
N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 287–299, 2004.
© Springer-Verlag Berlin Heidelberg 2004

From Maintenance to Evolutionary Development of Web
Applications: A Pragmatic Approach

Rudolf Ramler1, Klaus Wolfmaier1, and Edgar Weippl2

1 Software Competence Center Hagenberg GmbH,
Hauptstrasse 99, A-4232 Hagenberg, Austria

{rudolf.ramler, klaus.wolfmaier}@scch.at
2 University of Vienna, Liebiggasse 4/3-4, A-1010 Vienna, Austria

weippl@acm.org

Abstract. Development of Web applications is dynamic by its very nature. Web
development processes have to facilitate a Web application's continual
refinement and evolution based on feedback from end-users. Evolutionary
development can easily be achieved by end-user involvement through seamless
integration of feedback and issue reporting mechanisms into Web applications.
This paper discusses the use of conventional methods and tools for maintenance
and change management as an infrastructure for evolutionary development of
Web applications. An example demonstrates the feasibility of the proposed
approach. It describes our experience from integrating the open source issue
tracking system Bugzilla into a Web application.

1 Introduction

Today's economic realities pressure organizations to continuously adapt to shifting
environments. Accordingly, "systems should be under constant development, can
never be fully specified and are subject to constant adjustment and adaptation" [1].
"Web developers have the capability to modify their systems for all users imme-
diately, without being impeded by the manufacturing, distribution and sales channel
delays inherent in shrink-warp software development." [2] Web applications are
installed on a central server and modifications are instantly propagated to all users. As
a consequence, Web applications can be developed in an evolutionary process. Once a
feature is implemented, end-users can start using it and their feedback can be quickly
incorporated into new releases. This iterative process of delivering the application in
multiple small steps allows immediate response to rapidly changing business needs
while continually maturing and adapting the application over time. Refinement and
adaptation are in many cases the only viable option in view of the fact that business
needs often change as development proceeds, making a straight path to an end
product unrealistic [3].

The goal of this paper is to present an easy yet effective approach to seamless end-
user involvement into the evolutionary development process of Web applications. By
relying on existing maintenance infrastructure, the users' feedback can be routed
directly to the developers with little additional overhead. According to this goal, the
remainder of this paper is structured as follows. In section 2 we present requirements

288 R. Ramler, K. Wolfmaier, and E. Weippl

for a Web development process. Section 3 outlines our conventional maintenance ap-
proach and the associated infrastructure (methods and tools), while section 4
describes how we enhanced the maintenance infrastructure to support evolutionary
Web development. Section 5 gives an overview of related approaches that deal with
rapid changes in Web development, and section 6 concludes the paper.

2 Requirements for a Web Development Process

From our experience in developing Web applications as well as from literature
research, we have derived a list of requirements for our Web development process.
The most important requirements are to provide (1) end-user involvement, (2)
prototyping, (3) change management, (4) immediate response, (5) risk minimization,
(6) no administrative overhead, and (7) transparency and overall guidance.

End-user involvement. Among the top three reasons for challenged or failed
projects is the lack of end-user involvement [4]. Knowing the end-users' requirements
is essential for the development of successful Web applications. The customer,
although defining the main goals for the development of a Web application, usually is
not the actual end-user and, therefore, he or she is not able to define all the require-
ments important to end-users. Involving actual end-users is most effective when un-
certainty about requirements is high [5], but difficult to achieve in Web projects. The
main reasons are the potentially high number of end-users, their geographical
distribution (possibly all over the world), and their anonymity due to the lack of direct
interaction.

Prototyping. End-users should be capable to provide all necessary requirements.
However, as Web applications and their related concepts and metaphors are still new
to many users, they have difficulties to develop realistic expectations and to express
their needs [6]. Prototyping is used to leverage the involvement of end-users in Web
application development. End-users are potentially highly skilled evaluators of
product functionality [7]. Thus, we find it viable to prepare a first, stable prototype
and present it to the end-users as a basis for feedback. Thereby, the users can refer to
a clearly defined part of the application, which helps to avoid a plethora of
(unrealistic) ideas and wishes. With emphasis on evolutionary prototypes of
reasonable usability and reliability, we strive to establish continuity in development
and avoid confusion and frustration of end-users – the main pitfall of rapid application
development in Web development according to [8].

