
From Relational Data to RDFS Models

Makym Korotkiy and Jan L. Top

Vrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands

{maksym, jltop}@cs.vu.nl

Abstract. A vast amount of information resources is stored as
relational-like data and inaccessible to RDFS-based systems. We de-
scribe FDR2 – an approach to integration of relational-like information
resources with RDFS-aware systems. The proposed solution is purely
RDFS-based. We use RDF/S as a mechanism to specify and perform
linking of relational data to a predefined domain ontology. The approach
is transformation-free, this ensures that all the data is accessible and
usable in consistence with the original data model.

1 Introduction

The RDF and RDFS languages have been developed to express machine under-
standable semantics to facilitate more intelligent ways of information processing.
RDF/S languages provide a unified syntax, data model, well-defined semantics
and enable separation of data (RDF) from meta-data (RDFS). The formal ac-
ceptance of RDF/S by W3C [1] stimulates their utilization in many areas and
by many organizations.

In spite of an increasing acceptance of RDF/S, this is still a new technology.
Most information resources are not available in RDF/S-format. The relational
data model, on the other hand, is widely accepted and currently supported by
thousands of applications ranging from simple spreadsheets to complex relational
databases.

Within this paper we use relational data model to refer to data presented
as a collection of records usually depicted as a table. We would like to note
that within the paper we differ between relational data model and relational
database model. The latter extends the former by assuming that columns repre-
sent attributes, rows represent entities, and the table contains a set of attributes
uniquely identifying each entity. We did not accept such assumptions because
our experience indicated that very often the users organize data in an ”intu-
itive” tabular way supported by spreadsheet applications but incompatible with
these database-specific assumptions. This made us to focus on the less restricted
relational data model.

Our application interest is to bring RDF/S technology to R&D companies
and institutes as a part of what has been labelled as e-Science. The idea is
that results of scientific experiments and computations as such should be shared
within the (global) scientific community, in addition to communicating through

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 430–434, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



From Relational Data to RDFS Models 431

traditional scientific publications. The latter do not contain sufficient details
of the work done and the information presented by them cannot be machine
processed.

Sharing is to be supported by an ontology-based information system. The
primary goal of the system is to assist with the transition from traditional ex-
perimental science to e-Science facilitating large scale collaboration between sci-
entists. Since we intend to bring benefits of ontologies into the e-Science envi-
ronment, we have to find a way to link the relational data to an RDF/S model.

The main objective is to allow ontology-based querying of the relational data:
the original relational data must be made available to an RDFS reasoner and
become queryable with a vocabulary predefined in a domain ontology.

Our approach to the linking problem is explained in Sect. 2. Section 3 dis-
cusses the presented method and related research and Sect. 4 summarizes the
results of this work.

2 FDR2 Approach

We present our approach as a general procedure that can be modified and ex-
tended to fit particular needs. Let us assume that we have a set of data, expressed
in a relational way (e.g., as a spreadsheet table where the first row is a header)
and a domain ontology (DO) expressed in RDFS.

The general problem of linking relational and RDF/S models can be broken
down into two subproblems:

1. Expressing relational data in an RDF/S format to enable syntactic and struc-
tural interoperability with DO.

2. Linking the newly created serialization to the RDFS representation of DO.

We approached the first subproblem by performing a two-step serialization of
the relational data. On Step 1 we automatically create a relational schema (RS)
to express and preserve structure of the original data (data representation level
on Fig. 1) and to provide a foundation for interoperability with DO (pre-RDFS
level on Fig. 1). The data representation level contains notions common for all
relational data sources (a header, rows, columns and cells). Concepts defined on
the pre-RDFS level are shared between data sources with the same structure
(table header). On Step 2 we use RDF to express the actual content of the table
according to the RS.

The second subproblem cannot be solved automatically due to the undefined
semantics of the relational data. We leave it to the user to define the relationships
between RS and DO (Step 3 ).

Our approach consists of three major steps. Additional actions (minor) are
needed to exploit the RDF/S documents created during those steps to enable
run-time interoperability (ontology-based querying).

Step 1: Build a relational schema to explicitly define the underlying relation.
Since we cannot assume that every column represents an attribute and every



432 M. Korotkiy and J.L. Top

row represents an entity, we have decided to build relational schemata upon a
notion of class.

Every header cell represents a name of

Fig. 1. The structure of the relational
schema.

a class that is extensionally defined by the
column cell values. An ordered set of all
such classes C defines the underlying re-
lationship R expressed within the table.
RDFS models explicitly support binary re-
lations only. Since any binary relation de-
fined over a set A is a subset of AxA,
where x denotes a Cartesian product, we
have decided to use CxC to obtain all bi-
nary virtual relations (virtual properties)
defined over the classes presented in the
relational schema.

After this step we have obtained the
relational schema expressed in RDFS and
containing a definition of all classes and
all binary relationships between them. The
resulting RS serves as a compact (inten-

sional) representation of the data and can be directly connected to DO.
The structure of the relational schema is depicted on Fig. 1. Dashed arrows

indicate transformation of simple concepts into more complex ones. For example,
a collection of cells becomes a column which at the end is generalized into a class.
Solid arrows explicitly indicate that classes and virtual properties enable access
to the actual table data.

