may select the most appropri-
ate generator according to the characteristics of the application and the
developing process.

1 Introduction

Today, Web applications such as database query systems and transaction sys-
tems are widely used especially on the Internet. The development of such ap-
plications, however, requires much cost and experience of developers because of
the complexity of security checks and session management, which are unique
to Web applications. In order to support development of consistent and secure
Web applications, we have designed a number of Web application generators
which generate source codes necessary to execute the application [TI2J3[4L516]
[718/9]. Web application generators encapsulate the complexity unique to Web
applications and make developers concentrate on the business logic of the appli-
cation.

Our generators can be classified into two types of approaches. The first is
annotation approach, which concentrates on input data and embedded values
on each Web page [1I2]. Developers first compose Web page templates and give
declarative annotations to them. And then the generator generates procedural
program codes from Web page templates with annotations. The second is dia-
gram approach, which concentrates on data-flow relationships in the application
[BABI6I7R19]. Developers first compose diagrams which describe overall data-
flow relationships among Web components such as Web page templates, server

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 230-E43] 2004.
© Springer-Verlag Berlin Heidelberg 2004

Comparison of Two Approaches for Automatic Construction 231

side programs and databases. After developers select appropriate program tem-
plates and components, a generator can generate executable program codes from
the diagrams.

Each approach has assumptions and roles in developing processes. Developers
can select the most appropriate generator according to the characteristics of the
application and the developing process. In this paper, we try to make the roles
of these generators clear, and compare the two approaches in terms of target
applications, developing processes and target users. We also give discussions on
our future work based on this comparison.

The organization of the rest of this paper is as follows. In section 2 and section
3, we describe annotation approach and diagram approach, and give examples
of our generator systems based on each approach. In section 4, we compare two
approaches in terms of target applications, developing processes and target users.
In section 5 we give related work. We finally give future work and concluding
remarks in section 6.

2 Annotation Approach

2.1 Basic Idea of Annotation Approach

From the viewpoint of user interfaces, we can consider general Web applications
as transitions between Web pages just like ordinary Web pages that have no
server side programs. In most Web applications, the greater part of each Web
page template is static, and a part of the template is dynamic where actual
values are embedded by server side programs. Based on this idea, we present an-
notation approach to automatic construction of Web applications. In annotation
approach, we describe dynamic part of Web page templates as declarative anno-
tations. More precisely, the following steps are taken in the generation method.

1. We first construct Web page templates for intended Web applications. Web
page composers and other support tools may be used to visually compose
Web page templates efficiently. Dynamic part of the templates, where val-
ues are embedded at run time, may be described as special characters to
distinguish from static part.

2. We give annotations to dynamic part of Web page templates. Our anno-
tations are declaration of data processing which is executed on the server
side. Their tasks are mainly related to data-flow relationships among Web
components as follows.

— For input data checking, such as checking acceptable types and length
of input values and constraints between them.

— For session management, such as checking the beginning and the end of
the session.

— For database handling, such as the access to database management sys-
tems using queres.

— For communications with external programs, such as invocation of Web
services, EJB components and other applications.

232 M. Taguchi et al.

Web page composer {(1) Developers create HTML page templates

HTML page templates

I(Z) Developers annotate HTML page templates
(3) Annotation editor converts annotated HTML
page templates to D-Web source files

[Annotation editor

D-Web source files

l D-Web system |(4) D-Web generates Web applications from the
source files

Web applications

Fig. 1. The architecture of A-Web system

3. From Web page templates with annotations, a Web application generator
automatically generates source codes of server side programs. Generated
programs have consistency and the standard level of security because the
generator checks transitions and parameters between Web page templates,
and generates additional codes to prevent inconsistency.

2.2 Generator: A-Web System

Based on annotation approach, we designed and implemented a prototype gen-
erator called A-Web system which generates Web applications from Web page
templates [I2]. While our current prototype can generate only CGI programs,
we may be able to generate Web applications based on other architecture by re-
placing part of the generator because annotation approach itself is independent
of specific architecture.