Change management. In many cases, it is not possible to fully specify the
requirements of a Web application at the beginning of the project, because they will
either evolve over time or change during development. Typical reasons are frequent
changes in the environment (e.g. new business partners and competitors), new user
requirements (stemming from intermediate development results presented to the user),
the availability of new technologies, methods, and tools, or the need for refactoring
and error correction throughout development. Thus, the incorporation of effective
mechanisms to manage the Web application's change and maintenance is one of the
key steps of successful development [9]. A single channel for requests and issues has
to be defined and a change control board to prioritize requests and issues has to be
established to allow for flexible and prompt reaction.

From Maintenance to Evolutionary Development of Web Applications 289

Immediate response. Developing Web applications means “internet-speed”
software development [10]. Immediate response to changing requirements, to user
feedback, and to market shifts is required. Regarding the aforementioned change
management, immediate response relies mainly on immediate reaction to feedback
from the end-users to intermediate development results, such as prototypes. Thereby,
immediate feedback to the user is necessary in order to inform the end-user about the
consecutive steps and to show that his/her effort is taken seriously, even if not all
suggestions can be incorporated right away. In addition, immediate response to
market situations provides the ability to tackle the demanding time-to-market problem
in Web development. By employing evolutionary prototyping [7] it is feasible to go
on-line with a first working solution that serves as a starting point for further
development efforts and to exploit the opportunity of being a first-mover.

Risk minimization. Web projects have to deal with a high level of uncertainty and
a large number of risks [12]. Typical examples are unrealistic schedules, misunder-
stood or frequently changing requirements, underestimated complexity of non-func-
tional requirements, and unstable technologies. An ideal Web development process
explicitly addresses these risks. Therefore, a realistic estimation of the project situa-
tion is necessary. This is possible through frequent feedback from customers and end-
users on working examples and the continuous adaptation of previous estimations.

No administrative overhead. Typical Web projects have to cope with harsh limi-
tations of financial resources, and – in addition – with restrictive schedules, often less
than one or two months [11]. Thus, it is important to keep the administrative overhead
at a minimum. Lightweight or agile approaches have to be applied and the often im-
mense burden of (inappropriate) regulation and tool usage has to be avoided in order
to keep both process costs and reaction time low. Yet, lightweight tools can signifi-
cantly increase effectiveness and efficiency with simple, problem-specific solutions.

Transparency and overall guidance. In evolutionary Web development estab-
lishing a clear vision and long-term goals for the project is essential to unite the
project team's efforts and to assure that all the efforts are aimed in the right direction.
The product management, comprising the main stakeholders (e.g., customer and
project manager), is responsible to outline a roadmap for future work and to align the
project goals with business goals. A shared vision is required. Misalignment with
business goals is quoted as one of the ten deadly Internet and Intranet project risks
[12]. The collected and reviewed feedback from end-users serves as a decent
controlling instrument. For effective guidance, the whole process has to be transparent
for the team members as well as for the customers.

Most of these requirements have been frequently cited throughout the Web
engineering literature ([8], [13], [14], [15], [3]) as prerequisites for the development
of Web applications. For us, the question is not whether or not to incorporate these
requirements, but how we could do this without the burden of changing existing
processes and established structures or applying new methods and new tools. Yet, a
rigorous reduction of development cycles resulting in a blend of development and
maintenance activities proved as an effective and pragmatic approach towards an
evolutionary development process. Tool support helped to make this approach
efficient and systematic.

290 R. Ramler, K. Wolfmaier, and E. Weippl

3 (Conventional) Maintenance and Change Management

Maintenance is the modification of a software product after it has been placed into
production. Commonly, four different types of maintenance are distinguished [8]: (1)
Corrective maintenance to fix bugs and design deviations, (2) preventive maintenance
to avoid future bugs or maintenance, (3) adaptive maintenance when a system's en-
vironment changes, e.g. when a new Web browser is released and the application has
to be modified to work properly within that browser, and (4) perfective maintenance
to introduce enhancements such as new functionality or to increase efficiency.