Step 2: Construct an RDF representation of the relational data. At this step we
are dealing with the actual table content - the cell values. We consider every
row as an instance of R, where every cell is represented as an instance of a class
corresponding to its column. In addition, we instantiate all the virtual relations
defined on the previous step.

This step provides us with instances representing table data and once hidden
but now explicit relationships between cells of a row. At this point we have the
advantage of being able to use general-purpose RDF/S repositories and querying
engines but we still cannot employ the vocabulary defined in DO to access the
relational data.

Step 3: Ask the user to link RS with the domain ontology. The user links concepts
(classes and properties) from the relational schema to corresponding concepts in
the domain ontology by identifying rdfs:subClassOf and rdfs:subPropertyOf
relationships between corresponding classes and properties. A set of all such links
constitutes an RDMap (Relational-RDFS Map). The RDMap directly links the
relational schema to ontological definitions.

Having obtained the RDF/S serializations of the relational data and the
RDMap, an RDFS reasoner will be able to deduct all necessary entailments to



From Relational Data to RDFS Models 433

perform the actual linking of the relational schema and data with the concepts
defined in DO. We will illustrate this with an example in the next subsection.
The RDFS reasoner is required to merge the separate RDF/S documents and to
generate the entailments.

To test the proposed technique and to provide basic support to the user we
have developed FDR2#Kit1 – a web-based toolkit consisting of a few utilities:
FDR2#Generator takes a tab-delimited text file with tabular data and auto-
matically generates RDF/S documents for the relational schema and relational
data;FDR2#Mapper assists the user with linking the relational schema to DO;
FDR2#Tester allows to run simple queries over the resulting combination of
schema, data, RDMap and DO.

3 Discussion and Related Work

Over-generated virtual relations pose a serious performance problem. For exam-
ple, a 10-column table will result in a RS with 90 virtual relations and quite
significant portion of them may be redundant. Such a RS does not require a
lot of resources to handle but a corresponding RDF-serialization of the table
content will be polluted with irrelevant data. This problem can be handled by
introducing a separate step between automatic generation of the RS and serial-
ization of the table content. This stage is needed to enable the user to remove
the redundant virtual relations from the original RS. Another option would be
to swap steps 2 and 3 and to exploit a created RDMap to (semi)-automatically
remove virtual relations not linked with DO. The modified RS will determine
the final structure of the table content serialization preventing from polluting it
with irrelevant data.

The relational schema facilitates analysis of the relational data on an ab-
stract, intensional level. A possible practical applications of this is that an
RDFS-based information system can keep track of known relational schemata
and corresponding linking maps. This allows automating the whole process of
handling complex input data. Since the RS is constructed automatically, it is
quite likely that once created, the RDMap can be reused by many users who
even do not know anything about the details of linking procedure and still able
to take advantage of RDFS inference.

In [7] the authors describe a “naive” approach for mapping RDBMS schemata
onto RDF (although we would rather call it RDBMS data mapping onto RDF).
Our work takes it to the next level where we are focusing on linking relational
and RDFS schemata. RDF serialization of actual data is quite straightforward
and can be done in different ways according to application specific restrictions.

4 Conclusions

In this paper we have introduced FDR2 – a technique that enables us to link
relational and RDF/S data models. According to FDR2 a relational schema
1 http://www.cs.vu.nl/˜maksym#tools



434 M. Korotkiy and J.L. Top

is automatically created to explicate the structure and internal relationships
between elements of a relational collection of data. Explication of virtual re-
lations allows the user to construct a relational schema specific RDMap by
defining rdfs:[subClass|Property]Of relationships between concepts from the
relational schema and a domain ontology. The actual relational data are au-
tomatically expressed in RDF according to the generated relational schema.
Run-time integration is achieved by applying an RDFS reasoner to merge the
above-mentioned components into a single RDFS model and to deduct neces-
sary entailments. A resulting run-time model allows to access the relational data
with queries termed according to the domain ontology. FDR2 is purely RDF/S-
based and does not require any additional software components except an RDFS
reasoner.

References

1. W3C: Resource Description Framework (RDF). (http://www.w3.org/RDF/)
2. Omelayenko, B.: RDFT: A Mapping Meta-Ontology for Business Integration. In:

Proceedings of the Workshop on Knowledge Transformation for the Semantic Web at
the 15th European Conference on Artificial Intelligence (KTSW2002), Lyon, France
(2002) 77–84

3. Bizer, C.: D2R MAP - Database to RDF Mapping Language and Processor.
(http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm)

4. aidministrator.nl: Sesame Project. (http://sesame.aidministrator.nl)
5. ICS-FORTH: The ICS-FORTH RDFSuite: High-level Scalable Tools for the Seman-

tic Web. (http://139.91.183.30:9090/RDF/)
6. HP Labs Semantic Web Activity: Jena Semantic Web Toolkit.

(http://www.hpl.hp.com/semweb/)
7. Beckett, D., Grant, J.: Semantic Web Scalability and Storage: Mapping Semantic

Web Data with RDBMSes. SWAD-Europe deliverable, W3C (2003)


	Introduction
	textbf {emph {FDR2}} Approach
	Discussion and Related Work
	Conclusions