The architecture of A-Web system is shown in Fig[ll A-Web system consists
of two parts: an annotation editor and a Web application generator called D-Web
system.

Web page templates. Before using A-Web system, Web page templates
should be prepared as input of the system. We can compose Web page tem-
plates using visual composers and other support tools because A-Web system
requires ordinary XHTML documents. Dynamic part of the templates should
be represented by special characters ${scope.valiable}. Variable is a name to
distinguish from other variables among the application and should be unique
in each scope. Because the special characters are ordinary strings, not exten-
sion of HTML tags, common tools can deal with these templates. Thus it is
unnecessary for us to modify the source codes directly.

Fig[shows an example of Web page templates of a simple member registra-
tion system. This application first requires users to input id and password
which the user chooses, a name, an email address and so on at a Web page
‘Registration’. If the id is already registered or the input data don’t satisfy
specified conditions, a Web page "Error’ is generated. Otherwise a Web page

Comparison of Two Approaches for Automatic Construction 233

2} Registratinn - Microsolt Tobesnet Bl ol x| Fat o (=] 5
| orinig @ wmTw AmAnm *O0 ||| eip @O owTM Am0ANE YA
. . g . - g

Registration Comfirmation
i i Hiag=trstion db
Ds=mrd'|7 [E N]

nsre flRegstrstion arel
nEre e L "

amal HRsgststenersil
amal; sl Hiagstration talt
el socress HRegstrs tonadd -essl

SEcress submit

| rime @mE #Ee s | A
=
Error Success

bzzk - HRagststion dt
pezsend. BlResstrs ton casswend|

| o

Fig. 2. An example of Web page templates

"Confirmation’ is generated. After the confirmation, the registration becomes

definite.

An annotation editor. An annotation editor is a part of A-Web system, which
is an editor to annotate Web page templates and convert them to D-Web
source documents. When the editor gets Web page templates, it analyzes the
templates, points out where we can give annotations and allows us to give an-
notations visually. In our prototype, we introduce five types of annotations:
input check, constraint, session, SQL and SOAP.

An input check annotation defines conditions for acceptable users’ in-
put. If the input is strings, we can define the length and types of ac-
ceptable characters. If the input is numbers, we can define a range of
acceptable numbers.

A constraint annotation defines relations which must be satisfied among
input data.

A session annotation defines the behavior of session management for each
template. When a user accesses a Web page with a session annotation
'begin’, the program starts the new session. In the case of ’check’, the
program checks whether the session is valid or not. In the case of ’end’,
the program terminates the session.

A SQL annotation describes SQL statements to access database manage-
ment systems. We can deal with database transactions.

A SOAP annotation describes statements to invoke external Web ser-
vices using SOAP protocol.

FigB shows an annotation editor in A-Web system. It analyzes Web page

templates and adds hyperlinks to special annotation pages automatically.

234 M. Taguchi et al.

x|
2 Registratinn - Micrsalt Tnteenek Eglirer ;
| wiMe R@ED FTE ETCANE Y-MD AW =]
Lnpust
Aprotstion| Sazsion]
pEsEx: | #
Prrctation] 351 | FrGTH |6 Zlength= 10
. . WALLE: = e
Registration ERROR [~]
subiil | rasnl =
Prretalion|Cors bra il o |
*: nacesssy | e Wmp @Y
Annotstien[SOLBELEG T] id: AnnstatienInput] | Cyeraat Annotatic Session H
Annmsmn SOLOSEECT] pezsword: AnnatatinInput] -~
L Annotstienlngut] | | FrTie g £ eg| |0 E (20 E-
Annots tiorInput] | VALUE: O e | B
. submit rezel
Annotatrm[‘fJL g AnnotatienInput, EFRCR Errc
Arnotstion BOLCSE BG T secress Annatazion nput] | back " necessary
Proctstion]5aL] s [resst | Current Atation
BE: hec
Arcctstion Tes & éRF‘ERk e;‘::o,

back

Fig. 3. An annotation editor of A-Web system

<html>
<head>

<title>Registration</title>

<session type="begin" error="Error.html"/>
</head>
<body>

<h1>Registration</h1>

<form action="Confirmation.html" method="Post">

id:<input type="text" name="id" length="[6,10]"/>
---- omit following parts ----

</body></html>

Fig. 4. An example of D-Web source codes

FigB shows ’Registration’ page, a session annotation page and an input
annotation page. FigHlshows an example of D-Web source codes, which are
generated by the annotation editor from a Web page template 'Registration’
and its annotations. D-Web source codes have a number of extended tags.