Keeping track of changes and their effects on other system components is not an
easy task. The more complex the system is, the more components are affected by each
change. For this reason, change management [3] – important during development – is
critical during maintenance. For conventional software development, our approach is
to establish a change management process lead by a change control board to oversee
this process. Open source tools, such as CVS and Bugzilla, are employed to support
control and collaboration among team members.

CVS (Concurrent Versions System) [16] is used for version control. This tool
keeps track of the different versions of all the files that are part of a project. CVS
version control significantly eases the collaboration between developers and the
authoring of Web sites [17]. In addition, we rely on Bugzilla [18] to report and track
issues (e.g. requirements, bugs, user requests, or remarks). Bugzilla is a popular open
source issue tracking system that derived from the open source project Mozilla. It
provides an extensive set of features useful for distributed development teams and
end-user involvement, such as a Web-based user interface or an email notification
mechanism. As the source code is freely available, Bugzilla can easily be adopted and
extended to meet specific organizational needs. Nevertheless, the predefined
workflow introduces a flexible yet clear and systematic way to deal with issues. The
state diagram in Figure 1 illustrates the basic steps of the workflow from the per-
spective of an issue's lifecycle. Further details can be found in [18] or [19].

Fig. 1. Bugzilla issue management workflow

From Maintenance to Evolutionary Development of Web Applications 291

4 Transition to Evolutionary Development

David Lowe compares the development of Web applications with town planning and
landscape gardening: "The evolution of Web applications is analogous to a garden
changing as a natural part of its cycle of growth." From this, Lowe draws the
following conclusions: "… Web development tends to differ greatly in that we are no
longer aiming to develop a 'finished' product. Rather, we are aiming to create an
organic entity that starts with an initial consistent structure, but continues to grow and
evolve over time. This evolution is much finer-grained than the maintenance changes
that occur with more traditional software products, and tends to be an integral part of
the lifecycle of the product. Compare this to conventional software maintenance,
which tends to be a coarse-grained response to errors in the products, changes in
requirements, or a changing environment." [20]

In conformance to Lowe's suggestions, we reviewed and aligned our development
process. Instead of aiming towards a final product from the very beginning, we started
with laying out a general, flexible fundament for a more generic Web application by
modularizing functionality and by relying on component-oriented development. For
our first projects, we used an in-house Web application framework, similar to the
architecture described in [21], since other available solutions were still in their
infancies. The framework allowed us to develop modular function blocks and to
specify their coupling, parameters, error conditions, and access rights through XML
configuration files. This framework was later on superseded by the freely available
Struts framework [22], part of the Apache project. On the basis of this initial structure
we developed the functionality in small increments to enable evolutionary growth.
These increments did not encompass fully featured implementations of functions, but
rather initial, stable, and useable prototypes to demonstrate the conceptual and
technical feasibility. Only the feedback from the end-users facilitated the function's
continual refinement and maturation.

In the remainder of this section we describe how we implemented such a feedback
mechanism by means of the issue tracking system Bugzilla for a Web application for
internal use, the lessons we learned, and further implications. The experience and data
presented in this section is a summary of the project's final report, the usage analysis
of Bugzilla, and the notes from periodical project and process reviews conducted by
quality management.

4.1 Enabling End-User Involvement

At a first glance, the approach to evolve an application based on user feedback does
not seem much different to any conventional (iterative) software development process
that includes a beta testing and stabilization phase. For us, this was an advantage as no
major changes to the underlying processes and no new methods or tools were
necessary. However, there exists an inherent difference regarding the nature of the
feedback that is often overlooked, especially by development: A comparison of
conventional and evolutionary development shows a significant shift in the
importance of the different types of maintenance. While conventional maintenance
approaches tend to emphasize corrective maintenance, evolutionary development is
characterized by a focus on adaptive maintenance [23]. This is an important finding,

292 R. Ramler, K. Wolfmaier, and E. Weippl

as it underlines that evolutionary development focuses on (new) requirements rather
than on errors in existing functionality. Evolutionary development should therefore
primarily address the problem that users are not able to fully specify their
requirements at the beginning of the projects and, even if they do, requirements may
still change over time as business procedures and technologies evolve. Furthermore,
evolutionary development is often the preferable way to develop a common
understanding about the goals of the project and the needs of the users [6]. "In other
words, the specification of the system emerges from the design, rather than preceding
and driving the design." [24]

