Enhancing Decoupling in Portlet Implementation

Salvador Trujillo, Ifiaki Paz, and Oscar Diaz

University of the Basque Country, San Sebastian (Spain)
{struji, jibparei,oscar}@si.ehu.es

1 Introduction

A Portlet is a Web component that processes requests and generates dynamic content.
Portlet consumers (e.g. a portal) use Portlets as pluggable user interface components.
Typically, a Portlet is rendered as a window in the portal, the Portlet being a main
building block for portal construction. The recent delivery of standards, namely, Web
Services for Remote Portletd] and Java Specification Request 1681 promise to bring
interoperability to the Portlet realm. Nothing is said about how the Portlet should be
implemented. However, Portlet implementation could be quite an issue. Presentation
and even the navigation logic could need to change not only for maintenance reasons,
but also to cater for the idiosyncrasies of distinct Portals. Therefore, variability, and thus
decoupling, is a main issue in Portlet development. In contrast to servlet techniques
(i.e. modularisation), a single Portlet needs to implement (1) control code to determine
which action is being requested, (2) what action needs to occur, (3) what state to
leave the Portlet in, and (4) what view (fragment) to render back to the user. Without
appropriate decoupling patterns, this code can mix up different concerns, making the
separate evolution of each concern a real maintenance problem. This work revises
distinct approaches that gradually achieve higher levels of decoupling.

2 Decoupling

The Action from the State. Cleaner Portlet code can be obtained by using the state
pattern as proposed in [1]. A Portlet is modeled as a state machine where a state is
defined for each Portlet fragment, and arrows are labelled with the actions that achieve
the transition between fragments. A state has an associated view which in turn, embeds
the potential set of actions. Unfortunately, the control-flow is hard-coded in both actions
and fragments. This pattern facilitates the introduction of states but offers no help to
weave the new states into the flow of the existing states.

The Action from the View. A step forward is the use of the Model-View-Controller
paradigm, an evolution of the former where the control logic is decoupled in a new
element, the controller. No information about the Views is introduced in the action but

! WSRP standardizes the interface between the Portlet consumer and the producer.

2 JSR168 standardizes the interface between the Portlet container and the Portlet itself in Java.

3 This work was partially supported by the Spanish Science and Technology Ministry (MCYT)
under contract TIC2002-01442. Salvador Trujillo enjoys a doctoral grant for the MCYT.

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 5874588] 2004.
(© Springer-Verlag Berlin Heidelberg 2004



588 S. Truyjillo, I. Paz, and O. Diaz

rather on the controller definition. Moreover, the flow is described as a set of Front-
end rules: the antecedent expresses a predicate over the result of an action (i.e. success
or error) whereas the consequent states the next fragment to be rendered (e.g. flight-
Search.jsp). As an example, this approach is followed by the eXo Portlet Framework
(http://www.exoplatform.org). However, the coupling between the view and the action
still exists. The view contains the distinct actions the End-user can execute through it,
but still a direct mapping from the views to the actions exists. Indeed, the action-view de-
pendence is only moved to the controller, and still exists. No real independence between
the Actions and the Views exists.

The View from the Action. For Portlets to become real components, Portlet imple-
mentation should be engineered to cope with the changes and variations the Portlet needs
to cope with during its life time. That is, the Portlet should be built in such a way that the
impact and cost of performing changes will be minimal. To attain this goal, we propose
to decouple also the view form the action. In addition to Front-end rules, we introduce
Back-end rules that dictate the actions to be executed based on the interaction achieved
through the previous view. The controller comprises both Front-end and Back-end rules,
which describe the whole flow, and neither action nor view contain a reference to each
other, clarifying the development and reducing the impact of a change.

PPLP ortlet
sname: String
ct +init(} void
actions +proce ssAdion(vaid Views
+doDispatchirvoid
controllers
1.* I
Controller ontrolle dBy
Action name: String View
name: String dnitiakhoolean name:String
+proce ssAdion{Lvoid +execute Bac EndRules(): void +doDispatch{}void
+execute FrontE ndR ules():void
backE ndRules ,ﬁ'nntEndRules
BackE ndRule FrontEndRule
handle | order:int -order:int forward
~conditior: XP athExpr <condtion: ¥P athE xpr
+execute()void +execute() void

In brief, as with any other component, Portlets need to be engineered for variability.
This work describes distinct approaches that gradually achieve higher levels of decou-
pling, and hence, enhance Portlet variability. This effort is part of a wider endeavour in
attempting to apply a product-line approach to Portlet implementation.

Reference

1. T.Hanis, S. Thomas, and C. Gerken. Applying the State Pattern to Websphere Portal Portlets,
2002.
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_hanis/
hanis1.html.



	Introduction
	Decoupling 