D-Web system. D-Web system is a part of A-Web system, which gets D-Web
source documents and generates source codes of Web applications. In our
prototype, D-Web system generates XHTML documents and CGI programs
written in Perl. To keep consistency of generated applications, D-Web system
analyzes all variables in Web page templates and transitions between Web
pages, and gives methods to pass the values between Web pages correctly. To
keep the standard level of security, all generated programs have additional
codes as follows.

1. After receiving input data, each program checks whether the user comes
from correct Web page.

Comparison of Two Approaches for Automatic Construction 235

2. Then each program checks whether user’s session id is valid.
3. Then each program checks whether input data are correct according to
input check annotations.
If there is at least one error, the user’s request is redirected to an error page.

3 Diagram Approach

3.1 Basic Idea of Diagram Approach

From the viewpoint of data-flow relationships among Web components such as
Web pages and programs, we can consider Web applications as applications based
on pipes and filters architecture. A filter corresponds to a server side program
and a pipe corresponds to a Web page which passes data between programs.
Based on this idea, we present diagram approach to automatic construction of
Web applications. In diagram approach, we first compose diagrams describing
overall behavior of the application and select general-purpose templates and
components to generate executable applications. More precisely, the following
steps are generally taken in the generation method using this approach.

1. We first compose directed graphs whose nodes represent Web components
such as Web page templates, server side programs and databases, and whose
edges represent data-flow relationships among the components. Most of our
generators use diagrams called Web transition diagrams which we designed
for the above purpose.

2. All generators based on diagram approach have predefined program tem-
plates and components which are independent of specific domains of ap-
plications, for example, for purposes of database manipulations, sending
electronic mails. Referring specifications of these programs, we give corre-
spondence between nodes in diagrams and the programs, and give values of
parameters of them.

3. From the descriptions of diagrams and values of parameters, a generator
automatically generates Web page templates and source codes of server side
programs. Generated programs have consistency and the standard level of
security, because the generator checks consistency of the diagrams, checks
correspondence between diagrams and predefined programs, and then gen-
erates additional codes to prevent inconsistency.

3.2 Generator: T-Web System

Based on diagram approach, we designed and implemented a prototype genera-
tor called T-Web system which generates Web applications from directed graphs
called Web transition diagrams [345I6[7/80]. While we have prototypes to gen-
erate CGI programs, JSP/Servlet programs and ASP programs respectively, we
may be able to generate applications based on other architecture by replacing
part of the generators because diagram approach itself is independent of specific
architecture of Web applications.

236 M. Taguchi et al.

T-Web system

“i WEB TRANSITION DIAGRAM EDITOR |<—Templates

Web transition
diagram
1—‘.| WEB-BASED TRANSACTION SYSTEM GENERATOR |

I
Web pages
}p 9 A script for
[A — , database tables creation
{ WEB PAGE COMPOSER |
(Web Sages Processing programs Database J

Web-Based Transaction System

Fig. 5. The architecture of T-Web system

In this section, we explain the basic architecture of T-Web system on the
basis of the generator for JSP/Servlet-based applications. The architecture of
T-Web system is shown in Fig[l T-Web system consists of two parts: a Web
transition diagram editor and a Web application generator.

Web transition diagrams. In T-Web system, we describe overall behavior
of intended application as directed graphs called Web transition diagrams.
Basically, Web transition diagrams consist of four types of nodes and two
types of links as follows.

A fixed Web page node is a static Web page which can be reached by
a certain URL. Its notation is a rectangle with its name, whose line is
thick. It may have a number of page elements such as hyperlinks and
input fields inside the rectangle.