Consequently, we used the maintenance infrastructure, namely the issue tracking
system Bugzilla described in section 3, primarily to collect and maintain the
continually evolving requirements of the application. Thereby, using the existing
maintenance infrastructure for evolutionary development provided several benefits:
First of all, a proven tool with a clear and systematic process was used. All the
involved developers were familiar with the infrastructure. Thus, similar to the
advantages initially mentioned, no radical changes of the underlying development
process were necessary and overhead costs could be kept at a minimum. Second, as
described below, the integration of the Bugzilla issue tracking system turned out as an
effective vehicle to interact with end-users and to collect requirements. Third, it
supported collaborative work throughout development as well as measuring and
tracking the ongoing development effort.

To establish a single channel for end-user feedback, we made our maintenance
infrastructure an integral part of the Web application. Beside the solution presented
here, we also experimented with various other approaches that are commonly
suggested in the literature for end-user integration (see [23]). Useful to stimulate
feedback and discussion are, for example, annotation mechanisms to Web pages or
Wiki-style authoring [25]. However, these approaches focus mainly on content – the
data, its structure and presentation. We required a more general feedback channel
amenable to the different functional and non-functional aspects of Web applications
(e.g., correctness, security, usability, or performance issues related to functionality,
content, or infrastructure aspects) as described in [26]. Nevertheless, an easy to use
and seamless integrated solution was required. When, in a first step, Bugzilla was
integrated solely via a link, we experienced little acceptance of the feedback
mechanism because of major usability deficiencies: The access to Bugzilla was rather
uncomfortable due to switching to a (very) different application. The users had to
logon again and were confronted with the (non-intuitive) user interface of Bugzilla,
data had to be copied manually into Bugzilla's report form, and the users were
burdened with the concepts of Bugzilla's issue tracking process.

To overcome these drawbacks, we integrated a simple issue report and enhance-
ment request form into the Web application, which forwarded the data entered by the
user to the issue tracking system Bugzilla. Even though the form resembled the
structure of a conventional Bugzilla issue report, it was aligned with the style of the
Web application (see Figure 2 for an example). A few additional field values, e.g.
enhancement request for the field issue type, had to be added to support not only issue
tracking but also requests for enhancements and new features. Hence, the users were
relieved from directly accessing the Bugzilla interface and we could still utilize our
preferable issue tracking system in the background. Furthermore, the form was made
available within a single click from every page of the Web application. On accessing
the form, the context of use was analyzed and the fields of the form were

From Maintenance to Evolutionary Development of Web Applications 293

automatically pre-filled with meaningful default values to minimize the amount of
data the user had to enter. For example, the user's browser type was identified to
easily reproduce issues related to the different behavior of the various Web browsers
and the link referring to the page plus the name of the application module the user last
accessed were automatically suggested.

Fig. 2. Issue report and enhancement request form

To get a first version of the Bugzilla integration setup up and running, we relied on
the Bugzilla email gateway. Technically spoken, the report form is submitted to a
Java mailing servlet1 part of our Web application. The servlet assembles an email
containing the data from the report form structured according to the requirements of
the Bugzilla email gateway and sends it to a dedicated email account on the Bugzilla
server. There, the email is parsed, the report data is extracted and entered into the
issue tracking system. Thus, we can easily access Bugzilla and initiate the issue
tracking workflow. Bugzilla auto-assigns the report to the developer in charge for the
affected module, tracks all changes, and sends email notifications on updates.
Figure 3 illustrates the interaction between the user's Web browser, the Web
application, and Bugzilla integrated via the email gateway.

1 The Java source code of this servlet can be obtained from the authors.

294 R. Ramler, K. Wolfmaier, and E. Weippl

Fig. 3. Bugzilla Integration in Web Applications

4.2 Experience and Lessons Learned

The experience and lessons learned we present here are derived from integrating
Bugzilla as part of an internal Web-based application. The main results were largely
equivalent to the experience we made in consecutive projects. The target audience of
the application was a group of experienced users from within our organization as well
as partner companies at distributed locations.

The possibility to submit comments was well accepted by end-users. Even though
no particular measures were taken to encourage user feedback, we received more than
100 reports within one month from a group of about 50 potential users. Many of these
reports would otherwise have been submitted via email or through informal personal
communication, e.g. by phone or in hallway conversations. Or, more likely, they
would have simply been omitted. The development team greatly benefited from the
issue tracking capabilities of Bugzilla that supported a quick triage as well as the
systematic management of the submitted reports.

The total number of reports was distributed as follows: 17% critical errors, 41%
errors of normal severity, and 42% improvement suggestions and enhancement
requests. Critical and normal errors together made 58% of all collected reports,
despite the fact that we estimated a much higher potential for improvement comments
and enhancement requests than for error reports. The reason seems to be that the
motivation to react and comment on problems increases with the perceived severity of
the problem. From personal feedback we know that, in some cases, users even did not
report obvious errors when they found easy workarounds. Thus, incentives may be
necessary to motivate feedback and, furthermore, the costs for providing feedback
must be kept at a minimum. The ease of use of the feedback mechanism is of
uttermost importance. A short and concise form and a careful pre-selection of default
values are required as lengthy forms to fill in deter many users.

However, including user session data in reports may possibly conflict with privacy,
a major concern of many users. Therefore, we used only a few pre-filled entries and
we did not log any usage data related to the reported issues. Rather, the user was
asked to give a description of the issue and the necessary steps to reproduce it. The
optional statement of an email address allowed us to contact the user in case of further
questions. Besides, we were able to offer the user email notification on certain events,
e.g., when the reported issue had been accepted or resolved. So we involved the end-
users into the development process instead of frustrating them with the feeling as if
reporting "into a black hole".

From Maintenance to Evolutionary Development of Web Applications 295

Two important lessons we learned were, first, that we could not expect users to
positively confirm correctly working solutions. To some extent, the absence of
comments may only indicate a correct working solution. Second, since we provide the
feedback form for existing functionality only, users did not come up with new
features or any "great new ideas". Hence, evolutionary Web development still
requires a great deal of planning ahead and the proactive development of new
functionality, e.g. motivated by competitive analysis [2]. In addition, careful analysis
of the end-users' reports and a "creative mindset" are necessary to stimulate new ideas
within the development team. A shared vision serving as overall guidance for the
project team helped to direct these ideas into the right direction.

Furthermore, reports have to be brought in relation to overall usage statistics to
evaluate the relative significance of the feedback. Other sources that provide an
insight into the attitude and behavior of users should be included in the data collection
to support the reasoning about improvements and to strengthen the conclusions
drawn. Therefore, we are currently extending our feedback mechanism to allow real-
time analysis of application logs as described in the following section.

4.3 Towards a Bugzilla Web Service

The approach described in section 4.1 allows a quick and easy integration of Bugzilla
into any Web application. However, the Bugzilla email gateway is an extension to the
Bugzilla project with some limitations regarding functionality and flexibility. It lacks
full access to all of the features of Bugzilla. Currently, only a one-way access to the
issue tracking system is possible – issues can only be submitted from the Web
application to Bugzilla. Full access should permit creating new issues, adding
comments, changing issue related metadata (e.g. priority or severity), querying for
existing issues, or voting for issues (so the frequency of issues can be documented and
the number of duplicate reports can be reduced).

In Figure 4, we outline an integration concept based on a SOAP (Simple Object
Access Protocol) interface [27] to Bugzilla. Thus, the SOAP interface provides access
to all of the Bugzilla functionality via a Web Service and enables communication in
both ways – from the Web application to the Bugzilla issue tracking system (e.g. to
submit an issue) and from Bugzilla to the Web application (e.g. to return the status
information of an issue). The example of an automated issue reporting system, part of
a Web application, illustrates the advantages of such an interface to Bugzilla. We are
currently using the Log4J framework [28] for application logging. So, a log
recorder/analyzer can be used to observe and analyze the activity and state of the Web
application and react to certain events, e.g. application errors, in real-time by
submitting appropriate reports directly into the issue tracking system without further
human interaction.

We are currently evaluating the Jagzilla Web Service API, part of the Jagzilla
System [29] as a way to realize an integration of Bugzilla into Web Applications like
depicted in Figure 4. Jagzilla provides a simple re-implementation of the core
functionality of Bugzilla while relying on the original database of the Bugzilla issue
tracking system. By the date of writing, the Jagzilla Web Service API is still in early
alpha status.