A output Web page node is a dynamic Web page which is generated by
a server side program. Its notation is a rectangle with its name, whose
line is thin. Like a fixed Web page node, it may have a number of page
elements.

A processing node is a server side program which is activated by users’
requests to perform processing. Its notation is an oval with its name.

A database node is a relational database table in a database server. Its
notation is a cylinder with its name. The schema of the table is repre-
sented by a list of names between ’{ and ’}’.

A page transition link is a hyperlink relationship between Web pages. Its
notation is a directed line.

A data-flow link is a data-flow relationship among Web components such
as Web pages, programs and database tables. Its notation is a directed
line with a blocked line.

Each generator may have some extension of Web transition diagrams accord-

ing to the target architecture. FigBlshows an example of Web transition dia-

grams of a simple member registration system which is the same application

as given in section 2.

Comparison of Two Approaches for Automatic Construction 237

, Registration Comf i rmation Success
id — [0K] <d> Gid>
asswor i

peesrord 100 rzeeyoro (resistrs)— Gasoort>
email [] <emai >

tel] <tel>

address[_—] <address>

\ame, emai |,

{id, pw,

Fig. 6. An example of Web transition diagrams

A Web transition diagram editor. A Web transition diagram editor is a
part of T-Web system, which is an editor to support composition of con-
sistent Web transition diagrams. It allows users to do all operations visually.
We compose Web transition diagrams as follows.

1. We start up the editor and the editor receives available program tem-
plates and components automatically.

2. We draw Web transition diagrams by selecting a node from a list, putting
it on a drawing field and arrange nodes. A links is given by selecting the
target node from a list so that we can give only syntactically correct
links.

3. We specify details of each node using a window called a property window.
When we specify details of a processing node, we should select the most
appropriate program template from a list.

FigIl shows a Web transition diagram editor of T-Web system.

A Web application generator. A Web application generator is a part of T-
Web system, which gets intermediate documents a Web transition diagram
editor generates, and generates source codes of server side programs and
Web page templates. Our prototype system shown in Figld generates JSP
documents written in HTML and servlet source codes written in Java.
Generators have general-purpose program templates which are independent
of specific domains of applications so that we can widely reuse them. The
above prototype has 16 program templates which are mainly for database
manipulations, session management and sending electronic mails. Figl§
shows an example of program templates in T-Web system. In our templates,
a word between special characters ’/*" and "*/’ represents a parameter. Spe-
cial characters '/** and '**/° mean a repetition part. As the generator
rewrites above parameters to corresponding values, the program template
becomes a complete program.

To keep the standard level of security, all generated programs have additional
codes as follows.

238 M. Taguchi et al.

& Web Transition Diagram Editor -- T-Web System for Server Program Type Web Applications - |EI 5[

File Help

Dilleo =& & &=

Property list - Database Node LI

Tahle name |membeﬂ \

e
Registration Comfirmation Success
L forrn:
<id,passwo M <idl pas sword,narEeaditel address=

Field MName Type Max length ‘
id warchar 100 =

back \}// v warchar 100
membet narne warchar 100
{refmemben} |[2mail warchar 100
:member] id,pw,hame, |tel warchar 100
add warchar 100

Fig. 7. A Web transition diagram editor of T-Web system

1. After activated by a user’s request, each program checks whether user’s
session id is valid.

2. Then each program checks whether input data are correct according to
specifications we give.

3. After processing of business logic, each program checks whether output
data are correct according to database specifications. Especially when the
program updates database tables, it checks consistency between output
data and specifications of the database table.

If there is at least one error, the user’s request is redirected to an error page.

4 Comparison of Two Approaches

We compare annotation approach and diagram approach in terms of target ap-
plications, developing processes and target users. We discuss target applications
dividing into three viewpoints: application domains, flexibility and scalability.
We discuss them according to the following criteria.