296 R. Ramler, K. Wolfmaier, and E. Weippl

Fig. 4. Bugzilla integration based on Web Services

5 Related Work

Being in a constant state of flux, the adaptation and continuous evolvement of Web
applications as an answer to rapidly changing requirements has long been a topic in
Web engineering. Various approaches to deal with this problem have therefore been
proposed. In this section, we give an overview of related work, which we consider as
a prerequisite, a logical next step, or a useful basis in combination with the approach
that has been described in this paper.

Modeling and design. Web applications must be built with a mindset towards
frequent changes throughout the lifecycle. Development has to establish a basis for
applications that can be modified, fixed, or maintained at little cost of time or money.
Common approaches are modular architectures, e.g. based on re-useable components,
Web application frameworks, or code generation from domain models. Various
design methodologies support these strategies. An overview of methods and
appropriate tools specific for Web applications can be found in [30], [20], [23], or
[31]. From the maintenance perspective, re-engineering and reverse engineering are
of particular interest. Methods and tools based on modeling and design strategies have
been developed that support maintenance and evolutionary development. (Prominent
examples are STRUDEL [32], ReWeb [33], WARE [34], or Rigi [35].) Evolutionary
prototyping-based development, furthermore, has a rich tradition in User-Centered
[36] and Participatory Design [37]. Participatory Design explicitly considers social,
ethical, as well as political viewpoints in addition to technical issues and takes a
"democratic" approach to system design by actively involving users. From our point
of view, modeling and design techniques are a prerequisite for effective maintenance
and, thus, complementary to our evolutionary development approach.

Adaptive and customizable Web applications. With the transition to dynamic
Web sites and Web-based applications, where Web pages can be generated on the fly,
the idea of self-adaptation in response to external changes emerged. Several
approaches have been published that demonstrate this idea. For an overview of this
topic please refer to [23], [38], [39], or [40]. In contrast, our approach requires a
human (e.g. a programmer or product manager) to look at all submitted feedback
reports, to validate them, and to initiate proper measures. The necessary changes – the
adaptation and the extension of the Web application – are done by development, not
by the system itself. However, an integration based on Web Services, as described

From Maintenance to Evolutionary Development of Web Applications 297

above, may provide enough flexibility to serve as a first step towards adaptive
applications.

Agile development. Agile development methods have successfully found their
way into Web development processes [41, 42] and, conversely, agile processes have
been developed for Web engineering [43]. There are a number of rapid development
software methodologies all referred to as "agile development" [44]. Many of these
methods explicitly address the requirements of an evolutionary Web development
process as stated in Section 2. They offer, for example, rapid prototyping,
comprehensive end-user involvement, support for frequent changes (e.g. by unit
testing), and they emphasize low administrative overhead. As we do not prescribe any
development process in our approach, the workflow and tools proposed in this paper
may be combined with most of the agile development methods. Some processes, e.g.
Feature-driven Development [45], even suggest similar ideas to cooperate with stake-
holders or to organize work.

6 Conclusions and Future Work

Within this paper we first presented a requirement's perspective for an ideal Web
development process. In order to address and fulfill the presented requirements, we
then elaborated on how we successfully implemented a process for evolutionary de-
velopment based on conventional maintenance concepts. Our pragmatic approach has
the advantage that established development processes can be retained, no radical
changes are necessary, and existing tools can be utilized. Furthermore, while mainte-
nance such as adding new features or correcting errors may be initiated by the de-
velopment team, in practice maintenance is often triggered by feedback, both direct
and indirect, from end-users. The seamless integration of the issue tracking system
Bugzilla into the Web application permits easy and flexible involvement of end-users
and encourages the feedback necessary to adapt and grow Web applications. Thereby,
the workflow implied by Bugzilla supports an ordered and systematic development
process (as demanded in [9]), regardless of which particular process model is actually
used. From our point of view, agile development processes conveniently harmonize
with Web development and prevent ad-hoc approaches and undisciplined hacking
(see also [46]).

In a next step, we will consider to integrate the interface to the Bugzilla issue
tracking system into an existing Web application framework (e.g. Struts). This would
considerably ease the automated collection of end-user feedback and, thus, further
support the development of evolving Web applications as described in this paper.

Acknowledgements. This work has accrued in the framework of the K-plus
Competence Center Program, which is funded by the Austrian Government, the
Province of Upper Austria and the Chamber of Commerce of Upper Austria.

298 R. Ramler, K. Wolfmaier, and E. Weippl

References

1. Truex D.P., Baskerville R., Klein H.: Growing Systems in Emergent Organizations.
Communications of the ACM, vol. 42, no. 8, August 1999, pp. 117-123

2. Norton K.S.: Applying Cross-Functional Evolutionary Methodologies to Web
Development. pp. 48-57, in: [13] pp. 48-57

3. Pressman R.S.: Software Engineering: A Practitioner's Approach. 5.Ed., McGraw-Hill,
2001

4. Standish Group International: Extreme Chaos. Update to the CHAOS Report, Standish
Group International, Inc., 2001

5. Emam K.L., Quintin S., Madhavji N.Z.: User Participation in the Requirements
Engineering Process: An Empirical Study. Requirements Engineering, 1996 (1), pp. 4-26

6. Lowe D.: Web System Requirements: An Overview. Requirements Engineering Journal, 8
(2), 2003, pp. 102-113

7. Pomberger G., Blaschek G.: Object Orientation and Prototyping in Software Engineering.
Prentice-Hall, 1996

8. Powell T.A.: Web Site Engineering: Beyond Web Page Design. Prentice-Hall, 1998
9. Ginige A., Murugesan S.: The Essence of Web Engineering: Managing the Diversity and

Complexity of Web Application Development. IEEE Multimedia, vol. 8, no. 2, April-June
2001, pp. 22-25

10. Baskerville R., Levine L., Pries-Heje J., Slaughter S.: Is Internet-Speed Software
Development Different?. IEEE Software, vol. 20, no. 6, Nov.-Dec. 2003, pp. 70-77

11. Pressman, R.S.: What a Tangled Web We Weave. IEEE Software, Vol. 17, No.1, Jan-Feb
2000, pp. 18-21

12. Reifer D.J.: Ten Deadly Risks in Internet and Intranet Software Development. IEEE
Software, vol. 19, no. 2, March-April 2002, pp. 12-14

13. Murugesan S., Deshpande Y. (Eds.): Web Engineering – Managing Diversity and
Complexity of Web Application Development. LNCS 2016, Springer, 2001

14. Kappel G., Pröll B., Reich S., Retschitzegger W. (Eds.): Web Engineering – Systematische
Entwicklung von Web-Anwendungen. d-punkt Verlag, 2003

15. Lowe D., Hall W.: Hypermedia & the Web. An Engineering Approach. Wiley, 1999
16. Concurrent Versions System. Web (http://www.cvshome.org)
17. Dreilinger S.: CVS Version Control for Web Site Projects. Technical report, 1999

(http://www.durak.org/cvswebsites/howto-cvs-websites.pdf)
18. Bugzilla Bug Tracking System. Web (http://www.bugzilla.org)
19. Allen M.: Bug Tracking Basics – A beginners guide to reporting and tracking defects.

STQE Magazine, vol. 4, iss. 3, May-June 2002, pp. 20-24
20. Lowe D.: A Framework for Defining Acceptance Criteria for Web Development Projects.

pp. 279-294, In: [13], pp. 279-294
21. alphaWorks: ServletManager. IBM, 2002

(http://alphaworks.ibm.com/tech/servletmanager)
22. The Apache Struts Web Application Framework. Web (http://jakarta.apache.org/struts)
23. Scharl A.: Evolutionary Web Development. Springer, 2000
24. Lowe D., Eklund J.: Client Needs and the Design Process in Web Projects. Proc. of the

11th Int. World Wide Web Conference, Hawaii, 2002
25. Leuf B., Cunningham W.: The Wiki Way – Quick Collaboration in the Web. Addison-

Wesley, 2001
26. Ramler R., Weippl E., Winterer M., Schwinger W., Altmann J.: A Quality-Driven