1. Backgrounds show why the viewpoint is important to select a generator.

2. Characteristics show the advantage and the disadvantage of two ap-
proaches and compare them.

3. Examples show our practical experience and other points to notice.

4.1 Application Domains

Backgrounds. Web applications can be generally classified into two types ac-
cording to their functions: data-centric Web applications and control-centric

Comparison of Two Approaches for Automatic Construction 239

public class /*CLASSNAMEx*/ extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
String myHttpsURL = "/*HTTPSBASEURI*/"+"/*PROGRAMURI*/"
+"/*PACKAGE. */"+" /xCLASSNAME*/" ;
String dbName = "/*DBNAMEx/";
String tbName = "/*TABLE1x*/";
String[] dbColNames = {/*"FIELDNAME1"x/};
/*+String PARAMETER = "";xx*/
Connection con = TWeb.doConnect (dbName) ;
--- omit following parts ---

Fig. 8. An example of program templates

Web applications. Data-centric Web applications have side effect compu-
tations such as operations to update databases, while control-centric Web
applications concentrate on execution of complex business logic.

Characteristics. Both our annotation approach and diagram approach con-
centrate on data-centric Web applications. Our Web application generators
aim to encapsulate complex tasks unique to Web applications such as session
management and security checks, which are greater problems in data-centric
Web applications than in control-centric ones. In general, both approaches
can deal with applications having functions as follows: database manipu-
lations, invocation of external programs and sending/receiving electronic
mails. On the other hand, both approaches are not good at dealing with
complex page transitions which depend on the results of programs.
Annotation approach is useful to generate Web applications whose structure
of Web page templates is complex, because we can use general Web page
composers and authoring tools to compose flexible page layouts before the
generation. Diagram approach is not good at developing such applications,
especially clickable maps and multiple frames, because it is complicated work
to connect data-flow relationships to the above components after the gener-
ation. On the other hand, diagram approach doesn’t care a ratio of static
parts and dynamic parts in each Web page, while annotation approach is not
good at developing Web applications whose ratio of dynamic parts is high.

Examples. We are successful in developing typical data-centric Web applica-
tions using A-Web system and T-Web system respectively: shopping cart
systems, guestbook systems, glossary systems, schedule organizing systems,
member registration systems and reservation systems. The most appropri-
ate generator mainly depends on the complexity of appearance of Web pages
but not on application domains. When we want to develop more complicated
Web applications, general software techniques such as object-oriented anal-
ysis/design and the extension of them may be helpful|[TT].

240 M. Taguchi et al.

4.2 Flexibility

Backgrounds. When we need new business logic to generate an intended Web
application, it is a big problem how to add new program templates and com-
ponents into generators. It is also important what types of architectures it
can deal with, because we often have constraints on the execution environ-
ment of the application.

Characteristics. In annotation approach, we can set new program components
and give annotations to invoke the program. In diagram approach, we have
only to add new program templates, program components and documents of
their specifications, because the generators usually load specifications of all
program templates and components automatically when it starts up. Dia-
gram approach seems to be more flexible than annotation approach, because
program templates encapsulate invocation of external programs and it is
easier to add new program templates. When we want to generate Web ap-
plications based on various architectures, we can replace a part of generators
in both approaches. Especially in diagram approach, we may have only to
replace program templates to achieve the above goal.

Examples. Using our generators, typical data-centric Web applications are gen-
erated without new program templates and components. However, we pos-
sibly need new business logic in the case of a complex shopping Web site. In
that case, it requires high programming skills and much cost to test them
to produce new program templates and components. We have implemented
generators and made sure that our approaches can deal with CGI, ASP and
JSP /servlet architectures. When we extend a generator so that it can deal
with new architecture, it requires very high programming skills. In that case,
diagram approach may be easier than annotation approach.

4.3 Scalability

Backgrounds. The scale of the intended application is also an important prob-
lem as well as the complexity of Web page templates.

Characteristics. In annotation approach, we can basically concentrate on tran-
sitions between two Web pages, because the generator automatically gives
a method to pass values of parameters from the origin page to the pages
where they are used. Thus, even if the scale of an intended Web application
becomes larger, the task of generation doesn’t become so complicated. In
diagram approach, however, the larger the scale of an intended Web appli-
cation becomes, the more complex the management of diagrams becomes.
While we can make diagrams nested, it is still a big program how to manage
specifications of databases which are used in several diagrams.