Approach to Web-Testing. Proc. of the 2nd Int. Conf. on Web Engineering, Santa Fe,
Argentina, Sept. 2002

27. Gudgin M., Hadley M., Mendelsohn N., Moreau J.J., Nielsen H.F.: SOAP Version 1.2 Part
1: Messaging Framework. W3C Rec., June 2003 (http://www.w3.org/TR/SOAP)

28. Logging Services - Log4J. Web (http://logging.apache.org/log4j)

From Maintenance to Evolutionary Development of Web Applications 299

29. Jagzilla Home Page. Web (http://jagzilla.sourceforge.net)
30. Christodoulou S.P., Styliaras G.D., Papatheodrou T. S.: Evaluation of Hypermedia

Application Development and Management Systems. Proc. of the 9th Conf. on Hypertext
and Hypermedia, Pittsburgh, US, 1998

31. Schwinger W., Koch N.: Modellierung von Web-Anwendungen. In. [14], pp. 49-75
32. Fernandez M., Florescu D., Kang J., Levy A., Suciu D.: STRUDEL: A Web-site

Management System. Proc. of the Int. Conf. on Management of Data, Tucson, US, May
1997

33. Ricca F., Tonella P.: Understanding and Restructuring Web Sites with ReWeb. IEEE
MultiMedia, vol. 8, no. 2, April-June 2001, pp. 40-51

34. Di Lucca G.A., Fasolino A.R., Pace F., Tramontana P., De Carlini U.: WARE: A Tool for
the Reverse Engineering of Web Applications. Proc. of the 6th Eur. Conf. on Software
Maintenance and Reengineering, Budapest, Hungary, March 2002

35. Martin J., Martin L.: Web Site Maintenance With Software-Engineering Tools. Proc. of
the 3rd Int. Workshop on Web Site Evolution, Florence, Italy, Nov. 2001

36. Vredenburg K., Isensee S., Righi C.: User-Centered Design: An Integrated Approach.
Prentice Hall, 2001

37. Muller M.J., Kuhn S.: Participatory design. Communications of the ACM, vol. 36, no. 4,
June 1993, pp. 24-28

38. Perkowitz M., Etzioni O.: Adaptive Web sites. Communications of the ACM, vol. 43, no.
8, August 2000, pp. 152-158

39. Brusilovsky P., Maybury M.T.: From Adaptive Hypermedia to the Adaptive Web.
Communications of the ACM, special section: The Adaptive Web. vol. 45, no. 5, May
2002

40. Patel N.V. (ed.): Adaptive Evolutionary Information Systems. Idea Group Publishing,
2002

41. Engels G., Lohmann M., Wagner A.: Entwicklungsprozess von Web-Anwendungen. In
[14], pp. 239-263

42. Hansen, Steve: Web Information Systems:- The Changing Landscape of Management
Models and Web Applications. Workshop on Web Engineering, Proc. of the 14th Int.
Conference on Software Engineering and Knowledge Engineering, Ischia, Italy, July 2002

43. McDonald A., Welland R.: Agile Web Engineering (AWE) Process, Department of
Computing Science Technical Report TR-2001-98, University of Glasgow, Scotland,
December 2001 (http://www.dcs.gla.ac.uk/~andrew/TR-2001-98.pdf)

44. Abrahamsson P., Warsta J., Siponen M.T., Ronkainen J.: New Directions on Agile
Methods: A Comparative Analysis. Proc. of the 25th Int. Conf. on Software Engineering,
Portland, US, May, 2003

45. Coad P., Lefebvre E., De Luca J.: Java Modeling Color with UML: Enterprise
Components and Process. Prentice Hall, 1999

46. Boehm B.: Get Ready for Agile Methods, With Care. IEEE Computer, vol. 35, no. 1,
January 2002, pp. 64-69

	1 Introduction
	2 Requirements for a Web Development Process
	3 (Conventional) Maintenance and Change Management
	4 Transition to Evolutionary Development
	4.1 Enabling End-User Involvement
	4.2 Experience and Lessons Learned
	4.3 Towards a Bugzilla Web Service

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgements. This work has accrued in the framework of the K-plus Competence Center Program, which is funded by the Austrian Government, the Province of Upper Austria and the Chamber of Commerce of Upper Austria.
	References