Examples. Generators based on diagram approach can deal with no more than
15 Web page templates easily. While 15 Web page templates are enough
for typical Web applications, a complex shopping Web site may exceed the
number of templates. It may be helpful to use site diagrams which represent
the structure of the Web site and static relations among Web page templates.

Comparison of Two Approaches for Automatic Construction 241

4.4 Developing Processes

Backgrounds. Web applications are characterized by three major design di-
mensions: structure, navigation and presentation[I0]. We discuss effective
developing processes in each approach taking notice of the order of these
three design activities.

Characteristics. In annotation approach, we generally take the following de-
veloping process.

1. We first describe requirement specifications and analyze them.

2. We decide what Web pages are needed in the application, and design data
structure (as a structure model) which the application deals with. From
the above two models, we design Web page templates (as a presenta-
tion model) and implement them. We also design data-flow relationships
among the application (as a navigation model) based on the above two
models.

3. From the implementation of Web page templates and the navigation
model, we generate server side programs using the generator.

In diagram approach, we generally take the following developing process.

1. We first describe requirement specifications and analyze them.

2. We decide what Web pages are needed, design data structure (as a struc-
ture model) and design data-flow relationships among the application (as
a navigation model). From the above three models, we compose diagrams
such as Web transition diagrams.

3. From the diagrams, we generate server side programs and prototypes
of Web page templates using the generator. And then, we design Web
pages (as a presentation model) and revise generated templates.

If we want to revise the appearance of Web pages after the generation easily,
we should use XSLT and CSS to compose Web page templates in both
approaches.

Examples. Annotation approach has the advantage of composing prototypes
of Web page templates early in the process and reusing them for the final
product. We can take an iterative and incremental process composing Web
page templates. On the other hand, it is the disadvantage that it’s hard
to implement navigations as a prototype before composing Web page tem-
plates. Diagram approach has the advantage of designing and implementing
structure and navigation iteratively and incrementally. On the other hand,
it is the disadvantage that we cannot start implementation of Web page
templates before the generation.

4.5 Target Users

Backgrounds. The knowledge a generator requires is important for developers
to use the generator.

Characteristics. In annotation approach, Web page designers compose page
templates before the generation. Users of the generator don’t need knowl-
edge of markup languages, because an annotation editor points out where

242 M. Taguchi et al.

and what types of annotations we can give. The users also don’t need knowl-
edge of architecture of Web applications. On the other hand, the annotation
based generator requires knowledge of data types, regular expression and the
concept of session management. To develop advanced Web applications, it
may require knowledge of APIs to invoke external programs. In diagram ap-
proach, users don’t need knowledge of markup languages and programming
languages, because program templates and components encapsulate them.
The generator requires knowledge of Web interfaces, the concept of session
management and basic architecture of Web applications. It also requires a
skill in selecting and using general-purpose programs.

Examples. Annotation approach is effective for programmers who have basic
knowledge of software development. Diagram approach may be easier for
inexperienced programmers, because most typical data-centric Web applica-
tions have database manipulations and input checks, which are encapsulated
by the generator.

5 Related Work

Currently there are many languages and tools to support development of Web
applications. One of the widely used server side technology is so-called server
side scripting such as ASP, JSP and PHP. We give fragments of program codes
into Web page documents to describe dynamic parts of the Web page. However,
we still have to give processing steps of session management and security checks
in detail, because most of the program codes are procedural. Similarly, most
support tools to generate a part of the above program codes require procedu-
ral programming. Thus, the encapsulation of such techniques is not enough for
inexperienced programmers.

We may observe that there are many types of diagrams used for design or
construction of Web applications. The extension of UML diagrams is one possible
approach [II]. These diagrams are available to describe not only data-centric
Web applications but also control-centric Web applications. However, it is not
easy to use such diagrams for automatic construction because the descriptions
are too detailed for inexperienced programmers to understand them. The aims
are different in such techniques and our software generators.

One of the systematic construction methods of Web applications is object-
oriented hyper media design method [12]. This method is to produce interfaces
of Web applications from abstract data types using three types of diagrams. It
presents the developing process from requirements to the products and diagrams
to use. While it is useful under specific conditions, it is not so flexible because
the starting point of the developing process is always abstract data types.

6 Conclusion

We have presented two approaches to automatic construction of consistent and
secure Web applications. We designed and implemented Web application gen-
erators based on each approach. In this paper, we showed the roles of these

Comparison of Two Approaches for Automatic Construction 243

generators, and compared two approaches in terms of target applications, de-
veloping processes and target users. Both approaches are powerful and flexible
enough to construct typical data-centric Web applications efficiently. Especially
annotation approach has the advantage of developing applications whose Web
page templates have flexible page layouts. On the other hand, diagram approach
has the advantage of rapid and iterative/incremental development.

As our future work, we may try another approach which is based on the
combination of two approaches. In this approach, we can develop programs and
Web page templates concurrently. Such generator makes developing processes
more flexible.

References

1. K. Asami, and T. Tokuda. Generation of Web Applications from HTML Page
Templates with Annotations. Proceedings of the IASTED International Confer-
ence, APPLIED INFORMATICS, pp.295-300, 2002.

2. K. Asami and T. Tokuda. Generation of Web Applications from Annotation-Based
Definitions. Proc. of Engineering Information Systems in the Internet Context,
pp.69-79, 2002.

3. K. Jamroendararasame, T. Suzuki and T. Tokuda. A Generator of Web-based
Transaction Systems Using Web Transition Diagrams. Proc. 17th Japan Society
for Software Science and Technology, 2000.

4. K. Jamroendararasame, T. Matsuzaki, T. Suzuki, T. Tokuda. Generation of Secure
Web Applications from Web Transition Diagrams. Proc. of the IASTED Interna-
tional Symposia Applied Informatics, pp.496-501, 2001.

5. K. Jamroendararasame, T. Matsuzaki, T. Suzuki, T. Tokuda. Two Generators
of Secure Web-Based Transacion Systems. Proc. of the 11th Furopean-Japanese
Conference on Information Modelling and Knowledge Bases, pp.348-362, 2001.

6. K. Jamroendararasame, T. Suzuki, T. Tokuda. JSP/Servlet-Based Web Applica-
tion Generator. 18th Conference Proceedings Japan Society for Software Science
and Technology, 2C—1, 2001.

7. K. Jamroendararasame, T. Suzuki, and T. Tokuda. A Visual Approach to Devel-
opment of Web Services Providers/Requestors. Proc. of the 2008 IEEE Symposium
on Visual and Multimedia Software Engineering, pp.251-253, 2003.

8. M. Taguchi, T. Susuki, and T. Tokuda. Generation of Server Page Type Web Ap-
plications from Diagrams. Proc. of the 12th Conference on Information Modelling
and Knowledge Bases, pp.117-130m 2002.

9. M. Taguchi, T. Suzuki, and T. Tokuda. A Visual Approach for Generating Server
Page Type Web Applications Based on Template Method. Proc. of the 2003 IEEE
Symposium on Visual and Multimedia Software Engineering, pp.248-250, 2003.

10. Piero Fraternali. Tools and Approaches for Developing Data-Intensive Web Appli-
cations: A Survey. ACM Computing Surveys Vol.81 No.3, pp.227-263, 1999.

11. J. Conallen. Modeling Web Application Architectures with UML. Communications
of the ACM Vol.42 No.10, pp.63-70, 1999.

12. G. Rossi and D. Schwabe. Designing Computational Hypermedia Applications.
Journal of Digital Information, Vol. 1, No. 4, 1999.

	Introduction
	Annotation Approach
	Basic Idea of Annotation Approach
	Generator: A-Web System

	Diagram Approach
	Basic Idea of Diagram Approach
	Generator: T-Web System

	Comparison of Two Approaches
	Application Domains
	Flexibility
	Scalability
	Developing Processes
	Target Users

	Related Work
	Conclusion

